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Awnorarig

ITapuyk A.A. Bidypkaiiii HeoG0pOTHUX TIJIAJKNUX, KYCKOBO-IJIa/JI-
KX Ta PO3PUBHUX BiJIoOparkeHb. — Kpasidikaliiiina HaykoBa mpalisi Ha

IpaBax PYKOIUCY.

Hucepralniisi Ha 3/100yTTsI HAYKOBOI'O CTYIEHs JIOKTOPa (hi3uKO-MaTeMa-
TuuHuX HaykK 3a creniajbhictio 01.01.02 — “audepeniiaibi piBHAHHS
(111 — maremaruka). — lucTuryr maremaruku Hamjonambrol akagemii Hayk
Ykpainu, Kuis, 2025.

HucepTaliis MpuCcBsiueHa BUBUYEHHIO BJIACTUBOCTEH 1 OidpypKalliit acuMITO-
TUYHUX PO3B A3KIB JIJIsi IMIKPOKOI'O KOJIa KyCKOBO-TJIAJKUX PI3HUIEBUX PiB-
HsiHb a00 BiJIOOpaXkeHb, OaraTo 3 fAKUX IPEJCTABJSIOTH COO0I0 MOJEsl pe-
AJILHUX SIBUII, PO3POOJIEHUX KOJEraMu 3 MPUKJIAIHUX HayK (pajioesieKTpo-
HiKM, OE3[IeYHOr0 IepeCuJIaHHs CUIHAJIB, €KOHOMIKH, IICHXOJIOr] PO3BUTKY
To1110). Jlocui/pKeHHsT KyCKOBO-TVIaJIKUX JIMHAMIYHUX CHCTEM, 30KPEMa, 3 JINC-
KPETHUM 9acoM, HaDYJIO MOMYJIPHOCTI HAIPUKIHI MHHYJIOTO CTOJITTS, OCO-
OJIMBO IiC/Isd BIIKpUTT:A OipypKalliii 3ITKHEHHSI 3 MEXKE0 1 TOr'o, 110 Xa0C MO-
ke OyTu cTiiKuM J10 30ypeHb lapaMeTpiB HaBiTh B OJJHOBUMIDHOMY BHUIIAIKY.
HesBarkatouu Ha Te, 10 Iiii TeMi IPUCBSIYEHO TUCIUl POOIT, Teopis OidypKa-
il KyCKOBO-IJIaJIKUX BiJIOOparkeHb I JlajieKa BiJi 3aBepIIeHHs, 1 0/aJIbIIi
JIOCJIJIKEHHST B 1IbOMY HAIPSIMKY BaXKJIMBI.

OcHoBHEME 00’€KTaMu Jucepraliil € pi3HOMaHITHI HEOOOPOTHI KYCKOBO-
IJIaJIKi, 30KpeMa pO3PUBHI, BiJloOparkKeHHs PI3HOI pO3MIPHOCTI. 3a JIOIOMO-
roto 00’€JlHaHHS aHAJITUYHUX, sIKICHUX Ta YMUCEJIbHUX METOJIiB BUBYEHO iH-
BapiaHTHI MHOXKHHU IUX BiJoOpakeHb pizHol npupoju. Hocmigkerno 6idyp-
Kallll CTINKUX HEPYXOMHUX 1 IEepIOJIMYHUX TOYOK, XaOTUIHUX aTpPaKTOPIB, a
TaKOXK SKICHI MMEePeTBOPEHHs MPUTATYIOUUX [VIQJKUX Ta HErJIaJIKUX 1HBapi-
AHTHUX KPUBHUX, OOJacTell MOrJIMHAHHS HE3MIIIAHOIO Ta 3MIIIaHOTO THIIIB.
Onwucano BiANOBIIHI OipypKaliifHl CTPYKTYpH B IMMPOCTOPaX MapamMeTpiB.

Huceprariiina pobora CKJaJla€ThCs 31 BCTYIY Ta 11T po3iiiiB. [lepriuit



PO3IIJT MICTUTD OTJIS]] JIITEPATypPH 3a TEMOIO JUCEPTallll, B HbOMY MPeJICTaB-
JIEHI OCHOBH1 O3HAUeHH$, JIesKl MONEPEJIHl TOHATTS Ta BLJIOMI Pe3yJibTaru.
ITigposain 1.1 KopoTKo ommcye icTopito Teopil JUHAMIYHAX CHCTEM 1 Teopil
6icdbypkaniii. Ilijgposaian 1.2 micTuTh TepMiHM, O3HAUYEHHS Ta MONEPEJIHI pe-
3yJbTaTH, 51Kl BUKOPUCTOBYIOTHCS B OCHOBHIN YaCTHHI.

Pozmin 2 € mepmum, 1Mo HaJEXKUTh JI0 OCHOBHOI YaCTUHM JTUCEPTAITiii-
HOT poboTu. Bin npucssiuenuit BUBYCHHIO OJIHOBUMIPHOTO KYCKOBO-JIIHIIHOI'O
HEIIEPEPBHOI'O BIJIOOPaXKEHHs! 3 JIBOMa MEXKOBUMM TOYKAMU, SIKE HA3MBAIOTH
b6imMojiaIbHUM BijtoOparkerHsIM. [le BijjoOparkeHHsT BaxKJIUBe 3 JBOX PUIUH. 3
OJIHOI'O DOKY, BOHO ITPUPOJIHUM YMHOM BUHUKAE MIPU PO3B’sI3aHHI PI3HUX TTPU-
KJaJHUX 3ajad. Hanmpukiam, BOHO BHCTyIa€ MOJEJIIO JIJId JIaHIIora dya
IIEBHOI KOHCTPYKIIII 13 3alli3HEHHSAM; BOHO BUKOPUCTOBYETHCs JIJIsI 1100y I0BK
edeKTUBHOIO TeHepaTopa XaoCy B TeJIEKOMYHiKallisix 1 00poOIll 300paskeHb;
BOHO MOJIEJIIOE MIPOIEC HAOJMXKEHHs IIHK 70 PIBHOBAXKHOIO 3HAUEHHS NPU
cradinizalil ekoHoMiku. 3 iHIIOro 60Ky, 6iMojiajbHe BiJIOOparkKeHHsI € y3a-
rajibHEHHSIM BIJIOOPayKeHHsT aCHMETPUYHOIO TeHTY (OCTAHHE € HANITPOCTINNM
MIPEJICTABHUKOM KJIACY KYCKOBO-TJIAJIKMX BiJIOOpPAXKEHb) 1 JIJIT HBOTO YMOBH
OidpypKaIiit MOXKYyTh OYTH OTPUMaHI B aHAJITUIHOMY BUIJVISL, 3aBJITKHU Jii-
HIHOCT1 Or0 KOMITOHEHTIB.

Y migposnin 2.1 HaZaeThCs 3araJbHul Orysty 01(pypKAIIHHIX CTPYKTYP
y mpocTopi napamerpis. Tak, BusHaUeHO 00J1acTi 3 0OMEXKEeHUMU 1 HeoOMexKe-
HUMW PO3B’si3KaMU; MOKA3aHO, 1110, B 3aJI€’KHOCTI Bijl 3HaUYEHb MapaMeTpiB,
MOXKYThb ICHYBATH CTIKI HepioJuuHi opOiTH Oy/Ib-gKOTO IMepiojy, Ta OTPH-
MaHO HEeOoOXiJiHI Ta JiocTaTHI yMOBHU I1X crifikocri. Takok omnmcaHo JiBi pi3Hi
OicbypKalliiiti cTPpyKTYpU B IPOCTOPI HapaMeTpiB, skl € y3arajbHeHHsIM Oi-
pypKaMHIX CTPYKTYP, Y2Ke BIIOMUX JIJIsI KYCKOBO-JIIHIHHUX Bi0OpaskeHb 3
OJTHIEIO Me¥KOBOIO TOUKoIO. [IyHKT 2.1.3 onucye HOBY OipypKalliiiny cTpyKTY-
Py, dKa paHIIie He CIIoCTepIragacsd Ta BKIIYAE 9K MeploJANdHl, TaK 1 XaOTUIH]
arpakTopu. s mepioJuvuHuX PO3B’SI3KIB OTpUMaHO HEeOOXiJgHI Ta JOCTaTHI

YMOBH 1X ICHYBaHH# Ta CTIMKOCTi. JIJs1 XaOTUIHUX aTpaKTOpPiB OTPUMAHO JI0-



CTaTHI yMOBHM 1X icHYBaHHs. ¥ mijpo3/iii 2.2 6y0 po3TJisiHyTO KOHKPETHU
HPUKJIaJ 6IMOJIAJIbHOIO BiJIOOparKeHHs, SIKE MOJICJIIOE EKOHOMIYHUI 1IPOIEC
HaOJIMKEeHHsI [IIHU JI0 PIBHOBarXKHOro 3HaueHHsI. OcoOMUBICTD BlIOOpasKEeHHS
HOJISITAE B TOMY, 1110 (PYHKIIIT, siKi BUBHAYAIOTH JIBl HOT0 KpaitHi riJjiKu, Tpoxo-
JIsITh Yepes3 1104aToK KoopjuHatr. depes e B mpocTopi napamerpis 0Oidypka-
IifiHI CTPYKTYPH, OB sI3aHl 3 IEPIoJIMNIHUMU PO3B’sI3KaM#, € BUPOJI?KEHUMH.
Onucano npupoy 1bOr0 BUPOKEHHSI Ta, OTPUMAHO JOCTATHI yMOBU 1CHYBa-
HHsl XaOTUYHUX aTPAKTOPIB.

Y TperboMy PO3JIijl JicepTalliiiHOl poOOTH OCHOBHUM 00 €KTOM JIOCJIi-
JIKEHHSI € CIMEICTBO OJIHOBUMIPHUX KYCKOBO-MOHOTOHHUX BiJIOOparkeHb 3 Jie-
KIJIbKOMa TOYKaAMU po3puBy. Taki BiIOOparKeHHsI 3’ sIBISIOTHCA, HATIPUKJIAT,
B €KOHOMII $K MOJiesl IIHOYTBOPEHHS aKIiif 3a HAasgBHOCTI B3a€MOJIIIOUNX
areHTiB 3 pizuumu crparerisgsmu. [TogiOHI Mojiesi BBaXKaOThCs ePeKTUBHUMU
JIIsT pO3YMiHHA (DYHKITIOHYBaHHS (PIHAHCOBUX PUHKIB 3 CYTTEBUMHU HECTa-
blbHOCTIMU. KpiM TOro, y KyCKOBO-IVIQJIKMX BiJIOOparKeHHsIX 3 OLJIBII HIXK
OJIHIEI0 TOYKOIO PO3pUBY OipypKalil 3ITKHEHHS 3 MEYKEI0 MOXKYTh TAKOXK BiJI-
OyBaTHUCA i 3 XAOTUUHMHU aTPaKTOPAMHU, [0 HEMOXKJINBO ¥ BiIOOParKeHHIX 3
OJIHI€I0 MeXKOBOO TOUKOM0. Ha BijiMiHy Bijt Joci BijloMux OlpypKaliiit s xa-
OTUYIHUX aTPAKTOPIB, 3a3Ha4eH] OipypKallil 3ITKHEHHs 3 MEXKEIO He OB’ si3aHi
3 YKOJHUMU FOMOKJIIHIYHUME OlpypKAISIMU BIIIITOBXYIOUNX ITUKJIIB.

Y mijposaiii 3.1 HaraaymoTbhed Jeski Bijomi dakTu npo Oidypkarii xa-
OTUIHUX aTPAKTOPIB y KYCKOBO-TVIQJIKUX BiJI0OPaXKeHHSIX 3 OJIHIEI0 TOYKOIO
PO3PUBY, a TaKOXK (aKTH PO BiAMOBIIHI OipypKaIiifHi CTPYKTYPH y MIPO-
cropi mapamerpis. Iligposain 3.2 mpucBgadeHunii JOCTIXKEHHIO aCHUMIITOTH-
YHUX PO3B’A3KIB Ta 1X OidypKarliit jijisi cimeilcTBa OJJHOBUMIDHUX KYCKOBO-
3pPOCTAIOUNX BiJOOPaXKeHb, CHMETPUIHUX BiJHOCHO ToUaTKy KoopauHat. Cro-
YaTKy HaJa€ThCs 3araJbHuil oriisl 61pypKaliiitHIX CTPYKTYD Y IIPOCTOPI I1a-
pamMerpiB, BU3HAYAIOTHC 06JacTi napamerpis st (1) criikux HEpyXOMUX
TOYOK, (2) CriBiCHYBaHHS JBOX IHBAPIAHTHUX IHTEPBAJIIB TIOTIMHAHHS, K1 He

EPETUHAIOTHCS, (3) ICHYBaHHS €IMHOIO IHBAPIAHTHOIO IHTEPBAJY MOTJIHHA-



HHs1 Ta (4) HeoOMexeHuX po3p’ss3kiB. Jasi jerasbHO OMUCYIOThest JIBl pisHi
OicbypkaliiiiHi CIpyKTypH, HOB's3aHl 3 XaOTUUYHUMU aTPAKTOPpaAMU, siKi OXO-
IJIIOIOTh BC1 TPHU IOJIJIM BijoOpakeHHs. 30KpeMa, OTPUMYIOThCs HEoOXiJiHi
Ta JIOCTATHI YMOBHU JIJIsT ICHYBaHHSI Xa0OTUIHUX aTPAKTOPIB, Kl MAlOTh PI3HY
KLJIbKICTh 3B’I3HUX eJieMeHTiB (CMyT), 1 OLUCYIOThCsI IPUHIIUIII, BiJIIIOBIJIHO
JIO AKMX III KIJIBKOCTI 3MIHIOIOThCS BHACI0K Oidpypkariit. Takox s3naiijie-
HO TlapaMeTpuyHi 00JIaCTl CHIBICHYBaHHS PI3HUX XaOTUIHUX aTPaKTOPIB. Y
H1JIPO3J11JI 3.3 PO3IIISJIAETHC CIMENCTBO OJJHOBUMIPHUX KYCKOBO-3POCTAIOUMX
BiJIoOpaskeHb 13 JIBOMa TOYKAMK PO3PHUBY Ta 0€3 cuMeTpiil. Y mpocTopi Ia-
paMeTpiB TaKuxX BijloOparkKeHb BUSBJIEHO 1 BUYEPITHO ONMUCAHO OipypKaliitHy
CTPYKTYPY HOBOT'O THIY, OB’ SI3aHy 3 XaOTUIHUMH aTpakTopaMmu. loBemeHo,
o 6idpypKaliiiiii MoBepxHi, sKi YTBOPIOIOTH IJ0 CTPYKTYPY, 3aJ1al0Thcs Oi-
dypKalisgMmu XaOTUIHUX aTPAKTOPIB, sKi HE MalOTh BIHOIIEHHS JIO KOJHUX
KPUTHIHUX TFOMOKJIIHIYHUX opOIT. [lokazano, 110 KoH}Iryparii XaoTHIHUX
aTPaKTOPIB MOXKYTh HaJeKaTH JIO0 JBOX PI3HUX BHUJIIB, 3aJ€KHO BlJ TOTO,
CKLJIBKW CMYT aTpakKTOpa PO3TAIOBAHO MMPABOPYY 1 JIBOPYY BiJl TOYATKY KO-
opaunart. st arpakTopiB 000X BUJIIB OTPUMAHO SIBHI OIIHKU MaKCHMAaJIbHOI
KLJIbKOCTI 1X CMYT.

[Tigpozin 3.4 npucBsideHuii jieTaJbHOMY OIKCY 30BHINIHBOT Ta BHYTPIi-
IIHLOT OipypKalliil 3ITKHEHHST 3 MeXKeo JJIsT XaOTHIHUX aTpakTopis. i jaBi
6idbypkariii, siki OyJ10 BUSABJIEHO BIIEpIlle, He MAOTh BiJIHOIICHHS JIO TOMOKJIi-
HiuHKUX OipypKalliii 1 He MOXKYTh BUHUKATH Y KYCKOBO-IJIaJIKUX BijloOpaskeH-
HSIX 3 OJIHIEI0 MEXKOBOIO TOUKOT0. [[JIsT KOXKHOIO THITY JIBOX HOBUX OihypKaliii
OTPUMAHO JIOCTATHI YMOBH JIJIs X BUHUKHEHHA. ¥ MAPO3J1 3.0 JOCIIIZKEHO
OoKpeMuil BuIa 0K OipypKaIil 30BHIINIHKOIO 3ITKHEHHS 3 MEXKeI0, 1110 CIIPU-
YUHAE MOJAJbIIE pi3Ke PO3IMIUpEeHHS aTpakTopa. loBeaeHo, 1Mo 1e po3Im-
pPEeHHsI BiJIOYBAEThCS BHACJIIOK 3ITKHEHHSI Xa0TUUYHOI'O aTpPaKTopa 3 XaoTH-
YHUM PeresiepoMm, sikuii nepej 0ipypkaliero 3HaxoUuThCst Ha Mexi baceitHy
NpUTATaHHSA. BuBUaeThCa 3arajJbHUil BUAI0K KOPO3MIPHOCTI OJINH, a TaKOXK

0CcODOJIMBUI BUIIAIOK KOPO3MIPHOCTI JIBa.



Y posjiiii 4 npejicraBieHo pe3yabTaru, 0B si3aHl 3 MiCTbMa, KOHKPETHH-
MU MaJIOBUMIDHUMHU BiJIOOparKeHHSIMU, siKi OyJiM 3allPOIIOHOBAHI KoJieraMu 3
HPUKJIAJHAX HAyK 1 MOJIEJIOIOTH BaXKJIMBI IPOOJEMHU 3 €KOHOMIKH, €KOJIO-
rii Ta nicuxoJsiorii po3BuTKy. I1i1po3aia 4.2 npucBaYeHO JIOC/IJPKEHHIO CiMeii-
CTBa, JIBOBUMIPHUX HEOOOPOTHUX IVIAJIKMX BlJIOOParKeHb, 1110 MOJIEJIIOE 3aKPH-
Ty €KOHOMIKY TuIly MiHCHKOI'O 3 €HJJOT€HHUM IIPOIECOM PEryJoBaHHS OOPIY.
[Tokazano, 110 €uHa HEPYyXOMa TOYKA MOXKE BTPATUTH CTIiKiCTh udepes 0i-
dypkariio nepesopory abo bidypxaiio Heitmapka-Cakepa. st 060x 6ihyp-
Kalliii 1mobyoBano HopmaJibHi dopmu. s Oidypkarnii Heitmapka-Cakepa
TAKOXK PO3TJISIAIOTHCS JIBA BUPOKEHUX BUTIAJIKKU. [eTajibHO OIKMCAaHO CTPY-
KTYpy ITPOCTOPY MapaMeTPiB B OKOJI BIITIOBITHUX TOUYOK KOPO3MIPHOCTI JIBA.
[l 3HAaYeHb NapaMeTpiB, sIKi 3HAXOJATCs JIOCTATHBO JiaJeko Bijl 6idypKa-
miitnoi mosepxni Heiimapka-Cakepa, TakKoyK ONMKUCAHO TIEPETBOPEHHS MPUTSI-
I'yiI040l 3aMKHEHOI 1HBapiaHTHOI KPUBOI 13 MOIaIbIINM BUHUKHEHHSIM 00J1acTi
HOTJIMHAHHS HE3MIIIAHOTO THILY.

VY mijposii 4.3 BUBYAETHCs CIMEIHCTBO JIBOBUMIDHUX HEOOOPOTHUX I'JIaJI-
KUX BiJI0OparkeHb, sIKI MOJIEJIIOTH IIPOIEC eKCILIyaTallil BiJHOBIIOBAHUX pe-
cypciB. OTpuMaHO aHAJITUYHUN BUpa3, 110 BU3HAYAE MHOXKHUHY CIIIBIIAJa-
I0UMX [1PO0OPA3iB, a TAKOXK aHAJITUIHWI BUpA3 JJisi KPUTHIHOT MHOXKUHU.
JeTasbHO OmmMcaHO JiBa PI3HUX Ol ypKAIHUX clieHapil, XapaKTepHUX JIJIsI
PO3IJISIHYTHX BijIoOparkeHb. 30KpeMa, I0Ka3aHo, 1110 y (hpa30Biii IJIONUHI BiJI-
obpakeHHs1 iICHYE€ 00J1aCTh MOTJIMHAHHS 3MIIaHOTO THUITY, OOMEXKeHa CermMeH-
TaM¥W KpUTHIHUX KPUBUX PIZHOTO PAHTY Ta BAMOBLIHUMU YaCTUHAMU HECT1H-
KNX MHOXKHH JIBOX ClIJIJTOBIX IHKJIIB.

Y migposgiial 4.4 posriasiia€ThCs  CIMERCTBO  JIBOBUMIPHUX KYCKOBO-
IJIaJIKUX HEOOOPOTHUX HEMEePEePBHUX BiJ0OParKeHb, siKi MOJIETI0TH O0POTHLOY
3 IIaXpaiicTBOM y JiepKaBHUX 3aKyIiBJsX. s Takux BijoOparkeHb BUBYA-
I0ThCs CTINKI nepiojimuni po3s’si3ku. [lokazano, 1m0 y ¢azoBomy mpocTopi
MOXKe ICHYBATH NMPUTATYIOUa 3aMKHEHa HETJIaJIKa iHBapiaHTHA KpuBa I, gKa

CKJIQJIAETHCA 3 CEI'MEHTIB KPUTUIHIX MHOXKHH pi3HOro paury. OTpuMaHo Jio-



cTaTHI yMOBHU JiJisi 11 icHyBaHHsI. TaK0oXK MOKa3aHO, 110 OOMEYKEHHS BUX1THOT'O
BijjoOparkeHHsi Ha ' 3a/a€TbCsi OJIHOBUMIPHUM HEIVIAJKUM Bijl0OparKeHHsIM
¢ — BiJI0OpaXKeHHsM IIepPIIOoro rmoBepHeHHs . JoBejieHo, 1110 ¢ Ma€ npuHaiM-
HI OJIHY TOYKY 3JIaMy Ta OJIHY TOYKY PO3PUBY. 3a JIOMOMOIOI ¢ BU3HATEHO
Oicbypkalil cTiiKux 1epiojrudHuX PO3B’s3KIB 1 oucaHo BijnoBijiHy 0idypka-
IIMHY CTPYKTYPY.

