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Preface I

What is fractal set?
A set for which the Hausdorff-Besicovitch dimension strictly
exceeds the topological dimension is called fractal.

(B. Mandelbrot, 1977)
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Preface II

Fractals with empty interior.
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Preface III

Fractals with empty interior.
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Preface IV

Fractals with non-empty interior.
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Preface V

Cantorval – a perfect set on the real line with non-empty
interior and fractal boundary.
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Natural emergence of Cantorval I

The term “Cantorval” was first coined by P. Mendes and
F. Oliveira, who studied arithmetic sums

C1 ⊕ C2 = {x1 + x2 : x1 ∈ C1, x2 ∈ C2}

of two homogeneous Cantor sets C1 and C2 with zero Lebesgue
measure. As a result of such a sum, there occurs a perfect set
combining the properties of intervals and a nowhere dense set
simultaneously.
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Natural emergence of Cantorval II

Anisca R., and M. Ilie (2023): On the structure of arithmetic
sums of Cantor sets associated with series. - Results Math. 78:5,
article no. 5.

Pourbarat, M. (2022): Topological structure of the sum of two
homogeneous Cantor sets. Ergodic Theory and Dynamical
Systems, 43:5, 1712-1736.

Filipczak, T., and P. Nowakowski (2023): Conditions for the
difference set of a central Cantor set to be a Cantorval. - Results
Math. 78, art. no. 166.

Mendes, P., and F. Oliveira (1994): On the topological structure
of the arithmetic sum of two cantor sets. - Nonlinearity. 7:2,
329–343.
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Natural emergence of Cantorval III

Cantorvals are also one of the three possible topological types of
the set of subsums for a convergent positive series

∑
an, i.e., the

set

E(an) =

{ ∞∑
n=1

εnan : (εn) ∈ {0, 1}N
}
.

Nymann, J., and R. Sáenz (2000): On a paper of Guthrie and
Nymann on subsums of infinite series. - Colloq. Math. 83:1, 1–4.
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Natural emergence of Cantorval IV

A Cantorval can arise as the attractor of an iterated function
system (IFS) with overlaps, or even without overlaps in certain
special cases. Iterated function systems provide a relatively
simple framework for modeling self-similar sets in general, and
fractal sets in particular. IFSs without overlaps, which satisfy
the open set condition, have been well studied by
B. Mandelbrot, J. Hutchinson, and K. Falconer. In contrast,
IFSs with overlaps remain largely understudied due to the
considerable difficulties they present.
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Natural emergence of Cantorval V
Fraser, J., Henderson, A., Olson, E., Robinson, J. (2015): On
the Assouad dimension of self-similar sets with overlaps.
Advances in Mathematics, 273, 188-214.

Banakh, T., Bartoszewicz, A., Filipczak, M., Szymonik, E.
(2015): Topological and measure properties of some self-similar
sets. Topol. Methods Nonlinear Anal. 46:2, 1013-1028.

Banakh T., Bartoszewicz A., Glab S., Szymonik E. (2012):
Algebraic and topological properties of some sets in ℓ1 //
Colloq. Math. 129, 75–85.

Banakiewicz, M. (2019): The Lebesgue measure of some
M-Cantorval. - Journal of Mathematical Analysis and
Applications. 471, 170–179.
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Natural emergence of Cantorval VI

Cantorvals are also connected to the study of the spectrum of a
discrete two-dimensional Schrödinger operator with separable
aperiodic potential given by the Fibonacci sequence in both
directions in an intermediate coupling regime.

D. Damanik, M. Embree and A. Gorodetski (2015): Spectral
properties of Schrödinger operators arising in the study of
quasicrystals, in Mathematics of Aperiodic Order, eds. J.
Kellendonk, D. Lenz and J. Savinien, Birkhauser, Basel, pp.
307–370.

D. Damanik, A. Gorodetski and B. Solomyak (2015): Absolutely
continuous convolutions of singular measures and an application
to the square Fibonacci Hamiltonian, Duke Math. J. 164 (2015)
1603–1640.

