Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T19:45:03.955Z Has data issue: false hasContentIssue false

Multifractality of products of geometric Ornstein-Uhlenbeck-type processes

Published online by Cambridge University Press:  01 July 2016

V. V. Anh*
Affiliation:
Queensland University of Technology
Nikolai N. Leonenko*
Affiliation:
Cardiff University
Narn-Rueih Shieh*
Affiliation:
National Taiwan University
*
Postal address: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia. Email address: v.anh@qut.edu.au
∗∗ Postal address: Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4YH, UK. Email address: leonenkon@cardiff.ac.uk
∗∗∗ Postal address: Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan. Email address: shiehnr@math.ntu.edu.tw
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the properties of multifractal products of geometric Ornstein-Uhlenbeck (OU) processes driven by Lévy motion. The conditions on the mean, variance, and covariance functions of the resulting cumulative processes are interpreted in terms of the moment generating functions. We consider five cases of infinitely divisible distributions for the background driving Lévy processes, namely, the gamma and variance gamma distributions, the inverse Gaussian and normal inverse Gaussian distributions, and the z-distributions. We establish the corresponding scenarios for the limiting processes, including their Rényi functions and dependence structure.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2008 

References

Anh, V. V., Lau, K.-S. and Yu, Z.-G. (2001). Multifractal characterization of complete genomes. J. Phys. A 34, 71277139.CrossRefGoogle Scholar
Applebaum, D. (2004). Lévy Processes and Stochastic Calculus (Camb. Studies Adv. Math. 93). Cambridge University Press.CrossRefGoogle Scholar
Bacry, E. and Muzy, J. F. (2003). Log-infinitely divisible multifractal processes. Commun. Math. Phys. 236, 449475.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. (1998). Processes of normal inverse Gaussian type. Finance Stoch. 2, 4168.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. (2001). Superposition of Ornstein–Uhlenbeck type processes. Theory Prob. Appl. 45, 175194.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Leonenko, N. N. (2005). Spectral properties of superpositions of Ornstein–Uhlenbeck type processes. Methodology Comput. Appl. Prob. 7, 335352.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Koudou, A. E. (1998). Trees with random conductivities and the (reciprocal) inverse Gaussian distribution. Adv. Appl. Prob. 30, 409424.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Statist. Soc. B 63, 167241.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Shephard, N. (2002). Normal modified stable processes. Theory Prob. Math. Statist. 65, 120.Google Scholar
Barndorff-Nielsen, O. E. and Shephard, N. (2003). Integrated OU processes and non-Gaussian OU-based stochastic volatility models. Scand. J. Statist. 30, 277295.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E. and Shmigel, Yu. (2004). Spatio-temporal modeling based on Lévy processes, and its applications to turbulence. Uspekhi Mat. Nauk 59, 6390 (in Russian). English translation: Russian Math. Surveys 59, 65-90.Google Scholar
Barndorff-Nielsen, O. E., Kent, J. and Sorenson, M. (1982). Normal variance-mean mixtures and z distributions. Internat. Statist. Rev. 50, 145159.CrossRefGoogle Scholar
Barral, J. and Mandelbrot, B. (2002). Multiplicative products of cylindrical pulses. Prob. Theory Relat. Fields 124, 409430.CrossRefGoogle Scholar
Bertoin, J. (1996) Lévy Processes (Camb. Tracts Math. 121). Cambridge University Press.Google Scholar
Bichteler, K. (2002). Stochastic Integration with Jumps (Encyclopaedia Math. Appl. 89). Cambridge University Press.CrossRefGoogle Scholar
Carr, P., Geman, H., Madan, D. and Yor, M. (2007). Self-decomposability and option pricing. Math. Finance 17, 3157.CrossRefGoogle Scholar
Falconer, K. (1997). Techniques in Fractal Geometry. John Wiley, Chichester.Google Scholar
Finlay, R. and Seneta, E. (2006). Stationary-increment Student and variance-gamma processes. J. Appl. Prob. 43, 441453. (Correction: 43 (2006), 1207).CrossRefGoogle Scholar
Frisch, U. (1995). Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Frisch, U. and Parisi, G. (1985). On the singularity structure of fully developed turbulence. In Proc. Internat. Summer School Phys., North-Holland, Amsterdam, pp. 8488.Google Scholar
Grigelionis, B. (1999). Processes of Meixner type. Liet. Mat. Rink. 39, 4051.Google Scholar