[Tigposin 4.5 TUPUCBAYEHO JIOCTIJPKEHHIO CIMeicTBa TPUBUMIDHUX
KYCKOBO-IJIAJIKMX HEIEPEPBHUX BIJIOOParKeHb, fKi MOJIEJIIOITH CIPOIIECHM
PUHOK TOBAPiB TPUBAJIOI0 KOPUCTYyBaHH:A. MHOXKMHA IIepeMUKaHHs BiloOpa-
JKEHHSI CKJIQJAEThC 3 TPbOX IVIQJIKUX I[TOBEPXOHb. JloBejieHOo, 110 mepeTnH
yCIX IIUX MOBEPXOHDL € IVIAJKOI KPUBOIO, KOXKHA TOUKA sIKOI Hepyxoma. Jls
HUX OTPUMAHO YMOBH cTiiikocTi. TakoxK joBejieHo, 1m0 Oyab-sgka opbiTa abo
ACUMIITOTUYHO HAOJIMXKAETHCs JI0 OJIHIET 3 HEPYXOMUX TOYOK, ab0 HA3aBXK K
3aJIMIIAETHCA B TaK 3BaHI “TOUIl HEBPIBHOBAXKEHOCTI, JIJI SKOI MEpIIi Bl
KOOPJANHATH 3aJUIMAI0THCI HE3MIHHUMHE, TOJ SIK TPEeTs 3MIHIOETHCS BIJITIOBII-
HO JIO OJIHOBUMIPHOTO BijloOpaskenHsi Paiikepa 3 pikcoBaHUMM TTapaMeTpaMu.

VY miipo3 il 4.6 BUBUAETHCs CIMECTBO JIBOBUMIPDHUX PO3PUBHUX BiloOpa-
’KEHb, 110 MOJIETIOITh BAJIOTHUI PUHOK 3 eMOIiiiHuME yaacHukamu. Orpu-
MaHO YMOBH, 3a sIKUX BiJIOyBa€ThCs OIpypKaliist MOpyIieHHs HellepepPBHOCTI.
[TokazaHno, 1o B IJIOMMWHI MTapaMeTpiB, B OKOJI BIJIITOBIHOI TOYKH KOPO3MIp-
HOCT1 JiBa, BUXIJIHE BiJIoOparkeHHsI Moyke OyTu HabJiM»KeHe OJIHOBUMIPHUM
KYCKOBO-JIIHIfTHUM BiJIOOparKeHHSM 3 OJIHI€I0 TOYKOIO PO3PUBY. Y ILJIOMIMHI
apaMeTpiB OMKMCAHO TPHU pi3Hi OipypKalliitHi CTPYKTYpPH, IIOB sI3aHl 3 Hepi-
OJINYHMMHU PO3B sI3KaMU. 30KpeMa, JieTaJbHO OIKUCAHO HOBY OipypKaliifHy
CTPYKTYPY, siKa 1OB’si3aHa 31 CTIiKMMU PO3B’si3KaMU MTapHUX [1EPIOJIiB.

VY nijgposaiai 4.7 po3rsIaeThCsl JIBOBUMIpHE HEODOPOTHE KYCKOBO-TJIA,IKe
BijloOpaskeHHsi, OOMJIBI KOMIIOHEHTH SIKOT'O MICTATbH JIPOOOBO-pallioHaJbHI
yjieHu. Y ¢a3oBiil MJIOMUHI TaKUX BiJI0OOPaXKeHb ICHYIOTH MHOYKUHU, HA TKUX
yHKIIT crucTeMn He BU3HAYEHI. 3a3HAUeHE BiJOOpParKeHHSI BUCTYIIAE MOJIE-

JUTIO TIPOIecy KOaJaITHBHOI B3ae€MOJIl MiXK yduHeM 1 BumTeseM. [ljst HbOro



OTPUMAHO YMOBH 1CHYBAHHS HEPYXOMUX TOYOK, a JJIsd JIEAKUX 3 HUX — yMO-
BU, 33 IKUX BOHM € CTINKMMU, ClJJIOBUMU Ta HecTifikumu. Takoxk 3HailjieHo
BCl (pOKaJIbHI TOUKM Ta BIAIOBLIHI mpedokajsbHl MHOXKuHU. JloBejeHo, 110
oJiHa i3 X HOKAIBLHUX TOYOK (& caMe MOYATOK KOODJMHAT) HAJIEXKHUThH CBOIil
1pepoKaJIbHI MHOXKMHI Ta MOXKE MaTh OaceilH HpUTSIaHHs JIOJaTHOI MIpH.

SaKJIIOUHII PO3JIiJI O NPUCBIICHO BUBYCHHIO CIMEICTB KYCKOBO-IJIAJIKMX
BijIoOpaskeHb BUIIOI PO3MIPHOCTI, siKi MOJIEJIIOIOTH OJITONOJIICTUIHUN PUHOK.
i mojesii OyJin 3anpononosati BijjomuMm ekonomicrom Tony Ilyy sk Bijiio-
BiJIb Ha TaK 3BaHy 1podsemy Teokapica-KypHo, Koy puHOK j1ecTabLIi3yeThes
1pu 301/IbIIEHH] KIJIBKOCTI KOHKYPEHTIB. Y MiJIpO3/ial 5.2 JIOCTIKYIOTHCS
2n-BUMIpHI HEaBTOHOMHI BijloOparkeHHsI 3 MaJjuM mapamerpoM. OTpumaHo
YMOBHU ICHYBaHHS JIJIsi TPhOX HEPYXOMHUX TOUYOK BijoOpakenns. Ilokazano,
0 TOYaTOK KOOPJIMHAT 3aBK/IM € HECTIHKUMU, & HEePyXOMa, TOYKa, BU3HA-
JeHa MaJIIM ITapaMeTpoM, — CYIepcTiiikoo. s TpeThol HepyXoMOl TOUKH
JIOCTATHI YMOBH 11 CTIKOCT1 OTpUMAHO JJIsl IBOX PI3HUX BUIAJKIB. ¥ IiIpO3-
Jatax 5.3 1 5.4 BUBYAIOTHCS CIMEHCTBa 3N-BUMIPHUX KYCKOBO-TJIAJIKMX HEO-
OOpOTHUX BioOpaskeHHb JABOX THUMIB. JloBejeno, 1mo Taki BIJOOparkeHHs He
MOXKYTh MaTH HEPYXOMHUX TOYOK, & JIAIIE IepiojindHi po3B’sa3ku. Kpim Toro,
1epioju IUxX Po3B’si3KiB 000B’SI3KOBO € KPATHUMU IIEBHOMY Iapamerpy. Ta-
KOYK PO3IJISIIAETHCS 3BYKEHHS BUX1THOIO BiJI0OOpParKeHHs Ha MHOTOBHU/T ITOBHOT

CHUHXPOHI3alIil, JI/Isi SKOI'0 OIMCAHO JIeKiJabKa Ol ypKalliiiHux ciieHapiiB.

Ki1r040Bi cjioBa: KycKOBO-IJIa/IK1 BiI0OpaXkeHHsI, pO3PUBHI Bi10OparKeHHs,
HeoOOPOTHI BIJIOOparKeHHsI, KPUTUUIHI MHOXKUHU, BIJIOOparKeHHsI 31 3SHUKOMUM
3HAMEHHUKOM, (DOKaJIbHI TOUKM, rodajbHl 6idypkailii, 6idpypkariiil 3iTKHEH-
Hsl 3 MEXKEI0, XaOTUUHA JIMHAMIKA, XaOTUUYH] aTPAKTOPU, MYJIbTUCTA0LIbHICTD,
KOHTAKTHI OipypKaril jiiss KPUTHIHUX TOUYOK, OlpypKaliilHl CTPpYKTYpH B

MPOCTOPI TapamMeTpiB.
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Abstract

Panchuk A.A. Bifurcations of noninvertible smooth, piecewise
smooth, and discontinuous maps. — Qualifying scientific work on the

rights of the manuscript.

Thesis for the degree of doctor of physical and mathematical sciences,
speciality 01.01.02 — “Differential equations” (111 — Mathematics). — In-
stitute of Mathematics of National Academy of Sciences of Ukraine, Kyiv,
2025.

The thesis is devoted to studying properties and bifurcations of asymp-
totic solutions for a wide range of piecewise smooth difference equations, or
maps, many of which represent actual models of real phenomena, having
been worked out by colleagues from applied sciences (electrical engineering,
secure signal transmission, economics, developmental psychology, etc.). In-
vestigation of piecewise smooth dynamical systems, in particular, within the
discrete time setting, gained popularity at the end of the last century, espe-
cially after discovery of border collision bifurcations and robustness of chaos
even in the one-dimensional case. Although thousands of works has been up
to now dedicated to this topic, the bifurcation theory of piecewise smooth
maps is still far from being complete and further studies in this direction are
important.

The main objects of the thesis are various noninvertible piecewise smooth,
in particular discontinuous, maps of different dimensionality. By using the
combination of analytical, qualitative and numerical methods, we investigate
invariant sets of diverse nature for such maps. Studied are bifurcations of
stable fixed and periodic points, of chaotic attractors, as well as qualitative
transformations of attracting smooth and non-smooth invariant curves, of
mixed and non-mixed absorbing areas. The related bifurcation structures in
the parameter spaces are described.

The thesis consists of the introduction and five chapters. The first chapter
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contains the literature overview on the topic of the thesis and presents the
main definitions, some preliminary concepts, and the known results. The
Subsection 1.1 briefly describes the history of the dynamical systems theory
and the bifurcation theory. The Subsection 1.2 presents the notations, the
definitions, and the previous results, used throughout the main part.

Chapter 2 is the first belonging to the main part of the thesis. It is
devoted to studying a one-dimensional piecewise linear continuous map with
two boundary points, referred to as a bimodal map. This map is important
by two reasons. On one hand, it appears naturally when solving different
applied problems. For instance, it serves as a model for a time-delayed Chua’s
circuit of a particular design; it represents an effective chaos generator in
telecommunications and image processing; it models particular tdtonnement
processes for price evolution in stabilisation of the economy. On the other
hand, the bimodal map is a generalisation of the skew tent map (the latter
being the simplest representative of the class of piecewise smooth maps) and
allows for deriving analytical expressions for the bifurcation conditions, due
to linearity of its branches.

In the Subsection 2.1, we provide a large-scale overview of the bifurca-
tion structures in the parameter space. Thus, we determine the domains of
bounded and unbounded orbits. We show that stable periodic orbits of any
period (including the fixed points) can exist depending on the parameter val-
ues and obtain necessary and sufficient conditions for their stability. We also
describe two different bifurcation structures in the parameter space that are
generalisations of the bifurcation structures already known for the piecewise
linear maps with a single border point. The Subsection 2.1.3 describes the
novel bifurcation structure, which has not been earlier observed and involves
both periodic and chaotic attractors. For periodic solutions necessary and
sufficient conditions of their existence and stability have been obtained. For
chaotic attractors we have got sufficient conditions for their existence. In

the Subsection 2.2, a certain example of a bimodal map, which models an
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economic tatonnement process, has been considered. The map has a particu-
larity such that the functions defining two outermost branches pass through
the origin. Due to this fact, in the parameter space the bifurcation struc-
tures related to periodic solutions are degenerate. We describe the nature of
this degeneracy and obtain the sufficient conditions for existence of chaotic
attractors.

In the third chapter of the thesis, the main object of studies is a fam-
ily of one-dimensional piecewise monotone maps with multiple discontinuity
points. Such maps appear, for instance, in economics as models for asset pric-
ing and trading involving heterogeneous interacting agents. Recently, these
models were proved to be highly relevant in understanding of the functioning
of excessively volatile financial markets. Additionally, in piecewise smooth
maps with multiple discontinuity points, chaotic attractors are allowed to
undergo border collision bifurcations, which is impossible in maps with a
single border point. In contrast to already known bifurcations of chaotic at-
tractors, the mentioned border collision bifurcations are not associated with
any homoclinic bifurcations of repelling cycles.

In Subsection 3.1, we recall some known facts about bifurcations of chaotic
attractors in piecewise smooth maps with a single discontinuity point, as
well as the related bifurcation structures in the respective parameter space.
Subsection 3.2 is dedicated to examining asymptotic solutions and their bi-
furcations for a family of one-dimensional piecewise increasing maps that are
symmetric about the origin. First, we provide a large-scale overview of the
bifurcation structures in the parameter space, determining the parameter
domains for (1) stable fixed points, (2) coexistence of two disjoint invariant
absorbing intervals, (3) existence of a single invariant absorbing interval, and
(4) divergent (unbounded) orbits. Then we describe in detail two distinct
bifurcation structures associated with chaotic attractors that spread over
all three map partitions. In particular, we obtain necessary and sufficient

conditions for the existence of chaotic attractors having different number of
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connected elements (bands) and describe the principles according to that
these numbers change due to bifurcations. We also find parametric regions
of coexistence of different chaotic attractors. In Subsection 3.3 a family of
one-dimensional piecewise increasing maps with two discontinuity points and
without symmetries is handled with. In the parameter space of such maps, a
new type of bifurcation structure, associated with chaotic attractors, is found
and exhaustively described. It is proved that the bifurcation surfaces forming
this structure are related to bifurcations of chaotic attractors, which are not
associated with any critical homoclinic orbits. It is shown that the configu-
rations of chaotic attractors can belong to two different kinds, depending on
how many bands of the attractor are located to the right and to the left of
the origin. For attractors of both types, explicit estimates for the maximum
number of their bands are obtained.

Subsection 3.4 is devoted to detailed description of exterior and interior
border collision bifurcations for chaotic attractors. These two bifurcations,
having been observed for the first time, are not related to any homoclinic
bifurcations and cannot occur in piecewise smooth maps with a single border
point. For each type of two novel bifurcations, sufficient conditions for their
occurrence are obtained. In Subsection 3.5, we investigate a particular case
of the exterior border collision bifurcation, which implies further sudden ex-
pansion of the attractor. We show that this expansion occurs due to collision
of a chaotic attractor with a chaotic repeller, which is located at the imme-
diate basin boundary of the attractor before the bifurcation. We explore a
generic codimension one case, as well as a particular codimension two case.

In Chapter 4, we present results related to six particular low-dimensional
maps, which were suggested by colleagues from applied sciences and model
important problems from economics, ecology, and developmental psychology.
Subsection 4.2 concerns a family of two-dimensional noninvertible smooth
maps, modelling a Minskyan type closed economy with endogenous debt ad-

justment process. We show that the unique fixed point can lose stability
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due to either a flip or a Neimark—Sacker bifurcation, for both of which we
construct normal forms. For the Neimark—Sacker bifurcation, two degener-
ate cases are also considered. The structure of the parameter space in the
neighbourhood of the respective codimension two points, is described in de-
tail. For the parameter values located far enough from the Neimark—Sacker
bifurcation surface, transformations of the attracting closed invariant curve
are also examined, which lead to appearance of a non-mixed absorbing area.

In Subsection 4.3, we study a family of two-dimensional noninvertible
smooth maps, modelling renewable resource exploitation process. We ob-
tain the analytical expression defining the set of merging preimages and the
analytical expression for the critical set. We describe in detail two different
bifurcation scenarios, typical to considered maps. In particular, we show that
in the phase plane of the map there exists a mixed absorbing area, which is
confined by segments of critical curves of different ranks and relevant parts
of unstable sets of two saddle cycles.

In Subsection 4.4, we consider a family of two-dimensional piecewise
smooth noninvertible continuous maps, modelling frauds in public procure-
ment. For such maps, stable periodic solutions are studied. It is shown that
in the phase space there can exist an attracting closed non-smooth invariant
curve I', which consists of the segments of critical sets of different ranks.
Sufficient conditions for its existence are obtained. It is also shown that the
restriction of the original map to I' is given by the one-dimensional nons-
mooth map ¢, referred to as the first return map. It is proved that the map
¢ has at least two border points, one of which is a kink point and the other
is a discontinuity point. Using the map ¢, possible bifurcations of stable pe-
riodic solutions are determined and the related bifurcation structure in the
parameter space is described.

Subsection 4.5 is devoted to investigation of a family of three-dimensional
piecewise smooth continuous maps, which models a simplified durable com-

modity market. The switching set of the map consists of three smooth sur-
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faces, and it is proved that the intersection of all these surfaces is a smooth
curve, each point of which is fixed. Conditions for the stability of these fixed
points are obtained. We also prove that for any initial point its orbit either
approaches asymptotically one of the fixed points, or sticks forever in the
so-called “disequilibrium point”, for which the first two coordinates remain
unchanged, while the third one changes according to the one-dimensional
Ricker map with fixed parameters.

In Subsection 4.6, we study a family of two-dimensional discontinuous
maps, modelling exchange rate dynamics with sentiment traders. We obtain
the conditions for a continuity breaking bifurcation. It is shown that in the
parameter plane, in the neighbourhood of the corresponding point of codi-
mension two, the original two-dimensional map can be approximated by a
one-dimensional piecewise linear map with a single discontinuity point. In
the parameter plane, three distinct bifurcation structures, associated with
periodic solutions, are described. In particular, we examine in detail organ-
ising principles for a novel bifurcation structure, related to stable cycles of
even periods.

In Subsection 4.7, considered is a family of two-dimensional noninvertible
piecewise smooth maps, characterised by fractional-rational terms in both
components. In the phase plane of such maps, there exist sets on which the
functions of the system are undefined. The mentioned map serves as a model
for the co-adaptive interaction process between a learner and a teacher. For
this map the conditions for the existence of fixed points were obtained, and
for some of them we have derived the conditions, under which they are stable,
saddle and unstable. All focal points and the corresponding prefocal sets were
also found. It was proved that one of these focal points (namely, the origin)
belongs to its prefocal set, which implies that for certain parameter values,
this focal point has a basin of attraction of positive measure.

The final Chapter 5 is devoted to studying families of piecewise smooth

maps of higher dimensionality that model an oligopoly market. These models
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were suggested by a famous economist Tonu Puu as an answer to the so-called
Theocaris—Cournot problem, when the market is destabilised with increasing
the number of competitors. In Subsection 5.2 we investigate 2n-dimensional
nonautonomous piecewise smooth noninvertible maps with a small parame-
ter. The existence conditions for three fixed points of such a map were de-
rived. The fixed point at the origin was shown to be always unstable, while
the fixed point defined by a small parameter was shown to be superstable
if existent. For the third fixed point, sufficient stability conditions were ob-
tained in two separate cases. In Subsections 5.3 and 5.4, we explore families
of 3n-dimensional piecewise smooth noninvertible maps of two types. It was
proved that such maps cannot have fixed points, but only periodic solutions.
Moreover, the periods of these solutions are necessarily multiples of a certain
parameter of the map. We also consider a restriction of the original map to
the full synchronisation manifold, for which we describe several bifurcation

scenarios depending on the parameter values.

Key words: piecewise smooth maps, discontinuous maps, noninvertible
maps, critical sets, maps with vanishing denominator, focal points, global bi-
furcations, border collision bifurcations, chaotic dynamics, chaotic attractors,
multistability, contact bifurcations for critical points, bifurcation structures

in the parameter space.
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Introduction

The thesis is devoted to studying properties of asymptotic solutions for a
wide range of noninvertible continuous and discontinuous piecewise smooth
maps. We investigate periodic and chaotic attractors for these maps and
analyse various local and global aspects of their dynamics. In particular,
we examine qualitative transformations of chaotic attractors, discover and
describe bifurcations of new types, and report bifurcation structures, which
have been unknown.

Relevance of the chosen research topic. Bifurcations of invariant
sets in noninvertible and piecewise smooth dynamical systems have been al-
ready drawing attention of researchers for almost half-century. Although
for centuries in many applied sciences classical investigation methods had
been using linear (or at least smooth) functions, our constantly increasing
knowledge about the real world suggests that linearity and smoothness is a
rare occurrence in Nature. Fast development of existing areas of research, as
well as appearance of novel research trends or even new branches of science,
demands comprehension of evolution principles of more and more complex
objects and studying dynamical systems involving functions with kinks and
discontinuities. Understanding asymptotic properties of solutions for such
kind systems allows to meet practical challenges springing up in numerous
spheres of human life from chemistry and physics to economics and sociol-
ogy. The major problem arising is that classical investigation methods, in
most cases, cannot be applied for nonsmooth systems and advancing com-
pletely new approaches becomes necessary, in particular those, which allow
to formally describe transformations of non-regular, strange, chaotic objects.

One of the first scientists who tried to describe rigorously complex chaotic

behaviour in a dynamical system, was the French mathematician H. Poincaré.
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It is even widely thought that the modern dynamical systems theory has
stemmed from his famous work “Les méthodes nouvelles de la mécanique
céleste”. In this milestone, the strict analysis was complemented by qualita-
tive geometric techniques, in order to describe global properties of solutions.
This approach had become a real breakthrough in studying nonlinear differ-
ential equations. The idea that global understanding of asymptotic behaviour
of all solutions was more important than analytically precise description of
particular local trajectories, was later supported by G. D. Birkhoff, who also
accentuated importance of studying discrete time mappings as a mean to un-
derstand more complex phenomena arising from differential equations. In the
mid-20th century, dynamical systems theory was furthered due to other sig-
nificant studies having tackled the variety of momentous problems with using
distinct approaches. Among those to be mentioned are: works of A. A. An-
dronov and L. S. Pontryagin on structural stability and local bifurcations for
planar systems; generalisation of these results to two-dimensional manifolds
by M. Peixoto; works of A. N. Kolmogorov, V. I. Arnold, and J. K. Moser hav-
ing led to development of KAM theory; geometric construction by S. Smale
of his famous horseshoe as an example of structurally stable chaotic map.