Cantorvals: emergence, structure, open problems Karvatskyi Dmytro



Natural emergence of Cantorval VII

The existence of a large family of Cantorvals is observed in the
projection description of primitive two-letter substitutions.
These arise from the study of geometric, self-similar realizations
of aperiodic sequences (i.e., one-dimensional quasicrystals) with
two symbols, which can be described as regular model sets.

Baake, M., Gorodetski, A., Mazac, J. (2024): A naturally
appearing family of Cantorvals. Lett. Math. Phys., 114, article
no. 101.
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Natural emergence of Cantorval VIII

Cantorvals naturally appear in various branches of mathematics,
including mathematical analysis, dynamical systems, number
theory, and probability theory. Despite the relatively recent
emergence of the topic, it remains largely understudied. In this
context, the interest in Cantorvals is considerable and continues
to grow.
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The set of subsums of series I

Let us consider a convergent positive series

∞∑
n=1

an = r < ∞, an > 0.

We also introduce the notation

rn :=

∞∑
i=n+1

ai,

where rn is often called the n-th tail or remainder of the series.
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The set of subsums of series II

By E(an) we denote the set of all subsums for the series∑
an, i.e.,

E(an) =

{ ∞∑
n=1

εnan : (εn) ∈ {0, 1}N
}

Some researchers also refer to this object as as the
achievement set of the sequence (an). For simplicity, we say
that a set A is achievable if it coincides with the set of subsums
of some series. The study of the set of subsums of numerical
series was initiated by S. Kakeya in 1914. It is easy to see that
E(an) ⊂ [0, r], where r =

∑∞
n=1 an. Moreover, E(an) is a

perfect, symmetric set. The object was rediscovered by
H. Hornich (1941) and K. Menon (1948).
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The set of subsums of series III

Theorem (Kakeya-Hornich-Menon, 1914-1948)

Let
∑

n≥1 an be a convergent positive series with non-increasing
terms, i.e., an ≥ an+1 for any n ∈ N. Then E(an) is:

1 a finite union of closed bounded intervals if and only if
an ≤ rn for all but finitely many n ∈ N;

2 a closed interval if and only if an ≤ rn for all n ∈ N;
3 homeomorphic to the Cantor set if an > rn for all but

finitely many n ∈ N.

For simplicity, we say that
∑

an satisfies the Kakeya condition
if either an ≤ rn or an > rn holds for all but finitely many
values of n. A more intricate case arises when the inequalities
are mixed – that is, when ai > ri, i ∈ A− and aj ≤ rj , j ∈ A+,
where A− and A+ are countable sets such that A+ ∪A− = N.
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The set of subsums of series IV

Kakeya conjectured that E(an) is either a Cantor set or a finite
union of closed intervals. This assumption was refuted first by
A. Vainshtein and B. Shapiro (1980), and later by C. Ference
(1984). One of the most familiar examples was described by
J. Guthrie and J. Nymann who showed that the set of subsums
for the series

3

4
+

2

4
+

3

42
+

2

42
+

3

43
+

2

43
+ · · ·+ 3

4i
+

2

4i
+ . . . ,

is neither a finite union of closed intervals nor a Cantor set,
demonstrating the existence of a third type of set.

Guthrie J. A., Nymann J. E. The topological structure of the
set of subsums of an infinite series // Colloq. Math. – 1988. –
Vol. 55, № 2. – P. 323-327.
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The set of subsums of series V
Theorem (Guthrie-Nymann-Saenz, 2000)

The set of subsums for a convergent positive series is one of the
following three types:

1 a finite union of closed intervals;
2 homeomorphic to the classic Cantor set (Cantor set);
3 an M-Cantorval, or a set homeomorphic to

Y ≡ C ∪
∞⋃
n=1

G2n−1,

where C is the Cantor ternary set, Gn is the union of the
2n−1 open middle thirds which are removed from [0, 1] at
the n-th step in the construction of C.
G1 =

(
1
3 ,

2
3

)
, G2 =

(
2
9 ,

3
9

)⋃ (7
9 ,

8
9

)
,

G3 =
(

1
27 ,

2
27

)⋃ ( 7
27 ,

8
27

)⋃ (19
27 ,

20
27

)⋃ (25
27 ,

26
27

)
, and so on.