Grigelionis, B. (2001). Generalized z-distributions and related stochastic processes. Liet. Mat. Rink. 41, 303319.Google Scholar
Grigelionis, B. (2003). On the self-decomposability of Euler's gamma function. Liet. Mat. Rink. 43, 359370.Google Scholar
Gupta, V. K. and Waymire, E. C. (1993). A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteorology 32, 251267.2.0.CO;2>CrossRefGoogle Scholar
Halsey, T. et al. (1986). Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 11411151.CrossRefGoogle ScholarPubMed
Harte, D. (2001). Multifractals. Chapman & Hall, Boca Raton, FL.CrossRefGoogle Scholar
Hentschel, H. and Procaccia, I. (1983). The infinite number of generalized dimensions of fractals and strange attractors. Physica D 80, 435444.CrossRefGoogle Scholar
Jaffard, S. (1999). The multifractal nature of Lévy processes. Prob. Theory Relat. Fields 114, 207227.CrossRefGoogle Scholar
Kahane, J.-P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9, 105150.Google Scholar
Kahane, J.-P. (1987). Positive martingales and random measures. Chinese Ann. Math. 8, 112.Google Scholar
Kolmogorov, A. N. (1941). Local structure of turbulence in fluid for very large Reynolds numbers. Dokl. Acad. Sci. USSR 31, 538540.Google Scholar
Kolmogorov, A. N. (1962). On refinement of previous hypotheses concerning the local structure in viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.CrossRefGoogle Scholar
Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin.Google Scholar
Lau, K.-S. (1999). Iterated function systems with overlaps and multifractal structure. In Trends in Probability and Related Analysis, eds Kono, N. and Shieh, N.-R., World Scientific, River Edge, NJ.Google Scholar
Madan, D., Carr, P. and Chang, E. (1998). The variance gamma process and option pricing. Europ. Finance Rev. 2, 79105.CrossRefGoogle Scholar
Mandelbrot, B. (1997). Fractals and Scaling in Finance. Springer, New York.CrossRefGoogle Scholar
Mannersalo, P., Norros, I. and Riedi, R. (2002). Multifractal products of stochastic processes: construction and some basic properties. Adv. Appl. Prob. 34, 888903.CrossRefGoogle Scholar
Molchan, M. (1996). Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Physics 179, 681702.CrossRefGoogle Scholar
Morales, M. and Schoutens, W. (2003). A risk model driven by Lévy processes. Appl. Stoch. Models Bus. Ind. 19, 147167.CrossRefGoogle Scholar
Mörters, P. and Shieh, N.-R. (2002). Thin and thick points for branching measure on a Galton–Watson tree. Statist. Prob. Lett. 58, 1322.CrossRefGoogle Scholar
Mörters, P. and Shieh, N.-R. (2004). On multifractal spectrum of the branching measure on a Galton–Watson tree. J. Appl. Prob. 41, 12231229.CrossRefGoogle Scholar
Mörters, P. and Shieh, N.-R. (2008). Multifractal analysis of branching measure on a Galton–Watson tree. In Proc. 3rd Internat. Congress of Chinese Mathematicians (AMS/IP Studies in Advanced Mathematics 42), eds Lau, K.-S. et al., Hong Kong, pp. 655662.Google Scholar
Novikov, E. A. (1994). Infinitely divisible distributions in turbulence. Phys. Rev. E 50, R3303R3305.CrossRefGoogle ScholarPubMed
Prentice, R. L. (1975). Discrimination among some parametric models. Biometrika 62, 607614.CrossRefGoogle Scholar
Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Springer, Berlin.CrossRefGoogle Scholar
Riedi, R. (2003). Multifractal processes. In Theory and Applications of Long-Range Dependence, eds Doukhan, P. et al., Birkhäuser, Boston, MA, pp. 625716.Google Scholar
Saito, Y. (1992). Log-gamma distribution model of intermittency in turbulence. J. Phys. Soc. Japan 61, 403406.CrossRefGoogle Scholar
Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.Google Scholar
Schmitt, F. G. (2003). A causal multifractal stochastic equation and its statistical properties. Europ. J. Phys. B 34, 8598.CrossRefGoogle Scholar
Schmitt, F. G. and Marsan, D. (2001). Stochastic equation generating continuous multiplicative cascades. Europ. J. Phys. B 20, 36.Google Scholar
Schoutens, W. and Teugels, J. L. (1998). Lévy processes, polynomials and martingales. Special Issue in honor of Marcel F. Neuts. Commun. Statist. Stoch. Models 14, 335349.CrossRefGoogle Scholar
Shieh, N.-R. and Taylor, S. J. (2002). Multifractal spectra of branching measure on a Galton–Watson tree. J. Appl. Prob. 39, 100111.CrossRefGoogle Scholar
Skorokhod, A. V. (1991). Random Processes with Independent Increments. Kluwer, Dordrecht.CrossRefGoogle Scholar
Taylor, S. J. (1995). Super Brownian motion is a fractal measure for which the multifractal formalism is invalid. Fractals 3, 737746.CrossRefGoogle Scholar