Increasing interest to studying complex asymptotic solutions of nonlin-
ear dynamical systems arose due to results of the American meteorologist
E. Lorenz. During his numerical investigation of a three-dimensional model
for weather forecasting, Lorenz had discovered that for particular param-
eter values the system possessed an infinite set of non-periodic solutions,
nowadays known as the Lorenz attractor. These solutions demonstrated ex-
tremely high sensitivity to initial conditions, namely, even a negligibly small
change of an initial point yielded completely different trajectory, which made
almost impossible precise long-term prediction of the asymptotic behaviour
(the celebrated butterfly effect). Nowadays, sensitivity to initial conditions
is regarded as the key property of chaos.

Lorenz’s results served as persuasion to many researchers that asymptotic
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dynamics includes plenty of solutions being distinct from equilibrium points
and limit cycles. The first usage of the word “chaos” with respect to dynam-
ical systems with discrete time (i. e., difference equations that are also called
maps) is attributed to T.-Y. Li and J. A. Yorke, who showed that existence
of a point of period three implies existence of an uncountable set, points of
which are not even asymptotically periodic. Since then there has been an
exponentially increasing interest to studying nonlinear dynamical systems
and irregular behaviour. During the next several decades different powerful
analytical, qualitative and geometrical techniques were worked out and then
applied to a number of important real problems in biology, chemistry, physics,
economics, ecology, even psychology and sociology. Such complicated phe-
nomena as strange non-regular attractors, fractal sets, synchronisation of
chaotic systems, riddled basins of attraction, and many other intriguing fea-
tures of nonlinear systems have been enlightened, e. ¢g., by B. Mandelbrot,
E. Ott, C. Grebogi, Y. Pomeau, P. Manneville, P. Ashwin, O. Yu. Shvets,
O. A. Burylko. Currently, the theory of smooth nonlinear dynamical sys-
tems of different kinds (difference, differential, in particular, partial differen-
tial, functional differential, integro-differential equations) is well developed,
the possible bifurcations of related asymptotic solutions are deeply studied
and well described. Among scientists who had made a significant contri-
bution to advancing this field, it is worth to mention O.M. Sharkovsky,
M. J. Feigenbaum, D. Ruelle, F. Takens, Y. Ueda, M. Hénon, J. Gucken-
heimer, P. Holmes, I. Gumowski, C. Mira, S. Wiggins, A. M. Samoilenko,
O. A. Boichuk, Yu. A. Kuznetsov, D. Ya. Khusainov, I. M. Cherevko, A. Mat-
sumoto, F. Szidarovszky.

At the end of the 20th century, in line with the theory of smooth nonlin-
ear dynamical systems, investigation of nonsmooth phenomena were gaining
speed in response to rising demands from various applied fields in medicine,
mechanics, engineering, economics, social sciences, etc. For instance, due

to technological progress in electrical engineering, together with nonlinear
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components, switching semiconductors has gained currency for constructing
highly efficient power converters. The models derived for examining dynam-
ics of the latter are nonsmooth and exhibit a wealth of new mathematical
phenomena. In economic sciences, exploration of the boom-bust behaviour
of financial and currency markets, which can have a drastic effect on the
real economy, has induced a number of works related to discontinuous dy-
namical systems involving heterogeneous agents. Essential intensification of
interactions between countries and regions became one of the reasons for
increasing instabilities in economics and society, and this has engendered a
number of nonsmooth models that take into account complex interactions
between different groups and objects. There exist other copious examples of
nonsmooth models concerning impact and friction oscillators, control systems
with switches, neuronal and cardiac activities, and so on.

However, mathematical analysis for processes involving friction, chat-
tering, grazing, sliding, collisions, intermittency fall outside the classical
methodology for smooth dynamical systems. Therefore facing new practical
challenges was also accompanied by numerous theoretical studies concerning
general nonsmooth dynamical systems. It has been discovered that piece-
wise smooth systems have much richer dynamics than smooth ones, mostly
because of the state space being separated by certain sets into several sub-
regions corresponding to different definitions of the system function. These
sets, at which the system function is not differentiable or even discontinu-
ous, are called switching manifolds, while their union is called a border set.
When with varying parameters of the system an invariant set interacts in
some way with one of the switching sets, the structure of the phase space
can change abruptly. All transformations of such kind are referred to as
discontinuity-induced bifurcations. For continuous time dynamical systems,
such bifurcations were extensively studied in the widely known works of F. Pe-
terka, A. F. Filippov, V.I. Babitsky, M.I. Feigin, B. Brogliato, M. Kunze,
M. Di Bernardo.
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In piecewise smooth maps, a particular case of a discontinuity-induced
bifurcation is a border collision bifurcation, which can occur when an asymp-
totic solution has a contact with a switching manifold. This can lead to
transformations of a phase space that are not possible in the smooth case,
such as, for example, the transition from a stable fixed point to a cycle of any
period. Among the first to examine bifurcations of this kind were H. E. Nusse
and J. A. Yorke. Their seminal paper induced a series of studies devoted to
describing consequences of border collision bifurcations, among which famous
are the works of S. Banerjee, C. Grebogi, E. Mosekilde, Zh. T. Zhusubaliev,
M. Schanz, L. Gardini, G.I. Bischi, A. Agliari, V. Avrutin, [. Sushko. In this
respect we should also mention the earlier works of N. N. Leonov, which has
been though noticed only recently.

Another kind of bifurcations, which can occur in piecewise smooth maps,
are degenerate bifurcations. They are analogues of smooth bifurcations, re-
lated to an eigenvalue crossing the unit circle, but do not lead to standard
results of such a crossing due to certain degeneracy of the system functions
at the bifurcation value (for instance, if these functions are linear). Note
that among particular representatives of piecewise smooth maps, piecewise
linear ones play indeed a distinctive role. On one hand, they often appear
naturally as models of particular problems in different applied fields, such as,
power electronics, cellular neural networks, signal transmission, economics,
etc. On the other hand, the linearity of the functions simplifies the inves-
tigation making it possible to obtain many results analytically. One of the
simplest examples of such kind maps is the famous one-dimensional skew
tent map having a single kink point (border point). Due to efforts of S. Ito,
S. Tanaka, H. Nakada, F. Takens, Yu. L. Maistrenko, V. L. Maistrenko, the
dynamics of the skew tent map has been completely described, which allows
to use it as a border collision normal form for continuous maps.

However, for the one-dimensional maps with multiple border (both kink

and discontinuity) points, nonsmooth maps of more complex form with non-



34

linearities, as well as piecewise smooth maps of higher dimensions, the bifur-
cation theory is far from being complete. Nonetheless, such maps can describe
complex behaviour immanent to real phenomena from many applied fields.
For instance, dynamics of time-delayed Chua circuits of particular design
in electrical engineering, spectra of chaotic signals in secure transmission,
evolution of financial markets with alternating bull and bear trends, certain
tatonnement processes for prices reaching economic equilibrium, even a for-
malised dynamical process of interaction between a teacher and a learner in
developmental psychology. Solving these and many other problems requires
deep investigation of asymptotic solutions and their bifurcations in piece-
wise smooth, continuous and discontinuous, maps. It should also be noted
that analytical studies of piecewise smooth dynamical systems are gener-
ally supplemented and confirmed by numerical experiments and computer
simulations, and this cooperation leads to the emergence of new scientific
interdisciplinary fields.

The relevance of analysing qualitative transformations of a phase space of
nonsmooth maps, associated with periodic and chaotic solutions, is confirmed
by the presence of thousands of works concerning the subject, published in
highly rated mathematical, natural science, economic, and interdisciplinary
journals, in particular, Nonlinearity; Proceedings of the Royal Society A;
Journal of Economic Dynamics and Control; Chaos, Solitons and Fractals.
Most of these papers are written by mathematicians in co-authorship with sci-
entists of rather distinct applied specialities, which evidences the importance
of theoretical research in this topic for modelling complex real phenomena.

Relation with the academic programs, plans, themes, grants.
The thesis has been accomplished at the Department of Differential Equa-
tions and Oscillation Theory, Institute of Mathematics, NAS of Ukraine
in accordance with the scientific research topics “Qualitative and asymp-
totic analysis of differential, functional differential, and impulse equations

systems”, State registration number 0111U002035; “Constructive and qual-
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itative methods for analysing systems of differential, functional differential,
impulse, and difference equations”, State registration number 0116U003121;
“Constructive and qualitative methods for analysing functional differential,
impulse, and difference systems”, State registration number 0120U100191;
“Evolutionary and stochastic models in nonlinear systems of natural sciences”,
State registration number 0107U002027; “Studying of equilibrium, oscilla-
tory, and transient processes in mathematical models of natural sciences”,
State registration number 0111U010373; “Analytical and group methods for
studying mathematical models of modern natural sciences”, State registra-
tion number 0117U002119; “Numerical-analytical methods of the theory of
nonlinear oscillations, functional differential and impulse systems”, State reg-
istration number 0120U100180; “Innovative methods in the theory of differen-
tial equations, the computational mathematics and the mathematical mod-
elling”, State registration number 0122U000670; “Mathematical modelling of
complex dynamic systems and processes relevant to the State security”, State
registration number 0123U100853.

Purpose and objectives of the research. The main purpose of the
present research is to analyse novel local and global aspects of asymptotic
dynamics of noninvertible piecewise smooth maps. The main focus of the
thesis is on proving the existence and stability of asymptotic solutions of dif-
ferent form, examining the qualitative transformations of chaotic attractors,
describing distinct bifurcation structures, and determining regions of multi-
stability in a wide range of not only continuous or discontinuous nonsmooth
maps but also smooth noninvertible maps.

The object of the research are nonlinear noninvertible, as well as continu-
ous and discontinuous piecewise smooth maps, being of different dimension-
ality and dependent on parameters, many of which represent actual models
of real phenomena that are of great importance in various applied fields.

The subject of the research are existence, stability and qualitative trans-

formations of invariant sets of different types, such as, fixed points, periodic
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points, closed invariant curves, chaotic attractors, invariant absorbing inter-
vals, absorbing areas of non-mixed and mixed types, basins of attraction.

The objectives of the research include:

e To consider a piecewise linear continuous map with two border points (a
bimodal map), which is a generalisation of the skew tent map (a piece-
wise linear continuous map with a single border point); to analyse its
asymptotic dynamics, identifying stable fixed points, stable periodic or-
bits, and chaotic attractors; to determine the corresponding bifurcation
conditions for them; to describe the related bifurcation structures in
the parameter space of the map and to compare them with the already
known structures; to apply the obtained theoretical results to particular

examples that model certain economic phenomena.

e To consider a one-dimensional piecewise monotone map with a symmet-
ric system function that has two discontinuities; to analyse the asymp-
totic behaviour of its orbits, identifying the parameter domains for reg-
ular and chaotic dynamics; to determine the bifurcation conditions for
different solutions; to describe the bifurcation structures associated with
chaotic attractors in the parameter space of the map; to investigate the

possibility of coexistence of different attractors.

e To consider a one-dimensional piecewise monotone map without sym-
metries having two discontinuity points; to analyse its asymptotic dy-
namics, in particular related to chaotic attractors; to determine for the
latter the corresponding bifurcation conditions; in the parameter space
of the map, to describe the bifurcation structures associated with chaotic
attractors; to compare the obtained results in the symmetric and the

asymmetric cases.

e To consider a one-dimensional piecewise monotone map with multiple
discontinuity points; to study possible bifurcations of chaotic attractors

and to determine sufficient conditions for their occurrence; to find out
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whether such a map with two border points can demonstrate any new
bifurcation phenomena in comparison with a piecewise monotone map
with a single discontinuity; to compare the obtained results with the

situation when a map has more than two discontinuity points.

e To investigate two- and three-dimensional nonlinear noninvertible
smooth, continuous piecewise smooth and discontinuous piecewise
smooth maps, which serve as models of various actual problems in eco-
nomics, ecology, sociology and developmental psychology; for such maps,
to study the asymptotic behaviour of their orbits of different types; to
describe bifurcations of stable fixed points and cycles, and, if possible, of
chaotic attractors; to examine the possibility of existence of attracting
closed invariant curves (smooth and non-smooth) and to analyse their
possible transformations; to investigate the restriction of original maps
to certain invariant sets of lower dimension, if they exist; to study the
asymptotic properties of solutions in the case when the system function
is undefined on a certain subset of the phase space; in the related pa-
rameter spaces of the maps considered, to describe in detail bifurcation

structures of different nature.

e For piecewise smooth noninvertible maps of higher dimensions, which
serve as models of an oligopolistic market, to analyse the possibility
of existence of fixed points and asymptotically periodic solutions, as
well as to study their stability properties; to investigate whether partial
or complete synchronisation can occur; to consider the restriction of
the original map to the manifold of complete synchronisation, if it is
invariant; to describe several typical bifurcation scenarios depending on

the varied parameter values.

Research methods. In the thesis there are used classical methods of
difference equations theory, stability theory, as well as modern methods of

dynamical system theory, bifurcation theory, chaos theory. Analytical re-
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search is consistently combined with numerical experiments and building
schematic and bifurcation diagrams. Mathematical models are worked out
and investigated with careful consideration of the specific features of actual
real phenomena, and the obtained theoretical results find, in their turn, an
applied interpretation that is consistent with experimental data.

Scientific novelty of the obtained results. The main results that
determine the scientific novelty of the thesis and are submitted for the defence

are new and consist in the following:

e For a family of one-dimensional piecewise linear continuous maps with
two border points, it has been shown that stable periodic orbits of any
period can exist depending on the parameter values. Necessary and
sufficient conditions for their stability have been obtained. In the pa-
rameter space of such maps, three distinct bifurcation structures have
been described. Two of them represent the generalisations of already
known bifurcation structures, while the third one, has not been ob-
served before and involves both periodic and chaotic attractors. For
the respective periodic solutions necessary and sufficient conditions for
their stability have been derived, while for chaotic attractors sufficient

conditions for their existence have been obtained.

e We have considered a bimodal map family for which their functions
defining two outermost branches pass through the origin. Such maps
model a certain tAtonnement process for a price reaching economic equi-
librium. It has been shown that the map cannot have stable periodic
points (except for the fixed point). In the parameter space, the bifurca-

tion structure associated with chaotic attractors have been exhaustively
described.

e For a family of one-dimensional piecewise monotone maps with two dis-
continuity points, having the symmetric system function, two distinct

bifurcation structures have been exhaustively described, which are as-
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sociated with chaotic attractors that spread over all three partitions. In
particular, we have obtained necessary and sufficient conditions for exis-
tence of chaotic attractors with different number of connected elements
and specified the principles according to that these numbers change due
to bifurcations. Parameter regions of coexistence of different chaotic

attractors have been also found.

In the parameter space of a family of one-dimensional piecewise increas-
ing maps with two discontinuity points and without symmetries, we have
discovered a new type of bifurcation structure associated with chaotic
attractors. It has been proved that the bifurcation surfaces forming this
structure were related to bifurcations, not being associated with any
homoclinic bifurcations of repelling periodic points. It has been shown
that the configurations of chaotic attractors can belong to two different
kinds. For attractors of both kinds, explicit estimates for the maximum

number of their connected elements have been obtained.

For a family of one-dimensional piecewise monotone maps with two dis-
continuity points, two novel bifurcations of chaotic attractors has been
discovered, namely, an interior and an exterior border collision bifurca-
tion. It has been shown that these bifurcations were not related to any
homoclinic bifurcations of repelling fixed or periodic points. For both
bifurcation types, sufficient conditions for their occurrence have been

obtained.

For a family of one-dimensional piecewise monotone maps with more
than two discontinuity points, a particular case of the exterior border
collision bifurcation has been investigated. For certain parameter con-
stellations, this bifurcation implied a sudden expansion of the attractor,
due its collision with a chaotic repeller, located at the immediate basin
boundary of the attractor. It has been shown that in the codimension

two case, this sudden expansion of the attractor occurs immediately
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after the border collision.

We have considered families of two-dimensional smooth noninvertible
maps that model certain important processes in economics and ecology.
For fixed points of such maps, the general and some degenerate cases
of the flip bifurcation and the Neimark—Sacker bifurcation have been
investigated. Global bifurcations associated with critical sets of differ-
ent ranks and transformations of attracting invariant curves have been
analysed. Certain bifurcation scenarios, characteristic for the maps con-
sidered, have been exhaustively described. For certain parameter values,

existence of chaotic absorbing areas has been shown.

For a family of two-dimensional piecewise smooth continuous maps,
sufficient conditions have been obtained for existence of an attracting
closed invariant curve, consisting of the segments of critical sets of dif-
ferent ranks. It has been shown that the restriction of the original
two-dimensional map to this curve is given by the one-dimensional first
return map, which had at least one kink point and at least one discon-

tinuity point.

A family of three-dimensional piecewise smooth continuous maps with
the border set, consisting of three smooth surfaces, has been studied.
It has been proved that the intersection of all three switching surfaces
was a smooth curve, each point of which was fixed. Sufficient conditions
for the stability of these fixed points have been obtained. It has been
proved that for any initial point its orbit either approached asymptot-
ically one of the fixed points, or stuck forever in the so-called “disequi-
librium point”, for which the first two coordinates remained unchanged,
while the third one changed according to a one-dimensional Ricker map

with the fixed parameters.

For a family of two-dimensional discontinuous maps, the sufficient and

necessary conditions for a continuity breaking bifurcation have been
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obtained. In the parameter plane, in the neighbourhood of the corre-
sponding point of codimension two, it has been shown that the original
two-dimensional map can be approximated by a one-dimensional piece-
wise linear map with a single discontinuity point. In addition, three
distinct bifurcation structures, associated with periodic solutions, have
been described. In particular, we have provided an exhaustive descrip-
tion of a novel bifurcation structure, consisting of periodicity regions

related to even periods.

e For a family of two-dimensional noninvertible piecewise smooth maps,
characterised by fractional-rational terms in both components, all focal
points and the corresponding prefocal sets have been found. It has been
proved that one of these focal points—the origin—belongs to its prefocal
set. It implied that for certain parameter constellations this focal point

had a basin of attraction of positive measure.

e A family of 2n-dimensional nonautonomous piecewise smooth nonin-
vertible maps, modelling an oligopoly market, has been investigated.
The properties of their fixed points have been examined. In particular,
for the fixed point representing the economic Cournot equilibrium, the

sufficient stability conditions have been obtained.

e For a family of 3n-dimensional piecewise smooth noninvertible maps,
modelling an oligopoly market, it has been proved that they cannot have
fixed points, but only periodic solutions. Moreover, the periods of these
solutions were necessarily multiples of a certain parameter of the map.
It has been shown that the restriction of the original map to the full
synchronisation manifold was represented by a three-dimensional piece-
wise smooth map. For this three-dimensional map we have described

several typical bifurcation scenarios depending on the parameter values.

Practical significance of the obtained results. The thesis contains

mathematical results, which are theoretical in nature. However, most of the
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dynamical systems studied in the present work represent actual models of real
problems important for different applied sciences. The theoretical results ob-
tained in the course of research can be used for further development of the
analytical and the qualitative theory of difference equations, of the bifurca-
tion theory, of the general dynamical systems theory, of the chaos theory.
The results of the thesis can be and are already being applied for describ-
ing certain existing phenomena in electrical engineering, signal transmission,
economics, developmental psychology.

Personal contribution of the candidate for the degree of Doc-
tor of Sciences. Among the results published in the papers jointly with
co-authors, only those obtained by the candidate herself were included in
the main part of the thesis, with the exception of a few results where the
contribution of the co-authors is equal. In the works [2, 4, 14] (see the
list of publications of the candidate on pages 17-24) the contribution of all
co-authors to the formulation and proof of theoretical results is equal. In
works of an interdisciplinary nature, the author of the thesis is responsible
for the mathematical part of the research, and the co-authors are respon-
sible for describing the economical, ecological, or psychological motivation
for the emergence of models, the construction of models, and the applied
interpretation of the obtained mathematical results.

Approbation of the thesis results. The main results of the thesis have
been exhaustively reported and discussed at many international conferences
in Ukraine and abroad, as well as at seminars in leading European scientific

centres, where they received favourable feedback, in particular:

e The European Conference on Iteration Theory (ECIT 2008), September
7-13, 2008, Yalta, Crimea, Ukraine;

e The 6th International Conference on Nonlinear Economic Dynamics
(NED 2009), May 31-—June 2, 2009, Jonkoping International Business

School, Sweden;



43

e The 17th International Workshop on Nonlinear Dynamics of Electronic
Systems (NDES 2009), June 21-24, 2009, Rapperswil, Switzerland;

e The Ukrainian Mathematical Congress — 2009 (dedicated to the cen-
tennial of M. M. Bogolyubov), August 27-29, 2009, Institute of Mathe-
matics of NASU, Kyiv, Ukraine;

e The 2nd International Workshop on Nonlinear Maps and their Appli-
cations (NOMA 2009), September 10-11, 2009, University of Urbino,
[taly:;

e The International Workshop on Delayed Complex Systems, October 5—
9, 2009, Max Planck Institute for the Physics of Complex Systems,

Dresden, Germany;

e The 18th International Workshop on Nonlinear Dynamics of Electronic
Systems (NDES 2010), May 26--28, 2010, Technical University of Dres-

den, Germany;

e The International Workshop “Nonlinear Dynamics on Networks”, July
5—9, 2010, National Academy of Sciences of Ukraine, Kyiv, Ukraine;

e The European Conference on Iteration Theory (ECIT 2010), September
12-17, 2010, Nant, France;
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Chapter 1

Literature overview, main definitions, and

preliminaries

1.1. A brief history of dynamical systems and chaos

theory

Bifurcations of invariant sets in noninvertible and piecewise smooth dynam-
ical systems have been already drawing attention of researchers for almost
half-century. Although for centuries in many applied sciences classical inves-
tigation methods had been using linear (or at least smooth) functions, our
constantly increasing knowledge about the real world suggests that linearity
and smoothness is a rare occurrence in Nature. Fast development of exist-
ing areas of research, as well as appearance of novel research trends or even
new branches of science, demands comprehension of evolution principles of
more and more complex objects and studying dynamical systems involving
functions with kinks and discontinuities. Understanding asymptotic prop-
erties of solutions for such kind systems allows to meet practical challenges
springing up in numerous spheres of human life from chemistry and physics
to economics and sociology. The major problem arising is that classical inves-
tigation methods, in most cases, cannot be applied for nonsmooth systems
and advancing completely new approaches becomes necessary, in particu-
lar those, which allow to formally describe transformations of non-regular,
strange, chaotic objects.