Cantorvals: emergence, structure, open problems Karvatskyi Dmytro



The set of subsums of series VI
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The set of subsums of series VII

Examples:

1

∞∑
n=1

1

2n
→ E ≡ [0, 1];

2

∞∑
n=1

an = 2 +
1

2
+

1

22
+ · · ·+ 1

2i
+ · · · → E ≡ [0, 1] ∪ [2, 3];

3

∞∑
n=1

(
1

2n
+

1

10n

)
→ E is a fat Cantor set;

4

∞∑
n=1

1

n!
→ dimH E = 0;

5

∞∑
n=1

qn, 0 < q <
1

2
→ E is a fractal with dimH E = − logq 2;

6 GN-series → E is a Cantorval;
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Multigeometric series I

The necessary and sufficient conditions for the set of subsums to
be a Cantorval or a Cantor set still remain unknown. Despite
significant progress for certain classes of series, the problem
remains quite difficult in the general setting. In this context,
researchers focus on series whose terms belong to sequences that
satisfy certain homogeneity conditions (for example – sequences
defined by a finite number of parameters, an explicit formula for
the general term, or a recurrence relation.).
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Multigeometric series II

The most significant results in that direction were obtained for
multigeometric series

k1+k2+ · · ·+km+k1q+ · · ·+kmq+ · · ·+k1q
i+ · · ·+kmqi+ . . . ,

where k1, k2, . . . , km are fixed positive scalars, q ∈ (0, 1).

It is easy to see that such a set is the attractor of a
homogeneous IFS with contraction ratio q and translations
formed by all possible combinations of k1, k2, . . . , km.
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Multigeometric series III

Certain conditions ensuring that E(an) is either a Cantorval or
a Cantor set, as well as solutions to related problems concerning
such Cantorvals, were established in the following works:

Jones, R. (2011): Achievement Sets of Sequences. The American
Mathematical Monthly, 118:6, 508–521.

Bartoszewicz, A., M. Filipczak, and E. Szymonik (2014):
Multigeometric sequences and Cantorvals. - Central European
Journal of Mathematics. 12:7, 1000–1007.

Ferdinands, J., and T. Ferdinands (2019): A family of
Cantorvals. - Open Mathematics. 17, 1468–1475.

Cantorvals: emergence, structure, open problems Karvatskyi Dmytro



Multigeometric series IV

Banakiewicz, M., and F. Prus-Wisniowski (2017): M-Cantorvals
of Ferens type. Mathematica Slovaca., 67:4, 907-918.

Glab, S., Marchwicki, J. (2023): Set of Uniqueness for
Cantorvals. Results Math. 78, article no. 9.

Banakiewicz M. (2019): The Lebesgue measure of some
M-Cantorval // Journal of Mathematical Analysis and
Applications. – 2019. – 471, № 1-2. – P. 170–179.

Bielas, W., Plewik, S., Walczynska, M. (2018): On the center of
distances. European Journal of Mathematics, 4, 687-698.

Cantorvals: emergence, structure, open problems Karvatskyi Dmytro



Multigeometric series V

In contrast, the following articles discuss non-multigeometric
series whose sets of subsums are Cantorvals:

Pratsiovytyi, M., and D. Karvatskyi (2023): Cantorvals as sets
of subsums for a series connected with trigonometric functions. -
Proceedings of the International Geometry Center. 15:3-4,
262–271.