Early studies on complex asymptotic dynamics of multiple interacting ob-

jects go back to the end of 19th century and are usually associated with works
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of the French mathematician H. Poincaré. He was one of the first who tried
to describe rigorously complex chaotic behaviour in a dynamical system. It
is even widely thought that the modern dynamical systems theory stemmed
from his famous work “Les méthodes nouvelles de la mécanique céleste” [205-
207]. The novelty of Poincaré’s approach was in that he combined the strict
analysis with qualitative geometric techniques, in order to describe global
properties of solutions. This approach had become a real breakthrough in
studying nonlinear differential equations. The idea that global understanding
of asymptotic behaviour of all solutions is more important than analytically
precise description of particular local trajectories, was later supported by
G.D. Birkhoft, who also accentuated importance of studying discrete time
mappings as a mean to understand more complex phenomena arising from
differential equations [41]|. In the mid-20th century, dynamical systems the-
ory was furthered due to other significant studies tackled the variety of mo-
mentous problems with using distinct approaches. It is worth to mention
the works of A. A. Andronov and L. S. Pontryagin, who were the first to in-
troduce the notion of structural stability and to study local bifurcations for
planar systems, as well as the works of other people from Andronov’s group
[6-9]. Later the results of Andronov and Pontryagin were generalised to two-
dimensional manifolds by M. Peixoto [202]. Another influential contribution
to dynamical systems was the proof of the Kolmogorov-Arnold-Moser Theo-
rem, having led to development of the KAM theory [10-12, 127, 157, 158]. In
approximately the same time S. Smale suggested to study dynamical systems
by using methods from topology. In particular, he provided a geometrical
construction of a structurally stable chaotic map, nowadays widely known as
the Smale horseshoe [222-224].

Increasing interest to studying complex asymptotic solutions of nonlin-
ear dynamical system arose due to results of the American meteorologist
E. Lorenz. During his numerical investigation of a three-dimensional model

for weather forecasting, Lorenz discovered that for particular parameter val-
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ues the system possessed an infinite set of non-periodic solutions, nowadays
known as the Lorenz attractor [139]. These solutions demonstrated extremely
high sensitivity to initial conditions, namely, even a negligibly small change
of an initial point yielded completely different trajectory, which made al-
most impossible precise long-term prediction of the asymptotic behaviour
(the celebrated butterfly effect). Nowadays, sensitivity to initial conditions
is regarded as the key property of chaos.

Lorenz’s results served as persuasion to many researchers that asymp-
totic dynamics includes plenty of solutions being distinct from equilibrium
points and limit cycles. The first usage of the word “chaos” with respect
to a dynamical system with discrete time (i. e., a system of difference equa-
tions also called a map) is attributed to T.-J. Li and J. A. Yorke [137|, who
showed that existence of a point of period three implied existence of an un-
countable set, points of which were not even asymptotically periodic. Since
then there has been an exponentially increasing interest to studying non-
linear dynamical systems and irregular behaviour. During the next several
decades different powerful analytical, qualitative and geometrical techniques
were worked out and then applied to a number of important real problems in
biology, chemistry, physics, economics, ecology, even psychology and sociol-
ogy. Such complicated phenomena as strange non-regular attractors, fractal
sets, synchronisation of chaotic systems, riddled basins of attraction, and
many other intriguing features of nonlinear systems have been enlightened,
e.g., in [13-15, 61, 62, 78, 84, 107, 108, 143-145, 162, 163, 208, 220, 221].

Currently, the theory of smooth nonlinear dynamical systems of different
kinds (difference, differential, in particular, partial differential, functional dif-
ferential, integro-differential equations) is well developed, the possible asymp-
totic solutions, their stability properties and related bifurcations are deeply
studied and well described. In this regard we could also mention the con-
tributions [1, 54, 85, 109-111, 115-118, 133, 147, 156, 214, 243, 247, 248]

to cite a few. Special attention we would like to draw to results obtained
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by the representatives of Ukrainian mathematical school, related to different
aspects of differential equations [53, 60, 146, 251], studies of approximation,
convergence and control in delay differential equations and integro-differential
equations [55, 72, 81, 138|, and asymptotic dynamics in noninvertible maps
[128-130, 215-217]. Another collection of works by the members of French
school of C. Mira concerns certain dynamic phenomena, which occur in
nonlinear two-dimensional maps due to their noninvertibility. In particu-
lar, notions of chaotic areas of non-mixed and mixed types were introduced
136, 44, 47, 68, 94, 112, 113, 125, 154-156].

Starting from the end of the 20th century till nowadays, in line with
the theory of smooth nonlinear dynamical systems, investigation of non-
smooth phenomena were gaining speed in response to rising demands from
various applied fields. For instance, due to technological progress in electri-
cal engineering, together with nonlinear components, switching semiconduc-
tors has gained currency for constructing highly efficient power converters
[34, 37, 90, 249]. The models derived for examining dynamics of the lat-
ter exhibit a wealth of nonsmooth phenomena. In economic sciences, ex-
ploration of the boom-bust behaviour of financial markets, which can have
a drastic effect on the real economy, has induced a number of works re-
lated to discontinuous dynamical systems involving heterogeneous agents
180, 123, 230, 235]. There exist a vast amount of other papers studying
models of mechanical systems, biology, chemistry, economics and social sci-
ences, e. g., |38, 43, 71, 79, 92, 95, 99, 121, 134, 140, 142, 148, 229, 237, 246]
to cite a few.

Facing new practical challenges was also accompanied by numerous the-
oretical studies concerning general nonsmooth dynamical systems. It has
been discovered that piecewise smooth systems have much richer dynamics
than smooth ones, mostly because of the state space being separated into
several partitions by borders, at which the map is not differentiable. These

borders are called switching manifolds or border sets. When with varying
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parameters of the system an invariant set interacts in some way with one
of the switching manifolds, the structure of the phase space can change
abruptly. For denoting such transformations there is used a general term
discontinuity-induced bifurcations, because they occur due to some kind of
discontinuity in the system function itself or one of its derivatives (usually
the first derivative). For detailed investigation of copious related phenom-
ena occurring in dynamical systems with continuous time one can refer to
31, 38, 39, 59, 77, 86-88, 132, 159, 203, 204].

As for the maps, a contact of an asymptotic solution with a border set
may lead, for example, to the transition from a stable fixed point to a cycle
of any period, or even directly to a chaotic attractor (which is absolutely
not possible in the smooth case). These transitions are referred to as border
collision bifurcations. Among the first to examine bifurcations of this type
(and those who introduced the term) were H. E. Nusse and J. A. Yorke. Their
seminal paper [160] induced a series of studies devoted to describing conse-
quences of border collision bifurcations [32, 225, 250]. We have to mention
also earlier works on these issues, [135, 136], results of which were elaborated
and presented in more recent papers [29, 101].

Another kind of particular bifurcations, called degenerate, can occur in
piecewise smooth maps when an eigenvalue of a cycle crosses the unit circle,
but standard results of such crossing are not observed due to certain degener-
acy of the system functions at the bifurcation value [227]. For example, if the
systems functions are linear. Among particular representatives of piecewise
smooth maps, piecewise linear ones play indeed a distinctive role. On one
hand, they often appear naturally in different applied fields, such as, power
electronics, cellular neural networks, signal transmission, economics, etc. On
the other hand, the linearity simplifies the investigation essentially making
it possible to obtain many results analytically. One of the simplest examples
of such kind maps is the famous one-dimensional skew tent map having a

single border point, the dynamics of which has been exhaustively described
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(see, e.g., [124, 141, 231]). This fact allows to use the skew tent map as a
border collision normal form in one-dimensional case [32, 161, 225].
However, for the one-dimensional maps with multiple border (both kink
and discontinuity) points, nonsmooth maps of more complex form with non-
linearities, as well as piecewise smooth maps of higher dimensions, the bifur-
cation theory is far from being complete. Nonetheless, such maps can describe
complex behaviour immanent to real phenomena from many applied fields.
For instance, dynamics of time-delayed Chua circuits of particular design
in electrical engineering, spectra of chaotic signals in secure transmission,
evolution of financial markets with alternating bull and bear trends, certain
tatonnement processes for prices reaching economic equilibrium, even a for-
malised dynamical process of interaction between a teacher and a learner
in psychology. Solving these and many other problems requires deep inves-
tigation of asymptotic solutions and bifurcations in piecewise smooth, con-
tinuous and discontinuous, maps. It should also be noted that analytical
studies of piecewise smooth dynamical systems are generally supplemented
and confirmed by numerical experiments and computer simulations, and this

cooperation leads to the emergence of new scientific interdisciplinary fields.

1.2. Basic definitions and previous results

We start from recalling main definitions used throughout this work (for ref-
erence see, e. g., fundamental books |21, 38, 43, 82, 106, 114, 133, 156, 218,
219, 247, 250, 252, 253]). For a set X C R™, m € N, let F' be a function
F : X — X. Consider a system of difference equations

Tt :F(l't), t:O,1,2,..., (].].)

where the initial condition xy sweeps out X.

Definition 1.1. The function F' is referred to as a map and X is called a

state space or a phase space of F.
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Definition 1.2. For any initial condition € X, a set o(z) = 0z := {x; :
zy = F'(7)}2, is called an orbit of F or a solution of (1.1). The map F°
is an identity map (i.e., F'(z) = x for any x € X) and F! is called a t-th
iterate of F. The point x; is called an image of rank t, or a t-th image, or a

t-th iterate of the point Z.

Often the set oz is also called a trajectory. However, by a silent convention,
this latter term is used for dynamical systems with continuous time, 1. e.,

defined by differential equations.
Definition 1.3. For any = € X the point y € X such that F(y) = z is

called a first rank preimage or simply a preimage of x and is often denoted
as _1. The point y € X such that F'(y) =z, t > 1, is called a preimage of

x of rank t.

Note that if the function F' is noninvertible, i. e., having several inverses, a
point x can have multiple preimages or even none. Whenever necessary, we
indicate the respective inverse of F' when dealing with preimages.

One of the main objects of study in dynamical systems theory are different
invariant sets, such as fixed points, cycles, chaotic attractors, basins of attrac-

tion, etc. In several consecutive definitions we consider a map F' : X — X.

Definition 1.4. A set A C X is called invariant with respect to the map F
it F(A) = A.

The simplest representatives of invariant sets are fixed points and cycles.
Definition 1.5. A point x* € X such that F(x*) = z* is called a fized point
of the map F'.

Definition 1.6. A set of points O = {x,}}-) C X, where 7, = F(z;_1),
t=1,n—1,29= F(x,_1), is called a cycle of period n or simply an n-cycle.
Each point z; is called periodic of period n. Sometimes the set O is also

called a periodic solution of the dynamical system (1.1).

As for invariant sets of more complex form, such as chaotic (or strange)

attractors, one has to state clearly what is meant under the term “chaos”,
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since there exist many different definitions of this notion, e.g., Li-Yorke
chaos [137], Block-Coppel chaos [52], Devaney chaos (also known as topological
chaos) [82], etc. In what follows we use the latter definition. Before recalling

it, let us first introduce a few useful terms.

Definition 1.7. A map F' is said to have sensitive dependence on initial
conditions if 39 > 0 such that Vo € X and any neighbourhood U(x), there
exist y € U(z) and t € Z, such that |F'(x) — F(y)| > 0.

Definition 1.8. A map I is called topologically transitive if for any pair of
open sets U,V C X there exists t € Z, such that F{({U)NV # @.

Definition 1.9. Let A C X be a set invariant with respect to F'. The map

F is said to be chaotic in sense of Devaney on A if
(1) F|4 has sensitive dependence on initial conditions;
(2) F|4 is topologically transitive;
(3) the set of periodic points of F is dense in A.

The set A is also often called chaotic.

When studying dynamical systems, of the main interest are usually so-
lutions (invariant sets) that can be called stable in some particular sense,
in other words, those that are attractors. There exist various definitions of
this notion, depending on particular needs. Below we will mostly use the

following one.

Definition 1.10. An invariant set A is said to be attracting if there exists
U(A) such that Vx € U, except for the set of Lebesgue measure zero, there is
lim; o F*(z) € A. If A contains a dense orbit, then it is called a topological

attractor or simply an attractor.

Remark 1.11. For the sake of shortness, often below we will say “almost
everywhere” or “almost all” meaning “except for the set of Lebesgue measure

zero”.
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For the fixed point x* at which the map F' is differentiable, the Def-
inition 1.10 is equivalent to the occurrence when all the eigenvalues of
the Jacobian DF'(z*) are located inside the unit circle. For an n-cycle
O = {xy,r1,...,7,_1} the criterion is the same, but one has to consider
the Jacobian of the n-th iterate DF"(x;), 0 <t < n, evaluated at one of the
cycle points. These eigenvalues are also sometimes called the multipliers of
the cycle (the fixed point).

Definition 1.12. A fixed point or a cycle is called repelling if all its multi-

pliers are located outside the unit circle.

Clearly, for a one-dimensional map a fixed point or a cycle is either attracting
or repelling. In higher dimensions, a fixed point or a cycle can be neither

attracting, nor repelling.

Definition 1.13. A fixed point or a cycle is called a saddle if its multipliers

are located both inside and outside the unit circle.

For a saddle there exist certain points having sequence of preimages tend-
ing towards the saddle, as well as certain points having sequence of images

tending towards it. We come to the following important definitions.

Definition 1.14. Consider an arbitrary fixed point x* of F'. Then

W (z*) = {y € X : lim Fi(y) = x} (1.2)

t—o0

is called the stable set of x*.

Definition 1.15. Consider an arbitrary fixed point z* of F'. The locus of

points having a sequence of preimages tending towards x*, that is,

Wi(z*)={y e X : I{z}2 20 =v,
F(z441) = z such that lim 2z = x*} , (1.3)

t—o0

is called the unstable set of x*.
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For an n-cycle, n > 1, one has to replace ' by F" in the Definitions 1.14
and 1.15.

For noninvertible maps another important term is the notion of a critical
set (see, e. g., [156]).

Definition 1.16. A critical set C'S is defined as a geometric locus of points
in the phase space of a map having at least two coincident preimages. These
coincident preimages are located on the set C'S_q, also referred to as the set
of merging preimages. The k-th image F¥(CS) of the set CS, k € N, is
called a critical set of the rank k and is often denoted as C'Sj.

Remark 1.17. In the case of dimension m = 2, the critical set is a curve or a
union of curves and is often denoted as LC' (from the French “ligne critique”).

In the case m = 1, the critical set is a finite set of (critical) points.

As one can see, the critical set appeared as the generalisation of the no-
tion of local maxima and minima of a scalar function for the case of higher-
dimensional maps. For F' being a diffeomorphism, its set of merging preim-
ages is included in (or coincides with) the set of points, at which the deter-
minant of the Jacobi matrix of F' vanishes. For F' being piecewise smooth,
the situation is more complicated, as will be described below. Critical sets
are known to play significant role in determining global dynamic phenomena,
being responsible for qualitative changes of certain invariant sets and their
basins of attraction, for instance, they may cause occurrence of multiply con-
nected or non-connected basins of attraction. In particular, critical sets of
different ranks can be used to obtain the boundaries of trapping regions or

absorbing areas.
Definition 1.18. A set A C X is called an absorbing area of non-mized
type, if

(1) F(A) C A

(2) there exists a neighbourhood U(A) such that F(U(A)) € U(A) and
any point x € U(A) \ A has a finite rank image in the interior IntA;
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(3) the border OA consists of subsets of critical sets C'Si, k = 0, K with
K € N being finite.

Definition 1.19. A set A C X is called an absorbing area of mixzed type, it
(1) F(A) € A;

(2) there exists a neighbourhood U(A) such that F(U(A)) C U(A) and
almost all points x € U(A) \ A have finite rank images in the interior
IntA;

(3) the border OA consists of subsets of critical sets C'Si, k = 0, K with
K € N being finite and subsets of the unstable set of some saddle fixed
(or periodic) point, or even subsets of several unstable sets of multiple

saddle fixed (or periodic) points.

In the one-dimensional case an absorbing area is an absorbing interval and
it can be only of non-mixed type.

In applications, especially, when there are multiple stable solutions, be-
sides the fact that some invariant set is attracting, it is also important to
understand how large is the part of the orbits which are attracted to it. The

following notion is important then.

Definition 1.20. Let A be an attractor of F' and consider the set
B(A) = {x € X ¢ Jim F'(x) € A} . (1.4)
The set B(A) is called the basin of attraction of A. If B(A) = X, up to a

set of Lebesgue measure zero, A is called the global attractor. The subset of
B(A) that is the largest neighbourhood of A is called the immediate basin
of A.

For an attracting fixed point or a cycle, its basin of attraction coincides with
its stable set.

When dealing with multistability, and in nonlinear maps it is not a rare
case, one may encounter invariant sets that are attractors in weaker sense,

e. g., Milnor attractors [153].
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Definition 1.21. A set A C X is called a Milnor attractor if its basin
of attraction B(.A) has strictly positive Lebesgue measure and there is no
strictly smaller closed subset A" C A such that B(A') = B(.A) up to a set of

Lebesgue measure zero.

As it has been already mentioned, piecewise smooth maps are able to
reflect complex behaviour of real objects studied by applied scientists. More-
over, asymptotic dynamics of piecewise smooth maps is much richer in com-
parison with the smooth ones. Let us consider a set X = UM, X; C R™ with
M € N, such that the following conditions hold:

(1.2.A.i) the interior IntX; # @, i = 1, M,

(1.2.A.i) each set [';; ;== X; N X, i # j, is either a manifold of dimension

less than m or an empty set.

Here A denotes the closure of the set A. Whenever necessary, we will also

use the notation

F::Lj\j Lj\j L. (1.5)

i=1 j=1j#i
Note that I' is not necessarily a manifold.
Let F be amap F' : X — X, defined by M different functions F; €
CYX;),i=1,M, F;, # F}, i # j, such that F(z) = F;(z) for z € IntX;.

Definition 1.22. The map F'is called piecewise smooth and each I';; is called
a switching manifold and I' is called a border set. Each set X; is sometimes

called a partition, while F; is called a branch.

Remark 1.23. For the one-dimensional case, switching manifolds become
simply border points, i.e., I' = {dy,...,dy 1}, di € R, 1 =1, M — 1.

Clearly, if F;(I';;) = F};(L'y;) for all ¢ and j, the map F is continuous. In
general, on the union of switching manifolds I', the map F' can be defined
in various ways, depending on the particular tasks and applications. This

definition though does not influence typically asymptotic dynamics of F'.
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We should make a brief remark concerning critical sets for piecewise
smooth maps. Since in the state space of the map there are sets at which F
is not differentiable, the set C'S_; contains not only the points, at which the
determinant of the Jacobian of I’ vanishes, but also the points belonging to
the border set I', if they are associated with at least two coincident preimages
or are the points of discontinuity. In case if F'is continuous, the critical set
C'S is defined as before, 1. e., as an image of C'S_;. For a discontinuous map
F, the critical set C'S includes the images of discontinuity points that are
obtained by using two respective determinations of the map. Namely, if F'is
discontinuous at a switching manifold I';; for some 4 and j, then the first rank
images F;(I';;) and F;(I';;) belong to the critical set C'S. The main difference
from the continuous case is that a point of discontinuity corresponds not to
two coincident preimages but to a single preimage which appears/disappears.

Due to the presence of border sets, at which F' is not differentiable, sym-
bolic dynamics (being developed and initially used for nonlinear smooth maps
[114]) becomes a handy tool for studying properties of piecewsie smooth maps
as well. Each partition X; and all points x € X, are associated with a par-
ticular symbol from the set of symbols S = {51, 5, ..., Sy }. Consequently,
every orbit of I is associated with a symbolic sequence constructed from the
symbols of S, namely, given an orbit o(xy) = {z:}°, we define a correspond-
ing infinite symbolic sequence o = spS1...8;... with s, = 5; for x; € X,
t € Z,. A fixed point * € X, obviously corresponds to a single symbol S;
and is then denoted as z%. An n-cycle O can be represented by the finite
symbolic sequence o = sp...8;...8,-1 with s; € S, j = 0,n—1 and is
denoted as O, .

Definition 1.24. The region P, in the parameter space for that a cycle O,

exists is called a periodicity region.

Often, the term periodicity region is used in case when the respective cycle
not only exists but is also stable. However, sometimes it is important to

distinguish the parts of this region related to stability and instability of the
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cycle. This is stated explicitly, if necessary.

Definition 1.25. A symbolic sequence o, finite or infinite, associated with

an orbit o(x) or its part, is sometimes called the itinerary of x.

Note that for nonsmooth maps a fixed point defined by the particular branch

can be located outside the respective region of definition.

Definition 1.26. A fixed point x§ defined by the branch F; such that x5 &

X; is called virtual.
Similar notion exists for a cycle.

Definition 1.27. An n-cycle O, = {zg,z1,..., 241}, 0 = S;,Si, ... Si, .,
with z;, j = 0,n — 1 defined by the respective branches F;; is called virtual

if there exists jo such that x;, & X;, .