Vinishin, Y., V. Markitan, M. Pratsiovytyi, and I. Savchenko
(2019): Positive series having Cantorvals as sets of subsums. -
Proceedings of the International Geometry Center. 12:2, 26–42.
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Some results of IFS theory I

Let us consider a finite collection of contractive maps on R:

Φ = {fi(x) = λi · x+ ti}Ni=1

where 0 < λi < 1 and ti ∈ R that is commonly referred to as
iterated function system (IFS). For every IFS, there exists a
unique non-empty compact set K ⊆ R such that

K =

N⋃
i=1

fi(K),

which is commonly called the attractor of the IFS Φ.
Furthermore, K is the closure of the set of all fixed points of
finite compositions fi1 ◦ fi2 ◦ · · · ◦ fip .
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Some results of IFS theory II

In the case when all contractions are similarities, Φ generates a
self-similar set. If, in addition, λi = λ for all i ∈ {1, . . . , N},
then Φ is called homogeneous or equicontractive.

A positive number α such that

λα
1 + λα

2 + · · ·+ λα
N = 1

is called the similarity dimension of Φ.

It is well known that

dimH K ≤ min{1, α}.
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Some results of IFS theory III

An IFS Φ = {f1, f2, . . . , fN} is said to satisfy the Open Set
Condition (OSC) if there exists a non-empty bounded open set
V such that:

1 fi(V ) ⊆ V for all i;
2 fi(V ) ∩ fj(V ) = ∅ for all i ̸= j.

Due to Hutchinson, if an IFS satisfies the OSC then

0 < Hα(K) < ∞

and consequently
dimH(K) = α.
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Some results of IFS theory IV

Theorem (Bandt-Graf-Schief, 1992-1994)
The following conditions are equivalent:

Strong open set condition (SOSC);
Open set condition (OSC);
Hα(K) > 0, where α is the similarity dimension of IFS.

Theorem C (A.Schief, 1994)
Let the similarity dimension of an IFS be equal to α = 1. Then
K contains interior points if and only if λ(K) > 0. Moreover, in
this case, the IFS satisfies the OSC.
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On topological structure of Cantorvals I

We sketch some basic topological properties of an arbitrary
bounded perfect set A. Connected components of A ⊂ R are
either closed intervals or singletons. Intervals that are connected
components of the set A will be called A-intervals, while
one-point connectivity components of A will be called loose
points of A. Bounded open intervals that are connected
components of the complement Ac = R \A will be called A-gaps.
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On topological structure of Cantorvals II

How can we describe the
interior and boundary of an

achievable set?
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On topological structure of Cantorvals III

Cantorval can be formally defined as a nonempty compact real
subspace which is the closure of its interior and the endpoints of
any nontrivial component of this set are accumulation points of
trivial components.
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The structure of some Cantorvals I

In 1988, John Guthrie and John Nymann considered the set

X =

{ ∞∑
n=1

αn

4n
: (αn) ∈ {0, 2, 3, 5}N

}
,

of subsums for the series

3

4
+

2

4
+

3

42
+

2

42
+

3

43
+

2

43
+ · · ·+ 3

4i
+

2

4i
+ . . . ,

which will further be called Guthrie-Nymann’s series. This set
contains the interval [3/4, 1], but it is not a finite union of closed
intervals. It exemplifies a third possible type for E(an) – a
mixed type.
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The structure of some Cantorvals II

It is easy to observe that X simultaneously possesses the
properties of being achievable and self-similar, as it is the
attractor of the IFS given by:

1 w1(x) =
x

4
;

2 w2(x) =
x

4
+

2

4
;

3 w3(x) =
x

4
+

3

4
;

4 w4(x) =
x

4
+

5

4
.

In this context, the set X is significantly more tractable for
further study.
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The structure of some Cantorvals III

Let XI denote the interior and XC denote the boundary of X.
The set X has the following properties:

Property 1

The interval
[
2
3 , 1
]

is contained in the Cantorval X.

For any x ∈
[
3
4 , 1
]

there exists (αn) ∈ {0, 1, 2, 3}N with α1 = 3
such that

x = ∆4
α1...αn... =

∞∑
n=1

αn

4n
.

We can prove that for any (αn) ∈ {0, 1, 2, 3}N there exists
(βn) ∈ {0, 2, 3, 5}N such that

∞∑
n=1

αn

4n
=

∞∑
n=1

βn
4n

.
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The structure of some Cantorvals IV

Property 2

The set X \
(
2
3 , 1
)

is a union of pairwise disjoint affine copies of
X. In particular, this union contains two isometric copies of
1
4n ·X for each n ∈ N.

H =
[
0, 53
]

– convex hull of X;
X =

⋃4
i=1wi(X) as self-similar set;

w1(H) ∩ wi(H) = ∅, for 2 ≤ i ≤ 4;
wi(H) ∩ w4(H) = ∅, for 1 ≤ i ≤ 3;
w1(H) ∩

[
2
3 , 1
]
= ∅;

w4(H) ∩
[
2
3 , 1
]
= ∅.

∅ ≠ w2(H) ∩ w3(H) ⊂
[
2
3 , 1
]
;
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The structure of some Cantorvals V

w2(X) =
⋃4

i=1w2 ◦ wi(X);
w2 ◦ w1(H) ∩ w2 ◦ wi(H) = ∅, for 2 ≤ i ≤ 4;
w2 ◦ w1(H) ∩

[
2
3 , 1
]
= ∅;

w2 ◦ wi(H) ⊂
[
2
3 , 1
]

for 3 ≤ i ≤ 4;

w2 ◦ · · · ◦ w2︸ ︷︷ ︸
n−1

◦w1(H)∩w2 ◦ · · · ◦ w2︸ ︷︷ ︸
n−1

◦wi(H) = ∅, for 2 ≤ i ≤ 4;

w2 ◦ · · · ◦ w2︸ ︷︷ ︸
n−1

◦w1(H) ∩
[
2
3 , 1
]
= ∅;

w2 ◦ · · · ◦ w2︸ ︷︷ ︸
n−1

◦wi(H) ⊂
[
2
3 , 1
]

for 3 ≤ i ≤ 4;

limn→∞wn−1
2 ◦ w1(H) = 2

3
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The structure of some Cantorvals VI
Property 3
The set XC is a union of pairwise disjoint affine copies of itself
with similarity ratios 1/4n, n ∈ N, namely

XC =
⊔
n∈N

(
C̄ l
n ⊔ C̄r

n

)
,

where

C̄ l
n = w2 ◦ · · · ◦ w2︸ ︷︷ ︸

n−1

◦w1(XC) =

n−1∑
i=1

2

4i
+

1

4n
·XC ,

C̄r
n = w3 ◦ · · · ◦ w3︸ ︷︷ ︸

n−1

◦w4(XC) = h
[
C̄ l
n

]
represent the left and right copies.
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The structure of some Cantorvals VII

Рис.: The set XC consists of countable disjoint affine copies C̄l
n, C̄

r
n.

Cantorvals: emergence, structure, open problems Karvatskyi Dmytro



The structure of some Cantorvals VIII

Such sets are referred to as countable self-similar or
N-self-similar, and were studied in detail by M. Pratsiovytyi,
H. Fernau, M. Moran, and D. Mauldin. Since all the copies of
N -self-similar set XC are disjoint, its Hausdorff dimension
coincides with N -similarity dimension (analogue of similarity
dimension). This dimension can be determined as the unique
solution to the following equation:

2

(
1

4

)x

+ 2

(
1

42

)x

+ 2

(
1

43

)x

+ · · ·+ 2

(
1

4n

)x

+ · · · = 1,

that implies

4−x

1− 4−x
=

1

2
⇒ 4x = 3 ⇒ x = log4 3.
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The structure of some Cantorvals IX

Property 4

The distance between adjacent affine copies C̄ l
n, C̄

l
n+1 and

C̄r
n, C̄

r
n+1 can be computed by the formula

dn = d
(
C̄ l
n, C̄

l
n+1

)
= d
(
C̄r
n, C̄

r
n+1

)
=

1

3
· 1

4n
.