The symbolic sequence related to the cycle is clearly shift invariant. And
each cyclic shift o; = s;...5,-150...5j—1 of o can be associated with the
point of the cycle x;. Whenever necessary, we will also use the alternative
notation x,, for x;. In a similar way, we will often use the notation Fg, := F;
for the function acting on the partition X; and accordingly the notation
F, with 0 = s9s1...58;...58, t € Z4, s; € S for the composite function
FHl = F, =F,0...0F; 0...0F; oFy.

In applications one usually encounters families of maps F, : X — X
depending on a set of parameters p € R*, k € N. Bifurcation structures
appearing in the parameter space R¥ of F,, are related to bifurcations of dif-
ferent invariant sets, such as fixed points, cycles, chaotic attractors, basins
of attraction, etc. In this respect, one of the main distinctions of piecewise
smooth maps in comparison with smooth maps is a border collision bifur-
cation. Such bifurcations occur due to presence of border sets in the state
space, namely, when under varying a bifurcation parameter an invariant set

collides with a border set (see [21] and references therein).

Definition 1.28. Consider a map family F}, : X — X depending smoothly
on the set of parameters p € R* and with X satisfying the conditions
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(1.2.A.1), (1.2.A.i). Let A, be an invariant set of F),, which is persistent
under variation of p and, in general, is A, C UM IntX;. If at some py there
is A,y NI' # @, then it is said that A, undergoes a border collision. If
such a collision leads, with varying p through pg, to a qualitative change of
the asymptotic dynamics of F),, it is said that a border collision bifurcation

occurs.

For a cycle O, the condition for a border collision is z,, € I';;, where z,
is the colliding point. In the parameter space of F),, the related bifurcation
boundary of P, is denoted &I;fj . The upper index ' can be dropped in case
if its value is obvious (for instance, if there is only one switching manifold).

Besides border collision bifurcations, in piecewise smooth maps with non-
linear branches one can encounter also standard smooth bifurcations, related
to eigenvalues of a fixed point or a cycle crossing the unit circle. Recall that
if an eigenvalue of a fixed point z* crosses +1, there can occur a fold bifurca-
tion (corresponding to appearance of a pair of fixed points having different
stability properties); a pitchfork bifurcation (related to transition from a sin-
gle fixed point to three fixed points); a transcritical bifurcation (associated
with a collision of two fixed points that exchange their stability properties).
If an eigenvalue crosses —1, a flip bifurcation occurs (related to transition
from a single fixed point to a fixed point and a 2-cycle). A Neimark—Sacker
bifurcation occurs in maps with m > 2 and is related to two complex conju-
gate eigenvalues crossing the unit circle. As a result, a closed invariant curve
typically appears around z*. Everything stated above can be generalised to
an arbitrary n-cycle with considering the n-th iterate F’.

Up to now, the most intensively studied classes of piecewise smooth maps
are one-dimensional piecewise monotone maps with a single border point
(continuous as well as discontinuous). The simplest representative is a family

of one-dimensional piecewise linear maps f : R — R, defined on two intervals
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(partitions) X7 = I, = (—o00,d) and Xy = I, = (d, 00):

Fiov flo)= ]?(a:) =a,x+ p, x<d, (16)
fr(T) = ar® + pig, x> d,

with the parameters a,, ax, ji., fiz,d € R and the naturally defined related
symbolic set S = {£,R}. The value f(d) may be defined as f(d) = f.(d) or
f(d) = fR(d), or in any other way, depending on the particular application.
In theoretical studies, f (d) is often not specified intentionally, since it has no
influence on the bifurcations of solutions and the related bifurcation struc-
tures. On the other hand, the limit values lim,_,,_ f(x) and lim,_, g f(a:)

play in this respect an important role.

Definition 1.29. The values of f at the border points, ¢, := f.(d) and
Cp 1= fR(d), are called critical points. Successive images of ¢, and ¢, are
denoted as ¢’ := fi(c,) and ¢, := fi(cz), i > 1 and are referred to as critical
points of the rank i. The border point d is sometimes considered as a critical
point of the rank —1, i.e., d = f-'(c.) = ¢-' and d = f-'(c) = 3.

Without loss of generality, the border point d can be translated to the
origin and it is often assumed that d = 0. However, for generality of an-
alytic expressions we prefer to use d as a parameter. In general, the map
f is discontinuous. In case where f.(d) = f.(d) (in particular, if d = 0 it
implies p, = py = u) the map f is continuous and is called the skew tent
map. These two maps, the discontinuous map defined on two partitions and
the skew tent map, serve as normal forms for border collision bifurcations
in one-dimensional maps. Beyond that, they are used to describe the ba-
sic bifurcation structures appearing in the parameter space of an arbitrary
piecewise smooth map.

Since both branches j‘l and fR of f are linear, the standard theorems
concerning smooth bifurcations (fold, flip, etc.) are not applicable. When an
eigenvalue of a fixed point or a cycle crosses +1 or —1, a so-called degenerate

bifurcation can occur. Such bifurcations can also occur in maps, functions
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of which are not linear but have a certain kind of degeneracy. Three kinds
of degenerate bifurcations are usually distinguished for a fixed point 2* of f,

which does not undergo a border collision bifurcation:

(1) A degenerate +1 bifurcation, related to the eigenvalue v = v(z*) = +1,
when at the bifurcation value there exists an interval I such that Vo € I
there is f(x) = x. The respective boundary in the parameter space is

denoted as 6,.

(2) A degenerate transcritical bifurcation, related to the eigenvalue v =
+1, when lim, _,; £* = f00. The symbol 7, denotes the corresponding

boundary in the parameter space.

(3) A degenerate flip bifurcation, related to the eigenvalue v = —1, when
at the bifurcation value there exists an interval I such that Va € I the

Schwarzian derivative S f(z) = 0. The respective boundary is 7,.

Recall that the Schwarzian derivative of an arbitrary function f(z) is defined
as (see, e.g., [217])

" 3 "\ 2
si="r 5 () D
where f! f7 . and fI”  denote the first, the second, and the third derivative

of the function f with respect to x.

In contrast to the one-dimensional smooth maps, for nonsmooth ones it is
known that chaotic attractors can also be robust (i. e., persistent under a pa-
rameter variation). Therefore, one can speak about bifurcations of a chaotic
attractor, under which one means qualitative transformations that preserve
a chaotic nature of the attractor but change the number of its connected
elements and /or sharply change their size. Let us present several important

definitions.

Definition 1.30. An interval J C R confined by two critical points or by

a critical point and its image is called the invariant absorbing interval if (a)
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f(J) = J and (b) there exist a neighbourhood U > .J such that for almost
any = € U there exists t € Z, such that fi(z) € J, i > t.

The absorbing interval is obviously confined by either a critical point and its

image or two different critical points.

Definition 1.31. A topological attractor @ = U B;, B; = [a;, bi], a1 <
by < as < by <...<a,<b,,iscalled an n-piece or n-band chaotic attractor
of f if the restriction f |o is chaotic. The intervals B; are called bands of Q,
and the intervals G; = (b;,a;11), ¢ = 1,n — 1 are called gaps. For the sake
of brevity, we denote G = U?:_llGi. A region in the parameter space, related

to parameter values for which O exists, is called the chaoticity region.

Note that a chaotic attractor necessarily includes the border point, and hence,
its boundaries (the points a; and b;, i = 1,n) are the critical points of different
ranks.

It is known that for maps with a single border point, the boundaries of
chaoticity regions are mostly defined by homoclinic bifurcations related to
repelling cycles/fixed points, which change their state between being nonho-

moclinic, one-side homoclinic and double-side homoclinic.

Definition 1.32. Consider an arbitrary repelling fixed point z* of the map
f having a non-empty stable set. A point

q € Wi (x")n W z") (1.8)
is called homoclinic. The union of images and preimages of ¢

H(ZU*) = {'"7qf27Q*17QO7Q17QQ7"'7Qt}7 (19)

where

=9 Git+1 :f(ql)7 ng—l, Qt:$*7 hm Qizx*a

1——00

is called a homoclinic orbit of ™ or an orbit homoclinic to x*.
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Definition 1.33. Let us consider a fixed point z* of f and an arbitrary
small neighbourhood U = U(z*). If all homoclinic points ¢ € U belonging
to the same homoclinic orbit of 2* are located on one side with respect to x*,
then we say that x* has a one-side homoclinic orbit or is one-side homoclinic.
Otherwise, * has a double-side homoclinic orbit or is double-side homoclinic.

If £* has no homoclinic orbits it is called nonhomoclinic.

The main bifurcations responsible for transformations of chaotic attractors

for the map f defined in (1.6) (i. e., with a single border point) are as follows.

Definition 1.34. Consider an n-band chaotic attractor Q, n > 2. and sup-
pose there is a repelling m-cycle O, 1 < m < n, with a negative eigenvalue,
located at the boundary of the immediate basin of Q. A merging bifurcation

occurs if Q collides with O and the bands of O contacting O merge pairwise.

Being nonhomoclinic before the bifurcation, the cycle necessarily becomes

double-side homoclinic after.

Definition 1.35. Consider an n-band chaotic attractor Q, n > 1, and sup-
pose there is a repelling m-cycle O, m € N, with a positive eigenvalue,
located at the boundary of the immediate basin of Q. An ezpansion bifur-

cation occurs if Q collides with O and abruptly increases in size.

Before the bifurcation, the cycle O can be either one-side homoclinic or

nonhomoclinic. After the bifurcation, it becomes double-side homoclinic.

Definition 1.36. Consider an n-band chaotic attractor Q, n > 1, and sup-
pose there is a repelling m-cycle O, m € N, with a positive eigenvalue,
located at the boundary of the immediate basin of Q. A final bifurcation

occurs if Q collides with O and becomes a chaotic repeller.

The cycle O can be nonhomoclinic before the bifurcation and one-side ho-
moclinic after, or one-side homoclinic before the bifurcation and double-side
homoclinic after.

The repelling cycle, mentioned in the Definitions 1.34, 1.35, and 1.36,

is located at the immediate basin boundary of the attractor Q, ¢ e., for a
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multiband attractor each gap of it contains at least one point of O. Since the
boundaries of a chaotic attractor are given by the critical points of different
ranks, the analytic condition for a homoclinic bifurcation of O is ¢; = z,,,
where x,, is the appropriate point of the cycle and ¢; = fi(c), ¢ € {ce, ca ),
is the critical point of the proper rank 7 > 0. Therefore, we will use the
notations vy, (57, and x¢ for the merging, the expansion and the final bifur-
cations, respectively.

In the parameter space, a chaoticity region related to a chaotic attrac-

tor having at least n bands is denoted by C7, k € N, where o; are the

yors Ok
symbolic sequences of the cycles that are nonhomoclinic or one-side homo-
clinic for the parameter values located inside the region (i. e., the symbolic
sequences of those cycles, points of which occupy gaps of the chaotic at-

tractor). Similar notation Qp  is used to refer to a particular chaotic

Ok
attractor, in order to distinguish different attractors whenever necessary.

Remark 1.37. Note that in piecewise smooth maps, a chaotic attractor may
also appear/disappear due to a reverse degenerate flip bifurcation or, in case

of continuous maps, due to a fold border collision bifurcation.

One of the basic bifurcation structures typical for one-dimensional piece-
wise smooth maps is the one appearing in a skew tent map, which is defined
as g : R — R of the form

g(r)=axr+p, x <0,
g(z) = (1.10)
gs(x) =br+p, x>0,
with a,b, n € R and the symbolic set S = {A, B}. Such a map family has
been extensively studied in the literature [124, 141, 226, 231]. Without losing
generality, it is considered that @ > 0, b < 0, and g = 1 (for other cases,
either the respective map is topologically conjugate to the mentioned one or
the asymptotic dynamics is trivial). Then the bifurcation structure of g in

the parameter plane (a,b) can be described as follows.

[ST1] If —1 < b < 0, then g has a stable fixed point x*.
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[ST2| If ab < —1, Hp(a,b) <0, and Hy,y1(a,b) > 0, m > 0, then g has a

2m+1_piece chaotic attractor Qgm+1, where

(—1)m+t 2m — (—1)™
H,(a,b) :a25mb25m+1+<%> —1, Op= ?() " (1.11)

IST3] If =1 < a" b < —ap(a,n — 1), n > 2, where

1 —a"
1—a’

ela,n) = (1.12)

then g has a stable n-cycle O, n-1.

[ST4] If a"'b < —1, a"'b < —ag(a,n — 1), and ®" V> —b+a > 0,

n > 3, then ¢ has a 2n-piece chaotic attractor Q.

[ST5] If a"~'b < —1, a"'b < —agp(a,n — 1), a®** V6> —b+a < 0, and
a" 0?4+ b—a <0, n >3 then g has an n-piece chaotic attractor Q,,.

[ST6] Otherwise, if b(1 —a) < a, then g has a 1-piece chaotic attractor Qj.
[ST7| Finally, if b(1 — a) > a, then a typical orbit of g is unbounded.

Again, bifurcations leading to transitions between chaotic attractors with
different number of pieces (bands) are associated with homoclinic bifurca-
tions (merging and expansion) of certain repelling cycles. These cycles have
symbolic sequences based on the notion of harmonics, which are closely re-

lated to period-doubling cascades [152].

Definition 1.38. Consider a symbolic sequence consisting of the symbols A
and B. The k-th harmonic p“,:’B of B is obtained by the following rule:

AB AB\ AB AB [ ABY
py =B, (Po )::A, Pr = Pr—1 <Pk1>7 k>1, (113)

/
where (pﬁfi) differs from pﬁﬁ only by the last symbol.
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Clearly, the length of the symbolic sequence pkA’B is 2%, In a similar way
one can define the harmonics for an arbitrary symbolic sequence ¢ = gy. If
the length of o is n, its k-th harmonics o}, has clearly 2¥n symbols.

With using harmonics, one can write down in analytic form the condi-
tions for bifurcations leading to transitions O, = 9, = Q;, n > 3 and
Qom+1 = Qom, m € Z,. Thus, the merging bifurcation leading to Qs, = 9,
corresponds to the homoclinic bifurcation of the basic cycle O, »-1 and is

given by the condition:

xB_Anfl — CQn — gB_AnflsAn72B<C)' (114)

The related bifurcation boundary in the parameter space is denoted as ygj;,l.
The expansion bifurcation leading to Q,, = Q; corresponds to the homo-

clinic bifurcation of the complementary cycle O, »—2, and is given by:

Tyn-25 = " = Guun—1(C). (1.15)

The related bifurcation boundary in the parameter space is denoted as Cg:n_QB.

The merging bifurcation leading to Qom+1 = Qom corresponds to the

homoclinic biturcation of the cycle O a5 and is given by:

T ,An = A = grm (c). (1.16)

P m—+1

m—+1
The related bifurcation boundary in the parameter space is denoted as 'y;i,g :

Another well-known bifurcation structure is typical for discontinuous one-
dimensional piecewise linear maps defined in two partitions. Namely, it is a
period adding structure, which is often referred to as mode-locking or Arnold
tongues. Consider the map f given by (1.6) with a, a, € (0,1), and f.(d) #
fR(d). Such a map has been investigated by many researchers [29, 86, 101,
135, 235]. In particular, it is known that if fo(d) < d < f.(d) and f is
invertible on the absorbing interval J = [f.(d), f-(d)], i. e., when

MR(l - az:) > :uﬁ(l - CLR), (1'17)
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the periodicity regions in the parameter space of f are organised according
to a specific order based on Farey summation rule, which is applied to the
rotation numbers of the related cycles. For the sake of distinctness, below we
use the term period adding regions to denote regions belonging to the period
adding structure, while the respective cycles are called period adding cycles.

In detail, consider two disjoint periodicity regions P,, and P,,, associated
with the cycles O,, and O,, of periods n; and ng, respectively, and 0, ¢ = 1,2

L

having [; symbols L. Let the related rotation numbers - and % be Farey

neighbours (i. e., |lyng — lang| = 1). The regions P,, and P,, are then called
neighbour regions. It follows that between the regions P,, and P,, there exists

a region P, disjoint from both of them, associated with the cycle O, having

Li+1o
ni+nso '

of the appropriate cyclic shifts of o1 and 9. This process can be continued

the rotation number The symbolic sequence o is the concatenation
ad infinitum. Thus, the complete PA structure (which is observed in case of
both a,,a, € (0,1)) consists of infinite number of periodicity regions, filling
densely the respective part of the parameter space (see, e. g., [21]).
Following [135] symbolic sequences of all period adding cycles are grouped
into families according to their complexity levels. The first complexity level

consists of two families, related to the so-called basic cycles:

Yi1={LR"}>? Yo1={RL"}® (1.18)

ni=1"? ni=1"

To obtain the families of the second complexity level, one applies to the

families X1 ; and Xg; the following symbolic replacements:

(1.19)

) {c—wnm {£—>£R£m

Ky, 1= . R
R — RLR™ R — RL™

Application of such a replacement means the direct substitution, in a sym-
bolic sequence, of each symbol £ by LR™ and each symbol R by RLR™
(replacement £) or each symbol £ by LRL™ and each symbol R by RL™

(replacement 7). In this way from ¥; 7 and X9 by using (1.19) and m = na,
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we obtain:
Y2 = kp,(X11) = {LR™ (RERW)”I}ET ng1 >
2272 = K:ZQ (2171) {£R£n2 (RﬁnZ)”l };L“i ng=1" (1 20)
N30 = ki, (Y1) = {RLR™ (LR™)" )" 1
Do = KEQ(ZM) = {RL™ (ﬁREnz)m}ij no=1"

Further, applying the replacements (1.19) with m = ng to four families of
the second complexity level, we obtain 23 families 3,3, j = 1,23, of the third
complexity level, and so on. In this recursive way all symbolic sequences of
period adding cycles are obtained. In general, one gets 2% families 2K,

= 1,7, of the K-th complexity level, K € N. Therewith, there holds
Sogi1x = Kb, (Bqr-1) and Dogiox = kE (Sqr-1), ¢ =1, K.

The procedure described above helps one also to obtain in a recursive
way all analytic expressions for the border collision bifurcation boundaries
of period adding regions in the parameter space of f The mechanism for
finding these expressions is called the map replacement technique (see, e. g.,
129]). As the first step, border collision bifurcation boundaries related to basic
cycles O, m and O, n1 > 1 are obtained directly from the corresponding

border collision conditions. For O, they are

firofd)=d and fi""'o f.o fu(d) =d, (1.21)
leading to

(I)l,l(amam,uu,unada nl) =0 and ‘11171(a57a7z7/~5u1u717d7 nl) — O: (122)

where

(I)Ll(am Qr, ey Hr, d7 nl) — (aﬁazl - 1)d + w(ana Hey Uz, nl)a (123)

\Ijl 1(a£7aR7,UJ1:7,uR7d nl)
(a.a —1)d + al*™ Yagpin + U (an, fig, pin,n1 — 1), (1.24)
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and

Wla, p1s po,n) = a"pr + pla, n)ps (1.25)

with ¢ defined in (1.12). The respective periodicity region is then

PLRnl — {(CLUCLR,,ME,/LR,CZ) : (I)l,l(a/z:aaRmuuMR;da nl) < 07
\Ill,l(amam,uu,uRada nl) > 07 aﬁa’zl < 1} (126>

For the cycles O,.n the border collision bifurcation conditions are ob-
tained from (1.21) by replacing the symbol £ with R and vice versa. Conse-
quently, the related border collision bifurcation boundaries can be obtained

from (1.22) by exchanging the indices , and ,, i. e.,

(1)271(CL£, Ary My Hr, d7 nl) = \Ijl,l(a’R? Qpy gy Hr, d7 nl) =0 and
\1’271(CL£, Ary ey Ur, d7 nl) — (bl,l(aR) Qpy gy Hr,s dn nl) = 0.
The periodicity region Py, is similar to (1.26) but with the third condition

arat < 1.

Let us now demonstrate how the map replacement technique is used in
order to find border collision bifurcation boundaries for a periodicity region
of the second complexity level related to some n-cycle Oy, 0 € ¥15. Then
o = Lo1(Ro2)™ with o1 = R", 09 = LR™ for some ny, ny € N. The points
T oy (rop)m AN Trgyro(roy)m-1 are the points of the cycle that are the closest
to d from the left and from the right, respectively. We define two auxiliary

composite functions

gﬁ(aj) = fNﬁal(x) = Qo T fhroy and Jr ‘= fnag(x) = Qroy T+ [hroy s (127)

where a,4,, Qroys feo,, a0d fir, are clearly expressions dependent on a,, a,
ey fr, and ng. The points Z .4 (rgy)m aNd Trg,i0, (ray)m-1 Will then belong to
the (ny+1)-cycle O, of the first complexity level for the discontinuous map
of the form (1.6) defined on two partitions by g, and g,. The border collision

bifurcation conditions for 6£Rn1 coincide with the border collision bifurcation
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conditions for O,. Hence, the border collision bifurcation boundaries for P,
can be obtained from (1.22) by replacing in ®;; and ¥ ; the coefficients a,,
Qry My Pr WILh Qroyy Qroys Heoys Hroys TeSpectively. In such a way, one gets

border collision bifurcation boundaries for P, as

@1,2(aua727:um:u7a7da nla”?) — (I)l,l(aﬁolaaRJga,uLJlalunogada nl): ’ (128&)

0
Uy o(as, Qry gy fors dym1,12) = W1 1(Aroy s roys fheoys Hroys dy 1) =0. (1.28b)
Similarly, for O, with o € X9 9, one constructs the auxiliary functions g,
and g, of the form (1.27) but with o3 = RL", 09 = L, which leads to the
border collision bifurcation boundaries ®99(a,, ax, ., fir, d, n1,n9) = 0 and
Woo(as, ry ey firs dyn1,m2) = 0 of the form similar to (1.28). The border
collision bifurcation boundaries for the periodicity regions related to cycles
with symbolic sequences belonging to o € Y39 U X9 can be obtained by
swapping the indices . and , in ®;5, ¥;9, ¢ = 1,2. By continuing this

recursive procedure, one can get analytic expressions

(I)i,K(auamMuMmdunl;-- -;nK) — 07 (129&)
U, k(Ao G, flgy oy Ay, - .oy ) =0, (1.29b)

for border collision bifurcation boundaries of all period adding regions, where
KeN,1<q<2k n; € N, 7 =1, K. In such a way, for 0 € ¥, g there is

PU = {(a%?a’R?:uL?:uR?d) : (I)i,K(a’Laa’R7/’Lu/~LR7dL7nl7 . '7nK) < 07
\IIZ'aK(aUa”R?MU:uRJdR7n17 SR 7nK) > 07 a/l ag—l < 1},

L

with the appropriate n;, 7 = 1,K, n = |o|, and [ being the number of
symbols £ in ¢. The third boundary of P, is associated with a degenerate
+1 bifurcation given by ala”~! = 1. Consequently, only those period adding
cycles are attracting for which n < (1 — log,, . a.). In case of both a,,a, €

(0,1), the latter inequality holds for all n and .
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Chapter 2

Piecewise linear continuous one-dimensional
maps: Bifurcations and related bifurcation

structures

This Chapter is devoted to investigation of a family of one-dimensional piece-
wise linear continuous maps with two boundary points, also referred to as
bimodal piecewise linear maps. Maps of this kind are among the simplest rep-
resentatives of the class of piecewise smooth maps, namely, piecewise linear
maps. The latter ones have been gaining popularity for several last decades,
since they appear naturally in different applied problems in power electron-
ics [140, 142], cellular neural networks [71], signal transmission |91, 92|, eco-
nomics and social sciences [229, 237|. Moreover, linearity of the branches of
the map function simplifies the investigation essentially making it possible
to obtain many results analytically.