Property 5

The distance between the symmetric affine copies C̄ l
n and C̄r

n

can be calculated as

sn = d
(
C̄ l
n, C̄

r
n

)
=

5

3
− 2 ·

(
n−1∑
i=1

2

4i
+

1

4n
· 5
3

)
.
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The structure of some Cantorvals X

Theorem
The Cantorval X, which is the set of subsums of the
Guthrie-Nymann series, can be represented as X = XI

⊔
XC ,

where XI is a countable union of open intervals with total
Lebesgue measure equal to 1, XC is a Cantor set of zero
Lebesgue measure and Hausdorff dimension dimH XC = log4 3.

Рис.: The set XC consists of countable disjoint affine copies C̄l
n, C̄

r
n.
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The structure of some Cantorvals XI

The above result can be extended to a countable family of
Cantorvals of the form

X(m) =

{ ∞∑
n=1

αn

(2m+ 2)n
: (αn) ∈ {0, 2, 3, . . . , 2m+ 1, 2m+ 3}N

}
,

which arise as the sets of subsums of the series

3q + 2q + · · ·+ 2q︸ ︷︷ ︸
m

+3q2 + 2q2 + · · ·+ 2q2︸ ︷︷ ︸
m

+ . . .

· · ·+ 3qn + 2qn + · · ·+ 2qn︸ ︷︷ ︸
m

+ . . .

where q = 1/(2m+ 2),m ∈ N.
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The structure of some Cantorvals XII

Theorem
The Cantorval X(m) can be represented as the disjoint union
X = XI(m)

⊔
XC(m), where XI(m) is a countable union of

open intervals with total Lebesgue measure equal to 1, XC(m) is
a Cantor set with zero Lebesgue measure and Hausdorff
dimension dimH XC = log2m+2 3.

Рис.: The set XC(m) consists of countable disjoint affine copies
C̄l

n(m), C̄r
n(m).
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The structure of some Cantorvals XIII

Moreover, all the described Cantorvals satisfy the Open Set
Condition. For the Guthrie-Nymann set, we have
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Generalised multigeometric series I

We consider a class of positive functions f defined on the
interval and study the topological behavior, depending on x, of
the set of all possible subsums for the series

∞∑
n=1

wn(x) = k1f(x)+ · · ·+kmf(x)+k1f(x
2)+ · · ·+kmf(x2)+ . . .

· · ·+ k1f(x
n) + · · ·+ kmf(xn) + . . . ,

where k1 ≥ k2 ≥ · · · ≥ km are fixed positive scalars, f satisfies
certain special conditions. We can write down the following

E
(
wn(x)

)
=

{ ∞∑
n=1

αnf(x
n), αn ∈ A

}
, A =

{
m∑
i=1

ciki, ci ∈ {0, 1}

}
.
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Generalised multigeometric series II

Special Condition.
A function f is locally increasing and power bounded (at 0) if
there exist γ ∈ (0, 1), and a, b, t ∈ R+ such that f is monotone
increasing in [0, γ] and

a · xt ≤ f(x) ≤ b · xt

for every x ∈ [0, γ]. We denote by M the class of locally
increasing at 0 and power bounded functions.
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Generalised multigeometric series III

Remark

If f ∈ Ct+1([0, 1)) such that f (i)(0) = 0 for 0 ≤ i < t and
f (t)(0) > 0, then f ∈ M .

In this case, a simple estimate can be obtained using the Taylor
(Maclaurin) expansion:

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + . . .

and it is possible to define

a :=
1

t!
min

{
f (t)(ζ) : ζ ∈ [0, γ]

}
, b :=

1

t!
max

{
f (t)(ζ) : ζ ∈ [0, γ]

}
.
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Generalised multigeometric series IV

Let us define

K =

m∑
i=1

ki,

dNI = t

√
akm

bK + akm
,

ε = min
{

t

√
akm
bk1

, γ
}
.