Previous research works concerned mainly a one-dimensional continuous
piecewise linear map with a single border point (or kink point), known as the
skew tent map. Its dynamics has been studied intensively and is now com-
pletely described (see, e. g., [124, 141, 160, 227, 231]). In particular, the ana-
lytical expressions have been obtained for all the bifurcation curves confining
the regions related to qualitatively similar asymptotic dynamics. This fact
allows to use the skew tent map as a border collision normal form by means of
which all border collision bifurcations occurring in one-dimensional piecewise
smooth maps can be classified, as explained, for instance, in [32, 161, 225].

In some works [91, 92, 142] the authors have also studied asymptotic solu-
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tions of a bimodal piecewise linear map, but as the natural consequence from
particular applications, the slopes of the considered map were restricted by
certain relations.

The aim of the current research is to focus on a more generic case, that
is, when all three slopes of the map can be arbitrary. We study properties
and bifurcations of stable periodic solutions, as well as consider evolution
of chaotic attractors. It is worth recalling that in one-dimensional piece-
wise smooth maps, not only attracting cycles but also chaotic attractors can
be robust i.e., persistent under parameter perturbations [35]. Thus, one
can discuss bifurcations of a chaotic attractor, meaning its qualitative trans-
formation under parameter variation that preserves a chaotic nature of the
attractor but changes the number of its bands and/or sharply changes their
size. Below in the parameter space of a one-dimensional piecewise linear con-
tinuous map, we describe bifurcations and the related structures associated

with both regular and chaotic asymptotic dynamics.

2.1. A one-dimensional bimodal piecewise linear map:

An overview of the parameter space

With respect to the previously known results for one-dimensional piecewise
linear maps defined on two intervals, we consider more general situation [166,
167, 171, 192, 193, 196]. Namely, we consider a family of one-dimensional
continuous piecewise linear maps f : R — R, defined by three linear functions

fey fu, and f as follows:

(

fo(z)=ax+p, x<d,
fra—= f(x) =< ful@)=a,x+ iy, d. <z <dy, (2.1)

\ fo(®) = arx + pig, x> dg,
with fﬁ(dﬁ) = fM<d£)7 fM(dR) - fR(dR) <22>
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with a naturally defined symbolic set S = {£, M, R} and partitions being
I, = (—0,d,), I, = (d.,dy), and I, = (ds,00). There are two critical
points ¢, := f,(d,) and ¢, := fr(d,) and their successive images are denoted
as ¢ = f(c,) and ¢! := f'(cg), i € N.

The map f depends on eight parameters: the slopes a,, a,, a, € R,
the offsets p,, py, pr € R, and the border points d.,d, € R, d, < d.
However, the number of independent parameters is six. Indeed, continuity
conditions (2.2) imply that only six of the parameters are independent. For
instance, a,,, (1, can be expressed as

Mr — [ + andn - a%dc o (ac - aR) deR =+ ,ucdR - ,undﬁ
dR - dc 7 fhaa = d’R - dﬁ

. (2.3)

A, =

Moreover, by an appropriate change of the state variable, one can also fix
two further parameters, e. g., d, and d,, reducing their number to four. Nev-
ertheless, in case of the particular application, another dependencies for the
parameters instead of (2.3) can be used. Therefore, in most analytic expres-
sions obtained below, we prefer to keep all eight parameters, for the sake of
generality.

Note, that if d, = dr = d, the conditions (2.2) imply that f.(d) = fz(d),
so that the map (2.1) is reduced to the skew tent map. While if d, = d, = d
and the conditions (2.2) are relaxed, that is, if f.(d) # fx(d), then the map
(2.1) degenerates to the discontinuous map defined on two partitions.

We also impose a certain condition on the slope signs. In cases a, <
0,a, < 0,a, <0and a, >0,a, > 0,a,, > 0, the map f has either trivial
asymptotic dynamics (fixed points or cycles of period two) or divergent orbits.
If a,a, < 0, the dynamics of f is similar to the dynamics of a skew tent map
(described in Section 1.2). The case a, < 0, a, < 0, a,, > 0, has not been
considered. However, due to the form of the related map, one can expect
either trivial or skew-tent-like asymptotic dynamics. The richest in sense
of possible bifurcation phenomena and also the most demanding from the

application viewpoint is the case a, > 0, a, > 0, a,, < 0. In what follows,
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we typically fix the outermost slopes as
0<a, <1, a,>1 (2.4)

The casea, > 1,0 < a, < 1 can be obtained by using the appropriate change
of coordinate. For the casesa, > 1, a, >1land 0 <a, <1,0 < a, <1 the
conclusions can be made from analysis performed for (2.4).

We denote by p a point in the parameter space of the map f (2.1) satis-
fying the conditions (2.2), (2.4), and with a,, < 0, that is, belonging to the

region
Dieos =1{p : 0<a, <1, ax > 1, d, < dg, ¢, <c.}. (2.5)

In what follows, we focus on the section (u,, i) in the parameter space
of f to have possibility to draw parallels with the previously known results.
Concerning trivial dynamics, the map f has at most three fixed points:

e Horq Hr
x, = . X = . T = .
1—oa, 1—a,, 1—a,

M R

Taking into account (2.4), the fixed point z* is always stable when existent,

while 7 is unstable. We formulate the following

Lemma 2.1. Consider the map f defined in (2.1) with the parameters be-
longing to Dreas (2.5). The fized points x%, s € {L, R} appear/disappear due
to the border collision bifurcation defined by the condition x: = dg, which
holds for

§& ={p: ps=(1—as)ds}.
The boundary &, is related to the persistence border collision bifurcation,
at which x* bifurcates to/from x* . The boundary &, corresponds to the

fold border collision bifurcation, at which both fized points x7, and x7, ap-

pear/disappear simultaneously.

Proof. The expressions for &, and &, follow immediately from the related

border collision conditions
Uz

[e
=d, d = d,.
1—a, ol 1—a,
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The fixed point 2% exists for u, < d.(1 —a,). The fixed point 2% does not
exist then, since f,(z) < x for x € I,,. At &,, there is 2 = 2% = d,, while
for u, > d.(1 —a,) there is f,(d.) > d,. If additionally f.,(d:x) < d., which

corresponds to the existence of z%, ¥

+, exists as well. This implies that &,

corresponds to the persistence border collision bifurcation, while &, to the

fold border collision bifurcation. O

When both 27, and 27, disappear due to the respective border collision
bifurcation, all orbits of f diverge. However, when z? and z7%, exist and are

both unstable, i. e., in the region
D=Ap: p.>1—a,)d, pr<(l—ag)dy,
pr < p, + (1+a.)d, — (14 ag) dr},

f can have an attracting invariant absorbing interval J. Summarising, the
following can be stated about the global structure of the parameter space of

the map f.

Theorem 2.2. Consider the map f defined in (2.1) with the parameters
belonging to Dreas (2.5). The parameter space of f consists of the following

regions, related to asymptotic dynamics of different types:
1. The periodicity region
P.={p: p.<(1l—a,)d.}, (2.6)
associated with the stable x7.
2. The periodicity region
Pou=1{p : pe < (1 —ay)de, p. > (1 —a,)d,,
(an + i + i > (a + Vi + ). (27)

associated with the stable 7.



3. In the regions

Sl = {p : /‘LL > (1 - aﬁ)du IU/R > (1 - aR)dR}7
S2: {p dﬁ_aRdR<,uR< (1_af7a)dnalun<¢}7

Ss={p: (1 —ax)(a.d, + p.) < pr < d, — ardy}

almost all orbits are divergent (unbounded). Here

a‘R(dR - dn)

¢:Mﬁ+aﬁd5_aﬂdﬁ_
a, — 1

4. In the region

Dy={p: 1—-a,)d, < p.<d,—d.a,,
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(2.8)

(2.9)

(2.10)

(2.11)

(ar + 1)dg + pir < (a, + 1)d, + p.}, (2.12)

there exists an invariant absorbing interval J = [f.(c.),c.] C I, U L,,.

5. In the region

Dy ={p: d, —drpar < pir < (1 — az)dx,

(0 4 1)dn + pi < (@ + 1)d. + fic, i > ¢}, (2.13)

there exists an invariant absorbing interval J = [cg, fu(cr)] C 1, U L.

6. In the region

DO = {p DR < da - andna He > dR - a£d£7

pe < (1 —ag)(ad, + p.)}, (2.14)

there exists an invariant absorbing interval J = [cq,c,| C I, U 1, U L.
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Proof. Due to (2.4), the fixed point x* is stable when existent, which implies
(2.6). On the contrary, the fixed point x is always unstable, and hence, there
is no respective periodicity region. The point 27, is stable until a,, > —1,
that is,

fir = fhe + gy — acd,

d, —d,
S e, —c,+d, —d, > 0.

> -1 e — p + ard, —a,d, +d, —d, >0

Combining the inequality above with the facts that x7, exists together with
x%, while z¥ does not exist any more, one gets (2.7).

In the region S; defined in (2.8), there is ¢, > d, and ¢, > dg, which
means that the function f is located above the main diagonal. For any x € R,
there exists o > 0 such that f(z) € I,. And Vx € I, there holds

-1

t—00 t—00 a, — 1

In the region Sy defined in (2.9), there is d, < ¢, < d, which mean that
z* and z¥ exist. Until ¢} = f,(c.) < 2%, there exists an absorbing interval
J = [cx, ful(er)] C 1, U I;. The condition f,(cz) = x corresponds to the
final bifurcation. And if f,(cz) > % (solved for p, it implies u, < ¢ with
¢ as in (2.11)), for almost any = € R, there exists ty such that ff(z) > 2.
And for almost all x > %, there holds (2.15). The only points orbits of that
do not diverge are the fixed points x7, and x7, together with their preimages.

Similar arguments are applied to the region S3 defined in (2.10), where

crx < d, and ¢, > dr. The final bifurcation occurs at ¢, = z. And for

*
R

¢, > x¥, which corresponds to p, > (1 — ar)(a.d, + p.), almost all orbits
diverge.

The remaining parameter region can be divided in different sub-regions
depending on the form of the invariant absorbing interval J. Namely, it can
involve two adjacent branches (I, U I,, or I,, U I) or all three branches.
The configuration J = [f,(c.),c.] C I, U I, holds when ¢, > d, (i.e., 2%

does not exist), a,, < —1 (i. e., ¥, is unstable), and ¢, < d, which directly
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implies (2.12). The fact that J is invariant follows from f([c},d,]) = [¢?, c.],
f([d.,z*]) = [z*,,c.], and f([z*,c.]) = [c},xz*]. Tt is absorbing because
Va < c! there is tg > 0 such that ff(z) € J, while for z € (c,,z7) there is
t; > 0 such that fi(z) < cl.

Similarly, J = [c, fu(cr)] C I, U I holds when ¢, < d, (i.e., 2% and

x¥ exist), a,, < —1 (i.e., ¥, is unstable), ¢, > d,, and ¢, > x* implying
(2.13). By similar arguments it is shown that J is invariant and absorbing.
Finally, for ¢, > dg, ¢, < x%, and ¢, < d,, that is, inside Dy defined

R

in (2.14), the absorbing interval is J = [cg,¢.] C I, U1, U I. O

Remark 2.3. The equality (ax + 1)d, + pr = (a. + 1)d, + p, defines the
degenerate flip bifurcation boundary n,, in the parameter space. The equality
i, = dr —d.a, corresponds to the border collision of the absorbing interval J
with d, and the respective boundary is denoted as b;. The equality p, = d,.—
dra, corresponds to the border collision of the absorbing interval J with d,

and the respective boundary is denoted as bs.

Remark 2.4. If the condition (2.4) is weakened so that a, > 0, then the
fixed point z% loses stability due to the degenerate transcritical biturcation,

when a, = 1, and the respective periodicity region is modified accordingly.

Figure 2.1 shows a typical view of the (u,, i) section of the parameter
space for the bimodal map f given in (2.1). The panel (a) discovers peri-
odicity regions, where different colours are associated with stable periodic
solutions of distinct periods (see the horizontal colour-bar for the reference)
with white being related to chaos. In the panel (b) periodicity regions are
filled by white, while coloured regions correspond to chaotic attractors hav-
ing different number of bands. Hatched regions filled by grey correspond to

divergent orbits.

2.1.1. Skew tent map structure. The Theorem 2.2 implies the following
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Figure 2.1: Bifurcation structure of the (p,, iz )-parameter plane of f. (a) Regular dynam-
ics: different colours correspond to periods of related cycles, regions related to chaotic dy-
namics are shown white. (b) Chaotic dynamics: different colours correspond to the num-
ber of bands of chaotic attractors, periodicity regions are shown white. Grey hatched areas

are associated with divergent orbits. Parameters are a, = 0.5,ar = 1.3,d, = 0,dr = 0.3.

Corollary 2.5. For the parameter point p € Dy/p € Do the map [ is
topologically conjugate to a skew tent map g : R — R of the form (1.10)

with a = a,/a = a, and b = a,,.

The previous corollary means that in the respective part of the parameter
space D1UDo, all bifurcation boundaries can be obtained in the analytic form
directly from the respective expressions known for the skew tent map (see
cases |ST1|-|ST7|. That is, for p € D; (0 < a, < 1, a,, < —1) in order to
obtain bifurcation boundaries, in all expressions given in [ST2]|-[ST6]|, one
should replace a and b with a,. and a,,, respectively. Similarly, for p € D,
(ax > 1, a, < —1) in all expressions given in [ST2| and [ST6]|, one should
replace a and b with a, and a,,, respectively.

In case when the absorbing interval J involves only two adjacent parti-

tions, the boundaries of a chaotic attractor are given by only one critical point
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(and a number of its images). Consequently, the conditions of the related ho-
moclinic bifurcations are also related to only one critical point (¢, for p € D,
and ¢, for p € Dy). When the parameter point p crosses the bifurcation
boundary b; or by, the absorbing interval, as well as the chaotic attractor,
spreads over the third partition, capturing the second border point. Right
after this crossing, due to the form of the map f, most of the boundaries of
the chaotic attractor are defined by this second border point.

For instance, consider a 2n-piece chaotic attractor Qs, C I,UI,,. Bound-
aries of its bands are given by ¢', i = 0,4n — 1 with ¢, being the rightmost
boundary of Qy, and ¢! being the leftmost one. The attractor bands are the
intervals confined by ¢! and ¢*"* i = 0,2n — 1, with By = [c!, ¢*"™1] and
By, = [¢*", c.]. Recall that for p € D; the attractor Q,, bifurcates to Q,,
due to a merging bifurcation ’V;%Zn_l, analytic expression for which is obtained
from (1.14) by replacing A with £, B with M, and ¢ with c,.

When p € by, there is ¢, = d,, and hence, ¢\ = i1, i = 1,4n — 1. The

condition (1.14) becomes

Tyt = " = foi o (cr). (2.16)

Right after the border collision bifurcation for the absorbing interval J, 1. e.,

for p € Dy being close enough to by, there clearly holds

1 _ 2 2n—1
cr<c,<cll = c' <c

R

2n+1
c

< c,. (2.17)

The attractor Qs, spreads over I, and its bands B;;1 become the intervals
confined by ¢! and 2" i = 0,2n — 2, and By, = [¢*"! ¢,]. It means
that for p € Dy close enough to by, the merging bifurcation condition leading
to the transition Qa, = Q,, is given by (2.16) and the related bifurcation
boundary changes accordingly. Due to linearity of the functions f,, f.,, and
f= the corresponding expression can be obtained in analytic form in terms of
the parameters of f.

The conditions (1.15) and (1.16) are changed in a similar way when p

crosses b;. Namely, for p € Dy sufficiently close to b; the new conditions,
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respectively, are

Tpien-2y = V1 = frno1(Cr) (2.18)
and
m+1_
T =cn = fem(er), (2.19)

where w,", is obtained from p,”'; by dropping the first symbol M. The
expression associated with (2.18) can be obtained in analytic form in terms
of the parameters of f.

The bifurcation boundaries corresponding to the conditions (2.16), (2.18),

on—1 n—1 amtl_y
C C C .

and (2.19) are denoted as v *,,,, (*, » ,and 7 %, , respectively, and are
ML MLV M P

referred to as Dy-prolongations. In such a way we have proved the following

Theorem 2.6. Consider a merging bifurcation boundary ’yf;%n C Dy related
to the transition Qs, = Q,,, where |o| =n, n > 1, x, € 1, is the rightmost
point of the cycle O,. Then the Dy-prolongation 7?23“71 of 75%" s given by
the homoclinic bifurcation condition f,(c.) = x5, where w is obtained from
the first harmonic of o by dropping the first symbol M.

Consider an expansion bifurcation boundary fin_gM C D related to the
transition Q, = O1, n > 3. Then its Dy-prolongation CACE:,QM is given by

the homoclinic bifurcation condition fn-1(Cr) = X, pm—2,,.
m—+1
For p € D,, the bifurcation boundaries 7;37%7/\4 , m € Z., also have D-
omtl_y
prolongations ’y;%M , conditions for which are obtained from (2.19) by swap-

ping £ and ‘R.
Several Dy-prolongations of bifurcation boundaries in D; are shown in
Fig. 2.2(a).

2.1.2. Period adding structure. In the region Dy the absorbing interval
is located on all three partitions; however, certain orbits can still be located
in only two of them. Namely, under particular conditions asymptotic dynam-

ics of f involves only two outermost branches f. and f.. Recall that in the
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limiting case d, = d, = d and f.(d) # fx(d) the map (2.1) degenerates to a
discontinuous map defined in two partitions. Recall that for a, > 0,a, > 0
in the parameter space of this map the period adding structure is typically
observed (as described in the Sec. 1.2). Namely, the periodicity regions are
ordered according to the Farey summation rule, which is applied to the ro-
tation numbers of the related cycles. This structure, often called Arnold
tongues or mode-locking tongues, is known to be a distinctive feature for a
certain class of circle maps, discontinuous maps defined by two increasing
functions, and others [119, 126, 135|. In the parameter region Dy of the bi-
modal map f a similar bifurcation structure is also observed, and principles
of its formation are the same as described above. Similar to [29, 100, 101],
to obtain periodicity region boundaries forming the period adding structure
we use the so-called map replacement technique, which simplifies calculation

of analytical expressions of the bifurcation curves.

Lemma 2.7. Consider a map f with pg € Dy and a discontinuous map f
defined on two partitions of the form (1.6) with the same a,, G, i, fir and
some d € (d,,dy). If f has an n-cycle Oy C (fo(d),d.) U (dy, f.(d)), n > 2,
with o € U2, U?;l 2, then the set (50 represents also the n-cycle of f.

Proof. For the point z, € O,, where 0 = sg...s;...5,-1, s; € {L,R},
1t = 0,n — 1, there holds

'Tazfn(xa):fsnflo”'ofsio”'ofsoz
fsn71o"'of8io"'of80:fn(xU)'

[]

The main implication from the previous lemma is that for any period
adding region 730 for the discontinuous map f , there exists a corresponding
period adding region P, for f. Moreover, to obtain the analytic expres-
sions for the border collision bifurcation boundaries of P,, one can use the

respective expressions for 750- with substituting d, or d, instead of d.
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Theorem 2.8. Consider a period adding cycle O, of the map f with o €
Xik for some K € N and 1 < iy < 2K The respective periodicity region

P, is given as

P,={p € Dy : @i, x(a, i, fin,ds,n1, ... ,ng) <0,
qjiO»K(a’ll?aR7:umu7€7dR7nl7 s anK) > 0; a,ia,z_l < 1},

where p denotes a point in the parameter space of f, | is the number of
symbols L in o, and the functions O, x and V,, i are defined in (1.29).
For the parameter values in Py, the cycle O, is a global attractor on the

absorbing interval J = [cg, c.].

Proof. Let us consider the point x.,, of the cycle O, of f (1.6), which is
the closest to the border point x = d from the left. Due to the Lemma 2.7,
if ., < d., then it is the point of the respective cycle O, for f. Let us
change the parameters so that z.,, moves towards d (towards d, for f).
Since d, < d, at some parameter constellation there is x,,, = d., which is
exactly the border collision bifurcation condition f,(d,) = d, for the cycle
O,. It clearly coincides with the same border collision bifurcation condition
for 60 but with using d, instead of d. Hence, the related border collision
biturcation boundary of P, can be obtained by using the respective function
D, k(apy Qn, ooy flr, deyna, ... nE), where K is the complexity level of o.
Similarly, the other border collision bifurcation boundary of P, is computed
as W gk (A, Qry fley flry Aoy N1y .o K.

Let us show that O, is the global attractor for f on J. Recall that
O, = O, is the global attractor for the discontinuous map f on the interval
fold), fu(d)]. Cleatly, ¢, < £.(d) and ¢ > fu(d), 50 J C [fol(d), £(d)].
Then for almost any point « € [cg, d.| U [dg, c.] (except for the preimages of
x%,) the limit set of its orbit is w(o(z)) = O,. Since a,, < —1, for almost
any point x € I, (except for 2%, and its preimages), there exists ty > 0 such
that f(z) € [cg, d.] U [dg, c.). []
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The final remark related to the period adding structure for the map f
concerns certain sub-regions of Dy, which contain particular subgroups of
period adding regions of higher complexity levels. Recall that two boundaries

of Dy are always by and by, that is, there necessarily holds
l, < d,—dya, and p,>d,—d,.a,. (2.20)

Now, consider for a particular ny € N the family of regions P,,
o € {LR™(RLR™)™}_ U{RLR™(LR")"}>°_, located between two
neighbour regions P gn: and P,ny+1. Substituting into the expressions (2.20)
instead of a,, ., ax, p, the coefficients of the respective composite func-
tions fozne and freene, we obtain the region D, gny spmett C Do, which
completely contains all the regions from the mentioned family. In fact,
D xna crra+1 TEpPrEsents a region such that for the composite functions there
holds forne(d,) > dr and fr eme (dr) < d,.

In a similar way, we get the region Dy .+ containing the family of
period adding regions of the second complexity level, located between Py, no
and P, n+1. By a recursive procedure for an arbitrary K € N, we can
describe any region D,, ,, containing a family of regions of the complexity
level K + 1, which are located between the neighbour regions P,, and P,, of
the K-th complexity level.

Figure 2.2(b) shows several period adding regions in the (p., pz) section
of the parameter space of f defined in (2.1). They are filled by dark-pink (for
the first complexity level) and by green (for the second complexity level).

2.1.3. Fin structure adjacent to period adding regions. For the dis-
continuous map f , the periodicity regions belonging to the period adding
structure occupy densely the respective part of the parameter space. For
the continuous bimodal map f, it is not the case, since in the region D
asymptotic orbits can involve all three partitions. In particular, when a pe-
riod adding cycle O, of period n disappears due to one of its border collision

bifurcations, there may appear a new cycle O, having one point in I,,, of the
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Figure 2.2: (a) Dyg-prolongations of several bifurcation boundaries for the case when the
absorbing interval J expands from the partitions I, U I, to I, U I, U Ir. (b) Period
adding structure: several regions of the first and the second complexity levels are filled

by dark-pink and green, respectively.

same period n or of the multiple of this period k- n, kK > 1. The respective

periodicity regions are adjacent to period adding regions.

Definition 2.9. We refer to the region P, as a k - n-fin region, and to the
region P, as a trunk-region. Being attached to the boundary of P,, at which
the cycle O, collides with the left /right border point d, /d,, the region P; is
also called the left/right k - n-fin.

Similar to period adding regions, we group also fin regions into complexity
levels. The complexity level of the trunk region defines the complexity level
of its fins.

To describe conditions under which fin regions occur, we will use the

following known result[32, 161]:
Theorem 2.10 (Nusse, Yorke, 1995; Banerjee et al., 2000). Consider a

family of one-dimensional piecewise smooth continuous maps g, : I — I,

I C R, depending smoothly on a parameter p € R¥, k> 1. Let x = d be a
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border point of g,. Suppose that for some py there is

gpo(d) =d
and denote
. .d . .d
a, = xligl_ %gpo (), Gr = xlig:_ %on (2).

Then in a generic case, the border collision occurring in the map g, as p
varies through py s of the same kind as the one occurring in the skew tent

map (1.10) as p varies through 0 at (a,b) = (at, a).

£ 'R

Generic case in this statement means that neither the parameter point
(a,b) = (a%,ak), nor the one symmetric to it (a,b) = (ak,a’) belongs to
any of the bifurcation curves separating the regions of qualitatively different
dynamics of the skew tent map (1.10) (that is, the curves obtained from
expressions in [ST1|-[ST6| with using the equality instead of inequality signs).

Consider a trunk n-cycle O,, n > 2. The shift invariance 0 = Lo1Ros =
RoaLoy holds for certain o9, where the sequences Lo1Roy and RoaLoy
correspond to the periodic points which are the closest to the borders x = d,
and x = d, from the left and from the right, respectively. Let us consider

the region in the parameter space of f of the form

D;:tﬂ - {p € Dy : Lroyroy = d., f01R02M01 (Cg) < dn}, (221)

that is, the region confined by &,4,z0,, associated with the border collision
bifurcation with d,, and the bifurcation boundary denoted as b5, related to

the condition f, zpymo,(Cc) = dx.

Theorem 2.11. Let p € D% and let a = aLa” ' and b = o\ ta,a™!, where

L R

[ is the number of symbols L in o. The continuous bimodal map f has:
[LF1] a stable n-cycle O,pyre, if =1 < b <0;

[LF2] a 2™ n-piece chaotic attractor Qomri,, if ab < —1, Hy,(a,b) < 0,
and Hy,11(a,b) >0, m >0, H,, defined in (1.11);
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[LF3] a stable kn-cycle O,g,roy(coiros)i—1, if —1 < a" b < —ap(a,k — 1),
k> 2, ¢ defined in (1.12);

[LF}] a 2kn-piece chaotic attractor Qap,, if a* b < —1, a71b <
—ap(a,k —1), and a®* V6> —b+a >0, k> 3;

[LF5] a kn-piece chaotic attractor Qp,, if a*~'b < —ap(a,k—1), a®*F~Dp3 —
b+a<0, and d* B> +b—a<0, k> 3;

[LF6] an n-piece chaotic attractor Q,, otherwise.

Proof. Let U = U(d,) be a small neighbourhood of the border point x = d,
and consider the restriction f"|y of the n-th iterate of f, for which x = d,
is also a border point. If p € P,, the map f"|y has a fixed point z.5 0,
that approaches d, as p approaches the border collision border £,4,rs,. For
D € &oyroy, the border point d, is a fixed point of f"|y. The result of the
respective border collision bifurcation is discovered by applying the Theo-

rem 2.10. One only needs to compute the slopes of f"|; on the left and on
the right of d,. Since f.(d.) = f.(d.), there is

fn(dc> - fLO'lRO'Q(dL) = fM01R02 (da)a

l n—I

* __ _ * _ -1
and hence, a = a,a,,ar0,, = a,al", ), = A4\05,0x05, =

L

[ is the number of £L’s in . The statements |[LF1|-[LF6| are obtained from
|ST1]-|ST6] with using a = a* and b = a’.

Now we show that the conjugacy of f™|y to the respective skew tent map

a,a™!, where

is preserved while p € D5, For p € &5 r0,, the point foo, (d.) = Troyeo,
is the point of the trunk cycle O, closest to d, from the right. Due to
the bimodal form of the map f, there exists an interval Iy = [d.,d] such
that for x € Iy there holds f.s, (%) < Zreyeo,- Clearly, the inequality holds
until fue, () = fuo,(d) = d., so that d is the particular preimage of d,
and is another border point for f". For p being outside P, close enough

t0 Eooinoy, there is d, < f(d.) < d. Hence, f" has an absorbing interval
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J=[f? (d.), fuoire,(d.)] on which f"]; is topologically conjugate to the

MO1ROQ

skew tent map (1.10). The conjugacy is destroyed when

fMalRUQ(d ) - d A fMUl(-fMUlRUQ( )) fMUl( )
fM01R02M01 (dc) - dR = f01R02M01 (Cc) - dR'

[]

Similar statement can be formulated for the neighbourhood of the second
border collision bifurcation boundary &xs,.0, 0f O,. One has to consider the

region

D;?U — {p € Dy : Troyeoy < dr, ngEO’lMO'Q(cR) > dg}, (222)

that is, the region confined by &.p,.0, and bl (related t0 fo, om0, (Cr) = d.).

Theorem 2.12. Letp € D57 and let a = aLa® ! and b = ala,,a” !, where

[ is the number of symbols L in o. The continuous bimodal map f has:
[RF1] a stable n-cycle O pyeo, if =1 < b <0;

[RF2] a 2™ n-piece chaotic attractor Qomi,, if ab < —1, Hy(a,b) < 0,
and Hy,11(a,b) >0, m > 0;

[RFS] a stable kn-cycle O,q,.0,(ropeon)i-1, if —1 < a* b < —ap(a,k — 1),
k>2;

[RF}] a 2kn-piece chaotic attractor Qop,, if a6 < —1, afF71b <
—ap(a,k—1), and a®* V6> —b+a >0, k> 3;

[RF5] a kn-piece chaotic attractor Qp,, if a*~'b < —ayp(a, k—1), a®*Dp3 -
b+a<0, and " B> +b—a<0, k> 3;

[RFG] an n-piece chaotic attractor Q,, otherwise.

A particular example of the part of the structure described above is shown
in Fig. 2.3(a) for the interior of the region Dy;"".
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As it was shown, the boundary b5” (and the same can be stated for b3;”) is
related to the border collision bifurcation of the absorbing interval J (in fact,
multiple intervals) for f™. As the outermost boundaries of a chaotic attractor
are given by the boundaries of J, this occurrence also means the immediate
transformation of this chaotic attractor. However, for a fin cycle its outermost
points belong to the interior of J and even if J is transformed, the cycle with
the same symbolic sequence can still exist. Therefore, fin regions spread
beyond the domains D" /D%°. For a left /right k - n-fin region, some of its
boundaries are already given by the Theorem 2.11. Obviously, one boundary
for all left /right fins is €.5,r0y/Eroeco,- Lhen, if k > 2, other two boundaries
are given as b = —a' ¥ and b = —(1 —a*1)(1 —a)'a®>*, where a and b are
the slopes of the respective composite functions. For the 1 - n-fin its second
boundary is b = —1. To obtain all bifurcation boundaries of a fin region in
general form, we will again use the map replacement technique. For this we
first consider fin regions of the first complexity level, that is, those adjacent
to Py, 0 € 211U X ;.

Theorem 2.13. Let p € Dy and consider a trunk region P..n, n € N and
its left k- (n + 1)-fin region Pranye-i,en, b € N. If k > 2, it is confined
by the border collision bifurcation boundary &..» defined by the first equality
in (1.22), the border collision bifurcation boundary & ernpirn(crmyi—2 defined by

the condition

(a.a”) ?a,a" = —p(a.a”, k —1) (2.23)

with ¢ defined in (1.12), the border collision bifurcation boundary
§(rern—1)b—Lrpmn—1 GIVEN by
ala,plaal, k—1) (aﬁaflun + V(s gy fls 1 — 1))
+al  apal dy + a0l e+ (A fia ey — 1) = di (2.24)
with ¥ defined in (1.25) and the degenerate flip bifurcation boundary
N(erm)r—1pmn GIVEN DY

a"la,a = —1. (2.25)
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The 1 - (n+ 1)-fin region Pygn is confined by &.n, the degenerate flip bifur-
cation boundary 1Ny~ given by (2.25) with k = 1, and the boundary by of Dy
(defined in the Remark 2.3).

Proof. Consider first k > 2. Expressions (2.23) and (2.25) are obtained from
|[LF3] by using equalities instead of inequalities. Let us obtain (2.24). Recall
that for p being outside P..» but close enough to the bifurcation boundary
£.on the map ™! in the neighbourhood of the border point = d, has an
absorbing interval J = [f2_.(d.), furn(d.)]. Note that in terms of notations
used in (2.21), there is o = R" ! and 0y = @.

On J the map f"*! has an attracting k-cycle with k—1 points to the left of
d,. and one point to the right of it. There is another border point d > d,, such
that f,en-1(d) = d,, and the mentioned k-cycle (more precisely, its leftmost
point) can collide with d as well. The corresponding condition defines the
fourth bifurcation boundary of the respective fin region. This condition reads

as follows

fMRn(LRn)k_l(d_) —d& fMR"(LRn)k_lMRH_l(CZ) = frmnt (CZ) = dx
-~ f(RCan)kflRMan(dR) = dy. (2.26)

The direct substitution of linear functions f,, f.., fx into (2.26) implies (2.24).

For k = 1, the condition (2.26) becomes [y, mn-1(dz) = dg, which is the
same as for the respective cycle O,,.» for p € Ds. Recall that the trunk region
P, issues from the boundary b, and it can be shown that the bifurcation
boundary &, ,..n-1 issues from by as well. This implies that &, -1 C Do,
and hence, the third boundary for the 1 (n + 1)-fin region P, n is exactly
bs. O

Theorem 2.14. Consider a trunk region P.yn, n € N and its right k-(n+1)-
fin region Prgnyp—ipen-1y, k € N If k > 2, 4t is confined by the border
collision bifurcation boundary &, .n-1 defined by the second equality in (1.22),

the border collision bifurcation boundary & .mn—1,xn—1(rern-1yk-2 defined by
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the condition

(a.a") 2 aa,0” " = —p(aa, k —1), (2.27)

the border collision bifurcation boundary & unyk—1,5n-1, given by

n—1

acagay plaal, k—1)(alu, + @(ag,n)ig)
+ aba,al e 4 aytp (e, e, e n — 1) + iy = d,, (2.28)

and the degenerate flip bifurcation boundary 1 .gnys—1.zn-1, given by

ata,a "t = 1. (2.29)

R

The 1 - (n + 1)-fin region Pogn-1,,, n > 2, is confined by &.pn—1, the border
collision bifurcation boundary &, .n-1,, given by (2.28) with k = 1, and the
degenerate flip bifurcation boundary 1..n-1,, given by (2.29) with k = 1.

Proof. As in the proof of the Theorem 2.13, the expressions (2.27) and (2.29)
are obtained from |[LF3].
To derive (2.28), one should consider f"™! in the neighbourhood of

the border point z = d,, and its absorbing interval J = [f, en-1(dx),
2

MLR™ 1

to the right of d, and one point to the left of it. There exists another border
point x = d < d, such that fM(cZ) = d,. And the condition for the second

border collision bifurcation of the mentioned k-cycle is given by

(dx)], on which the map has an attracting k-cycle with & — 1 points

fMﬂRn—l(RLRn—l)k—l (Ci) = CI? = fMﬂnn—l(RLRn—l)k—lM(d\) = f. (Ci) =d,
= f(ﬁnn)k—lﬁRn—lM(dﬁ) =d,. (230)

[]

Bifurcation conditions for fin regions adjacent to Pr., n € N, can be
obtained from the expressions presented in the Theorems 2.13 and 2.14.
Therewith, for the left fins of P..» one has to use (2.27)—(2.29), while for
the right fins (2.23)—(2.25) and the boundary by of Dy for P,n.
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Figure 2.3: (a) A part of the fin structure inside the region D5“®. (b) A schematic

representation of a trunk periodicity region P.r» and its several left and right fin regions.

To sum up, the boundaries of fin regions of the first complexity level
can all be obtained in the analytic form. In Fig. 2.3(b), we show a schematic
representation of a trunk periodicity region P,.» and its several left and right
fin regions with all bifurcation boundaries marked.

To obtain bifurcation boundaries for fin regions of the second complexity
level, we use the map replacement technique, similar to how it was done for
the respective trunk regions (see Sec. 1.2). As follows from Theorems 2.13
and 2.14, there exist four symbolic families, associated with the fins of the

first complexity level, namely,

o = {(LRM)FIMR™M

(LR™) ok
11 _ {(ERnl)k LpRm- 1M}n et (2.31)
£ = {(RL™) MLy -

(RL™)

Sy, = {(RL™)MRLY MY

ny,k=1"

where the superscripts ' and ™ stand for the left and the right fins, respec-
tively. As for the replacements to get symbolic sequence families of the sec-

ond complexity level, for the symbols £ and R they are the same, 1. e., given
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in (1.19), while the substitution for the third symbol M has to be defined.
Recall that for a discontinuous map defined on two partitions, the proce-
dure of map replacement means, in fact, “replacing” the left and the right
branches of the map with the respective composite functions obtaining again
a discontinuous map of the same form. In case of fin cycles, constructing the
respective composite functions becomes a more complicated task, since the
initial map f is continuous. However, the continuity is required only in the
neighbourhood of the border point with which the collision occurs. Let us
consider as an example trunk regions of the second complexity level related to
symbolic sequences belonging to X . For a particular ny € N, these are the
regions Py, 0 = LR™ (RLR")™ located between the trunk regions P, ns
and P..n+1 of the first complexity level. For the symbolic sequence o, the
shift invariance holds 0 = Lo; = Rog, where z,,, and ., are the points of
the cycle being the closest to the borders z = d, and z = d, from the left
and from the right, respectively. Left fins of P, are adjacent to the border
collision bifurcation boundary related to the collision with d.. At p € &.,,,
the point d, is a fixed point of the iterate f", r = (n; + 1)ny + 2ny + 1.
The branch of f" to the left of d. is f.s,, while the branch to the right of
it 18 fue,- Oimilar to the fins of the first complexity level, a fin region of
P, appears if the result of the border collision bifurcation is a stable k-cycle
for f, k € N, having £ — 1 points to the left of d, and one point to the
right of it (a fixed point located to the right of d, for kK = 1). Namely, it is
the cycle O, 7 = (Eal)k_l Mo, for f. Since Lo is obtained from LR™
by using ry, , i.e., by substituting LR" instead of £ and RLR"™ instead
of R, the sequence 7 can be obtained by using the same replacements for
L and R, while for the third symbol it should be M — MR". To obtain
the bifurcation conditions for O., one can use (2.23)-(2.25) with substituting
instead of a., ft,, G, iy, G, tir the coefficients of the respective composite

functions, that is,

forn2(T) = Qprma® + pogne = a0z + a1, + @(ar, o) lix (2.32)



98

for a,, u,,

Jamn2 (T) = Qppma @ + flpmme = @uGR2% + a3 fiy + @(ar, M)t (2.33)

for a,,, ., and

fRLR"Q (Jf) = Qrerm2 + Hrerr2 =

.0 T A+ AR, + AP+ p(ag,no) e (2.34)

for a, . Note that for the 1 - r-fin region one should use the expressions
(2.25) and (¢f. |ST3])

TLQ*].

a? ta,, = —p(ag, n2). (2.35)

Similar arguments can be used in order to compute bifurcation boundaries

for the right fin regions of P,, namely, for the regions P(R o) i However,

MO
one has to consider the function f” in the neighbourhood of the border point
dp. At p € &y, there is f7(d,) = d, and the branch to the right of dy is
fros, While to the left of it there is f,.,,. Again Roy is obtained from RLR™
by using ry, . Then the sequence (Rag)k_l Moy, corresponding to the right
k - r-fin region, can be obtained by still using the same replacements for £
and R, while for the third symbol it should be M — MLR". To obtain
the associated bifurcation conditions one can use (2.27)—(2.29) substituting
the coefficients of the composite functions f,.n for a., pi,, frernz, for ag, fig,

while for a,,, @, one will use

fMLRn2 (LE) = Querm2 + Haicrne =

ApOp AT + a2 oy, + a2 i, + (A, N2) e (2.36)

In the same way we treat fin regions of trunk cycles associated with sym-
bolic sequences from the families YJ; 9, 7 = 2, 3,4. Namely, the replacements
for £ and R are as in k;,, and xy;,, while the replacement for M should be

similar to that of £ for a left fin and to that of R for a right fin.

In such a way we can formulate the following
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Theorem 2.15. Consider a trunk region P, of the map f with o € ¥
related to a cycle of period r. The bifurcation boundaries of its left k - r-fin
regions are obtained from (2.23)-(2.25) with for k > 2 or (2.25) and (2.35)
for k =1 by setting n = ny and replacing a,, p, with the coefficients of f.xne
(2.82), G, pip with the coefficients of fourme (2.33), and ayr, jiy With fr e
(2.54).

The bifurcation boundaries of the right k - r-fin regions are obtained from
(2.27)-(2.29) with n = ny by using the same replacements for a,, fi., G,
Lr, While a,,, p,, are replaced by the coefficients of fuxne (2.56).

Proof. The proof follows directly from the arguments above. ]

Recall that the boundaries of fin regions adjacent to the region P, are
obtained from the expressions known for fin regions adjacent to P,.m: by

swapping the indices . and .. The following statement holds:

Theorem 2.16. Consider a trunk region P, of the map f with o € X35
related to a cycle of period r. The bifurcation boundaries of its right k - r-fin
regions are obtained from (2.23)-(2.25) for k > 2 or (2.25) and (2.35) for
k =1 by setting n = ny and replacing a,, p, with the coefficients of frorne
(2.84), G, phn with the coefficients of fuerne (2.33), and ag, pin with fozns
(2.52), as well as changing d to d,.

The bifurcation boundaries of the left k - r-fin regions are obtained from
(2.27)-(2.29) by using the same replacements for a,, p., ax, fie, while a,,
. are replaced by the coefficients of fuzme (2.36), and d, is changed to d.

The expressions for the bifurcation boundaries of left and right £ - n fin
regions for the trunk regions P, with o € X5 2U>4 9 can be obtained from the

expressions obtained according to the Theorems 2.15 and 2.16 by swapping
the indices £ and R.
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In such a way, four symbolic replacements can be introduced:

L— LR™ L— LRL™
plhe =8 M= MR™  and k= Mo MRL™,  (2.37)
R — RLR™ R —RL™

for the left fins and

L— LR™ L — LRL™
Ke=¢ M= MLR™  and KR = M — ML (2.38)
R — RLR™ R — RL™

for the right fins. By using these replacements, bifurcation boundaries for fin
regions of all complexity levels can be obtained recursively, similarly to the

map replacement technique described in Sec. 1.2 for period adding regions.