Theorem

The set E
(
wn(x)

)
is not a finite union of closed bounded

intervals for 0 < x < min{ε, dNI}.
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Generalised multigeometric series V

Theorem
Choose λ, µ ∈ R+ and s ∈ N such that every number
µ, µ+ λ, µ+ 2λ, . . . , µ+ sλ, is a subsum of the (finite) series∑m

i=1 ki, and write

dCI = t

√
b

s · a+ b
.

Then, whenever dCI < ε, E
(
wn(x)

)
contains a compact interval

for any x ∈ [dCI , ε).
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Generalised multigeometric series VI

Corollary *

Whenever dCI < dNI , the set E
(
wn(x)

)
is a Cantorval for any

x ∈ [dCI , dNI).

Example. The set of subsums for the following series

8 sin
(

1
15

)
+ 7 sin

(
1
15

)
+ 6 sin

(
1
15

)
+ 5 sin

(
1
15

)
+ 4 sin

(
1
15

)
+

+8 sin
(

1
15

)2
+7 sin

(
1
15

)2
+6 sin

(
1
15

)2
+5 sin

(
1
15

)2
+4 sin

(
1
15

)2
+

. . .

+8 sin
(

1
15

)n
+7 sin

(
1
15

)n
+6 sin

(
1
15

)n
+5 sin

(
1
15

)n
+4 sin

(
1
15

)n
+

. . .

is a Cantorval.
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Generalised multigeometric series VII

In such a case we have

k1 = 8, k2 = 7, k3 = 6, k4 = 5, k5 = 4 ⇒ K = 30

µ = 4, λ = 1, s = 22.

The function f(x) = sinx satisfies Jordan’s inequality

2x

π
< sinx < x for all 0 < x <

π

2
,

hence a = 2/π, b = 1, t = 1. According to the Corollary * for any
x satisfying inequality

π

44 + π
≤ x ≤ 8

30π + 8

E(wn(x)) is a Cantorval.
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Generalised multigeometric series VIII

We can apply the above result for the following functions:
f(x) = x – multigeometric case;
f(x) – polynomials such that f(0) = 0;
f(x) = sinx;
f(x) = tanx;
f(x) = ln(1− x);
f(x) = ex − x− 1.
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Generalised multigeometric series IX
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Generalised multigeometric series X

Cantorvals: emergence, structure, open problems Karvatskyi Dmytro



The set of subsums of intermediate series I

Let
∑∞

n=1 an and
∑∞

n=1 bn be convergent positive series with the
same type of the set of subsums (a finite union of intervals, a
Cantor-type set or a Cantorval). We call the series

∑∞
n=1 cn

intermediate if

an < cn < bn, for all n ∈ N.

Question: Under what conditions do the sets of subsums
E(an), E(bn), E(cn) share the same topological type?

Moroz M. (2024): A counterexample to the
Karvatskyi–Pratsiovytyi conjecture concerning the achievement
set of an intermediate series. (available at arXiv:2412.00042v1).
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Open problems I

Identifying new conditions under which a set is a Cantorval.

Classifying homogeneous self-similar sets from a topological
perspective.

Computing the Lebesgue measure of the interior.

Analyzing the fractal properties of the boundary.

Studying Cantorvals in higher-dimensional spaces.
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Articles devoted to the above results I

Karvatskyi, D., A. Murillo and A. Viruel (2024): The achievement set
of generalized multigeometric sequences. - Results in Mathematics. 79,
article no. 132.

Pratsiovytyi, M., and D. Karvatskyi (2023): Cantorvals as sets of
subsums for a series connected with trigonometric functions. -
Proceedings of the International Geometry Center. 15:3-4, 262–271.

Karvatskyi D., M. Pratsiovytyi and O. Makarchuk (2025): Fractal
analysis of Guthrie-Nymann’s set and its generalisations. to appear in
the Ukr. Math. Journal. (available at arXiv:2405.16576.)
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Thank you for your attention!
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