2.2. Degenerate period adding structures: An eco-

nomic example

Tatonnement processes are usually interpreted as auctions, where a fictitious
agent sets the prices until an equilibrium is reached and the trades are made.
The main purpose of such processes is to explain how an economy comes to
its equilibrium. It is well known that discrete time price adjustment processes
may fail to converge and may exhibit periodic or even chaotic behaviour. To
avoid large price changes, a version of the discrete time tatonnement process
for reaching an equilibrium in a pure exchange economy based on a cautious
updating of the prices has been proposed in [245].

Following [245], we consider in [89] a pure exchange economy with two
commodities and two individuals, whose utility functions are of Cobb-
Douglas type having exponents o« € (0,1) and = 1 — «, respectively.
It is assumed that the first individual is endowed with a quantity A of the
first good, while the second individual is endowed with a quantity B of the

second good. The commodity prices are supposed to be normalised, i. e., the
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price of the second commodity ¢ is set to a constant and only the first price
p is adjusted with a certain velocity A\. As proposed by [245], the amount
of the relative price change is bounded inside the interval [1 — 7, 1 4 r| with
some maximal rate r € (0,1). This implies a one-dimensional continuous

piecewise linear map g : [0,00) — [0, 00) defined by three linear functions:

9:(p) = +r)p for 0<p< 477
g:p=gp) =19 9up)=F+ A —e)p for 5725 <p< gty (239)
gx(p) = (1 —1)p for D> ﬁ;

where ¢ = MBS > r, A > 0, and v = ¢B > 0. This map is topologically
conjugate to the map of the form (2.1), (2.2) with

a.=1+r, a,w=1—¢, ax=1-—7rpu.=p.=0, p=c¢,
€ € 2.40
d£: ) dR_ ( )
eE+r

Ce—1
through the homeomorphism = = h(p) = gp. This reduced map will be
denoted below as f.

We consider the domain D of feasible (from economic viewpoint) param-

eter values for f:
D={(re) :e>r, 0<r<1}. (2.41)

As one can see, the region D is confined by three boundaries:

onp ={(r,e):e=r}, 61 ={(re) :r=1},
00 = {(r,e) : r =0}. (2.42)

As the first observation we notice that the map f has a fixed point a*
in the origin which is always repelling. Due to this reason we restrict the
left partition to I, = (0,d,). For parameter values belonging to the feasible
domain D given in (2.41) the map f also has a fixed point z*, € I,,. Moreover,
f always admits an absorbing interval J which is globally attracting. In case

where 27, is repelling, the interval J is invariant. Similar to the general case
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of the map f of the form (2.1), (2.2), the absorbing interval J can involve two

adjacent branches or all three branches. The Theorem 2.2 has the following

Corollary 2.17. The domain D of feasible parameter values of the map f

can be divided into three parts:

1. The region
D,={(re) : 0<r<1, r<e<2} (2.43)
where the fized point x7, 1s asymptotically stable.

2. The region
D.={(re) : 0<r<1, 2<e<r+2} (2.44)
where J = J,.,, = [ci,cﬁ} cl.ul,,.
3. The region
Dior ={(r;e) : 0<r<1, e>r+2}, (2.45)
where J = Joun = [Cpy Crl-

Using the Corollaries 2.5 and 2.17, we can describe the bifurcation struc-
ture for (r,e) € D,, (the skew tent map structure, see [ST1]- [ST7]).
Namely,

o if Hy(14+r,1—¢) >0, then f has a 1-piece chaotic attractor Q;

o if H,(14+r,1—¢)<0and Hy,41(14+r,1—¢) >0, m >0, then f has

a 2™ piece chaotic attractor Qom+1.

The regions Q+21m+1 N D,, and Qom N D,,, are separated by the bifurcation
2m

boundary VEQ,M related to the merging bifurcation associated with the har-

monic p*.

Inside the region D,,., the following statement holds:

Theorem 2.18. For (r,e) € D, there is:
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1) In the neighbourhood of the line € = r+ 2, there exist Dy-prolongations

amtl g gm+1
cr . cz

Vo of merging curves g
m m

2) In the region € > r + 2 and re > 1 there exist a degenerate period
adding structure. Namely, each period adding region related to a cycle

of period n with [ points in I, degenerates to a half-line

Lhi=A{(re) : r="ru, € >}, (2.46)
where Ty, ts obtained from the equation

(1+r)1—r)"=1, (2.47)
while &, can be obtained recursively.

Proof. The statement 1) follows directly from the Theorem 2.6.
Let us prove the statement 2). For f the expressions for border collision

bifurcation boundaries of period adding regions of the first complexity level

become
1—a” 1—a”
( aRaﬁ)dﬁ =0 and ( aRCfﬂ)dR =0 fOr Omz”7
a’ a~
R R (2.48)
1—a” 1—a”
( 0l G ) =0 and ( aﬁcfn)dc =0 for O
ar ar—

Obviously, both border collision bifurcations, with d, and d,, occur at the
same time, when a’a, = 1 for O xn or a”a, = 1 for On. Recall that the ex-
pressions for border collision bifurcation boundaries of period adding regions
of higher complexity levels are obtained recursively by substituting instead
of a,, ax, p., p the coefficients of the respective composite functions into
derived border collision bifurcation expressions of the previous complexity
level. This implies that a period adding cycle of period n with [ points in I,
exists only when its multiplier is equal to 1, that is, for (2.47), from which
one can derive the value 7, ;.

Moreover, for (r,e) € D, only a part of the period adding structure is

observed related to the period adding cycles O~ and the respective cycles
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of higher complexity levels, while the cycles O, » cannot occur for r € (0, 1).
Let us define a function F(r) = a,a —1 = (1+7r)(1 —r)" — 1. There holds
F(0) =0, F(1) = —1, and the derivative is F'(r) < 0 for r € (0,1). It
means that F is monotonically decreasing in (0, 1), and hence, there are no
values 7 € (0, 1) at which F vanishes.

To derive &, , recall that, in general, a family of period adding regions of
the complexity level K + 1, K € N, located between two neighbour period
adding regions P,, and P,, of the K-th complexity level, are completely
contained inside D, ,, (see the end of Sec. 2.1.2), boundaries of which are
derived recursively from the expressions for by and by (see the Remark 2.3).
For the map f, the expressions for b; and by read as
d, e+ d, _e—r

L:1 _ — d R:]‘_ = - = .
¢ T d, e—r ane " d. e+

(2.49)

Consider two neighbour regions £, ;, and £, ;, of the K-th complexity level

with 7, 7, < 7,1, Recursively it is shown that (2.49) become

= (L) (1=t =
Iyl l il 2:77: (2:50)
ata P =1+r)"(1—r)""" = ——.
= (1) (1 =y = S
From (2.50), we obtain &,,;, for any £,,; with either ng = mny + no,
I3 =mly 4+ ls or ng = ny +mns, I3 =11 + mly, m € N. []

Remark 2.19. Note that &, ,,_1 = 7, ,—1 +2, . e., the half-lines £, ,,_ issue

from the line e = r + 2.

As for the fin structure adjacent to period adding regions (half-lines), the
following two Corollaries of the Theorems 2.11 and 2.12 hold.

Corollary 2.20. Consider the line £, related to the period adding cycle
Oy, 0 = Lo1Roy, where X505, = €/(€ +T), Troyeo, = €/(€ — 1), and o;
having 1; /q; symbols L/R, i = 1,2. And denote a = (1 + r)/(1 — )",
b= (14711 —r)"(1—e).

Between £, and the curve b3° defined by
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g
1 — 1+ 2l1+1s 1 — 2q1+g2+1
(L= 2)(1 4 (ot

+d1+ﬂ%1—m%:€fr,@53

there can exist the following attractors:

e a 2™ In-piece chaotic attractor Qom+v,, if b < —1/a, Hy,(a,b) <0, and
Hypir(a,b) > 0, m > 0;

e a 2kn-piece chaotic attractor Qap,, if b < —a*™*, b < —(1 —a*1)(1 —
a)ta?7*, and a®* VB —b+a >0, k> 3;

e a kn-piece chaotic attractor Qp,, if b < —(1 — a*1)(1 — a) 1a®*,
VR —b+a <0, and d* WP +b—a <0, k> 3;

e an n-piece chaotic attractor Q,, otherwise.
Proof. Proof follows immediately from [LF2]|, [LF4]-[LF6]. O

Corollary 2.21. Consider the line £, related to the period adding cycle
Oy, 0 = Lo1Roy, where Topiney = /(€ +7), Tropeo, = €/(6 — 1), and o;
having 1; /q; symbols L/R, i = 1,2. And denote a = (1 + r)/(1 — r)",
b= (1+7)1—-r)"11-e).

Between £,,; and the curve by’ defined by

(1 _ 5)(1 + T)l1+2l2+1(1 _ T)qﬁ-?@ £
E—T

+41+m%1—m%=5ir,@5m

there can exist the following attractors:

o a 2™ n-piece chaotic attractor Qymi1,, if b < —1/a, Hy,(a,b) <0, and
Hyi1(a,b) >0, m > 0;

e a 2kn-piece chaotic attractor Qap,, if b < —a'™%, b < —(1 —a* 1) (1 —
a)ra?7*, and ®* VB —b+a >0, k> 3;
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e a kn-piece chaotic attractor Qy,, if b < —(1 —a" 1) (1 — a)'a>*,
a* V3 —b+a <0, and "2 +b—a <0, k> 3;

e an n-piece chaotic attractor Q,, otherwise.

Proof. Proof follows immediately from [RF2|, [RF4|-[RF6]. O
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Chapter 3

Piecewise linear discontinuous one-dimensional

maps: Bifurcations of chaotic attractors

In the current Chapter, the main object of studies is a family of one-
dimensional piecewise monotone discontinuous maps with multiple discon-
tinuity points. First of all, being the representatives of a class of piecewise
smooth maps, discontinuous maps demonstrate the same range of phenom-
ena, such as border collision bifurcations [32, 160], degenerate bifurcations
[227], and so on. However, in contrast to continuous piecewise smooth maps,
where border collisions are local in nature, in discontinuous maps the related
effects are global (due to the difference of function limits at both sides of the
discontinuity points). Thus, the skew tent map can no longer be used as a
border collision normal form.

The most well-studied discontinuous maps are one-dimensional piecewise
monotone maps with a single discontinuity, sometimes referred to as Lorenz
maps, since they are associated with Poincaré sections of Lorenz-like flows.
Interest to Lorenz maps is related, in particular, to the fact that border col-
lision bifurcations in these maps correspond to homoclinic bifurcations in
the associated flows (see, e.g., [40, 74, 104, 105, 119, 209, 242]). Bifurca-
tions of asymptotic solutions and related structures in the parameter space
of piecewise monotone maps with a single discontinuity were quite exten-
sively studied and nowadays are well described. These structures are formed
by periodicity regions related to attracting cycles of various periods (period
adding and period incrementing structures [21, 27, 30, 126]), and by param-

eter regions corresponding to chaotic attractors with different numbers of
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connected elements—bands (bandcount adding and bandcount incrementing
structures [16-19, 26]).

Since border collision bifurcations are typical for piecewise monotone
maps with a single discontinuity, the corresponding bifurcation curves are
involved in the formation of the bifurcation structures, and they bound peri-
odicity regions related to attracting cycles of different periods. As for chaotic
attractors with different numbers of bands, it can easily be shown that a
chaotic attractor necessarily includes the border point. As a matter of fact,
the boundaries of the related parameter regions cannot be associated with
border collision bifurcations. Instead, these regions are confined by curves re-
lated to homoclinic bifurcations of the respective repelling cycles, leading to
merging, expansion or final bifurcations [20, 21|. By contrast, in a map with

multiple discontinuities a border collision for a chaotic attractor is possible.

3.1. Known bifurcation structures for chaotic attrac-

tors related to critical homoclinic orbits

Results known up to now concern bifurcation structures in the parameter
space of a discontinuous map defined in two partitions of the form (1.6).
In the Section 1.2 we recalled the formation principles of the period adding
bifurcation structure that appears in the parameter space of a piecewise
increasing map f provided that it is invertible on the absorbing interval
J. In the other part of the parameter space, where J still exists but f
is noninvertible on it, asymptotic dynamics can be only chaotic. However,
the regions related to, now repelling, period adding cycles still exist. These
cycles play an important role in formation of a so-called bandcount adding
bifurcation structure.

For the map f with both a.,a, > 0, the invariant absorbing interval
J = [fx(d), f.(d)] exists if the parameter values belong to
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Dabsr - {p oy > d(l — a%)) Mz < d(l - aR)?

M Hr
< Rd R
1—a, Gl F 1 1—a,

> a,d+ ,uc} . (3.1)
[f additionally

pe(1—ag) < pe(1—a,), (3.2)

the restriction f | 7 is noninvertible, and in the respective part of the parameter
space one observes the bandcount adding structure, which is embedded in the
region C! corresponding to a 1-band chaotic attractor!. Let us recall briefly
the main principles of how the bandcount adding structure is organised (the
detailed description can be found, e. g., in [21]).

The first tier of the bandcount adding structure consists of chaoticity
regions C?, n > 2, which are induced by (n — 1)-cycles O, related to the
period adding structure, that is, o € U¥_, U?il Yk (see (1.18), (1.20) and
the respective explanation). In the considered part of the parameter space
D.per these cycles are repelling, if existent. And if an n-band chaotic attractor
Q” exists, each point of O, occupies a separate gap of it. Each region C is
confined by two boundaries associated with expansion bifurcations, related
to homoclinic bifurcations of O,. The bifurcation conditions related to the

first complexity level cycles O,..n and O are

forld) = em,  and  frp(d) = Zom-1,, (3.3a)
for chaoticity regions C"$2 n; € N, and

feeld) =2 and  fir(d) = 2pm-1, (3.3b)

for C"12. The expressions for bifurcation conditions related to the cycles

of higher complexity levels can be obtained in analytic form iteratively from

!The region C! is confined by three bifurcation boundaries, one defined by using the equality sign in
(3.2), and the other two related to final bifurcations of the fixed points =% and z} (the equalities in the
last two expressions of (3.1)).
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(3.3a) and (3.3b) by means of the symbolic replacements £, and 7, (1.19)
(that is, by using the map replacement technique similar to how it was done
for obtaining the boundaries of period adding regions). In the parameter
space the regions C.! are ordered in a way similar to the period adding regions.

Namely, between CJ! and Cj2, where o1 and o9 are related to the neighbour

ni+ng— 1

period adding regions, there exists the region C}';"

Before turning to the bandcount adding chaoticity regions of higher tiers,
let us make a generalising remark concerning period adding symbolic families,
obtained iteratively by using the replacements x;, and 7, (1.19). Similar
adding scheme can be defined for any two basic symbolic sequences 7 and
79, used instead of £ and R. Namely, the first complexity level is made up
of

Sii(m,m) ={nn oy, Seal(n,m) = {1 . (3.4)

The symbolic replacements become

TI — T1T9" ~ TI — T1T2T]"
{ . R i= : (3.5)

K
m
To — ToT1Ty" Ty — ToT{"

T1
m -

By using (3.4) and (3.5), one obtains the sequence families of the second

complexity level as

Y12(m1, 1) = B (B (11, ) = {2 (1emms ) s s

%2,2(71772) = R%(§171(7—177'2)) {Timor* (127?)" }o 1 (3.6)
Y32(T1,T2) = R (X2.1(71, 72)) = {nemimy* (1175 ) ™ o =1

Yaa(m, 1) = K2 (B (11, 7)) = {mm” (nmm™) " 15 .

The symbolic sequences of the level K, K > 2, are obtained from the sym-
bolic sequences of the level (K — 1) by applying the replacements &} and

K,2.. For the sake of brevity, in what follows we will use the notation

oo 2K

F(11,79) : U UE;K T1,T2). (3.7)

K=1j=1
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Now, consider a bandcount adding region C} of the first tier with o =
Lo = Roy where Loy (Roy) is associated with the point of the cycle xr,,
(*Reo,), being the closest to the border point z = d, from the left (z = d,
from the right). We will use the following results from [21]:

Theorem 3.1 (Avrutin et al.). For p € C}, the bifurcation structure of the
map
B . feo (), x<d,
faux 2 T = fax(z) =< (3.8)
froo(T), T >d,
15 1n a one-to-one correspondence with the bifurcation structure of the map

f in the parameter region Dy restricted by (3.2).
Corollary 3.2 (Avrutin et al.). Inside the region C?, the map f has a band-

count adding structure associated with homoclinic bifurcations of cycles O,
with p € F(Loy, Roa).

In a similar way, one concludes that each bandcount adding chaoticity re-
gion of the second tier again contains an infinite family of sub-regions of the
third tier, which form a bandcount adding structure, associated with homo-
clinic bifurcations of the cycles with symbolic sequences from the respective
adding scheme. And so on ad infinitum.

The other two known important bifurcation structures for the discontin-
uous map f defined in (1.6) exist in the part of the parameter space where
a.a, < 0. Without loss of generality it is enough to consider the case a, > 0,
a, < 0. Nontrivial asymptotic dynamics of f occurs then for p, > 0, while
tr € R.

The structure related to regular dynamics is the period incrementing
structure. It is formed by periodicity regions Py (period incrementing
regions), n € Z., overlapping pairwise with Py N Py i1 corresponding to
coexisting basic cycles O, » and O, n~+1. Each Pp.» is confined by two border
collision bifurcation boundaries, £, .n-1 and &..», and a degenerate flip bifur-

cation boundary n... If 0 < a, <1, —1 < a, < 0, the sequence of period
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incrementing regions is complete and infinite. In caseif 0 < a, < 1, a, < —1,
the sequence is infinite but not complete with n > —In|az|/Ina, := N. If
a, > 1, —1 < a, < 0, the sequence is finite with n < V.

The structure related to chaotic dynamics is the bandcount incrementing
structure. Similarly to the connection between the period adding and the
bandcount adding structures, period incrementing cycles serve as skeletons
for bandcount incrementing chaotic attractors. By analogy to the regular
domain, inside the chaotic domain the regions of existence for the two un-
stable cycles O, » and O, »+1 also overlap. This implies that the first tier of
the bandcount incrementing structure includes regions of two types, namely,
C™h2 and Ci’;{ iﬁnﬂ, n € Z,. Asindicated by the subscripts and superscripts,
a region of the first type is induced by a single periodic orbit O, .» and related
to a chaotic attractor having at least n+ 2 bands, each gap of which contains
one point of the related nonhomoclinic cycle. By contrast, each region of
the second type is induced by two unstable (nonhomoclinic) cycles O, » and
O, n+1 with every point of both cycles inducing a gap of the attractor. So
that the chaotic attractor has at least 2n+4 bands. The boundaries of C"}2,

n € N, are obtained from conditions related to merging bifurcations
fm(cﬁ) = Tmp ald Cp = Ton-ig,. (3.9)
For n = 0 they become

fm(cﬁ) =z and fm(cR) =z, (3.10)

2n+4
R, LML

The neighbour regions C™? and CZ;?L overlap inducing the region C

The second tier of the bandcount incrementing structure consists of
chaoticity regions also referred to as first additional regions. The bifurcation
boundaries of these regions are related to another four homoclinic (merging)

bifurcations of the cycle O,.», n € N. Namely, the conditions

fnz:”"‘zﬁz(cﬁ) = Trrr and fE"R£n+1R£(CR) = Trr (311)

define the boundaries of the region Ca1’27;‘;rf+1 C CZ;;OLI. And the conditions

RL™

Freenmen-1n(Ce) = Tp1pe and  fon2,(Cr) = Tono1s (3.12)
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define the boundaries of the region C*>2"** < C™'!,. For each n € N,

R Re™ RCMTL

. . ag,2(n+1)4+2 ay,2(n—1)+4
the first additional regions C_*; ( n+)1 and C 1n,(1 21
RL™ RL RLL RE

3n+4

‘RL”_l,RL:”

overlap inducing the

region C - n+1, inside which three cycles Oy -1, Ogn, and Op ni1 are

nonhomoclinic.

There may exist further substructures inside some of the bandcount

2n+4
RL , Rﬁn—&-l

there may be observed the bandcount adding structure based on the sym-

bolic sequence adding scheme F((RL")?, (RL"1)?). Another bandcount
+4

n—l7 RL",R£”+1

F((RLY™H2 (RLYY?). First additional regions may also contain further

substructures consisting of infinite sequences of chaoticity regions. Due to

incrementing regions described so far. Thus, inside the region C

adding structure may exist inside Ciﬁ based on the adding scheme

linearity of the branches of the map f , bifurcation boundaries of all these
regions can be obtained in analytic form, although it is a rather laborious
task. For further details see [21].

3.2. A discontinuous map defined on three partitions:

An overview of the parameter space

Let us consider the family of maps f : R — R again defined by three linear
functions f,, f.., and fx:

(

fc(x> = a,T + [, T < dca
fra—= flx) =< ful@)=aur+ iy, d.<z<dy, (3.13)

| fr(%) = axt + pn, T > dy,

with a symbolic set S = {£, M, R} and partitions I, = (—o00,d,), I,, =
(d.,dy), and I, = (dg,00). We assume that f.(d.) # fu(d.) and fr(dz) #
fu(dy), that is the border points are the points of discontinuity.

Maps of such kind serve as rather popular models for asset price evolution
in a financial market with heterogeneous agents. Originally proposed in

[80, 122], these models have been studied by many economists in collaboration
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with applied mathematicians, e. g., in [230, 233, 238]. The theoretical results
obtained with their help are also empirically confirmed on the basis of real
data, for example, in the works [93, 120, 149].

At first we impose additional restrictions on other parameters [198, 199],
so that f becomes odd (geometrically symmetric with respect to the origin),

namely,
a, = ap = a, + 0, Hr = —He = Ky e = 0, dp = —d, =2 (314)

with b, u € R, a,,, 2z € Ry, a,, > 1. Through the homeomorphism h(z) = zz,
the map f with the parameters as in (3.14) is topologically conjugate to the
map of the same form but with z = 1.

The map f as in (3.13), (3.14) always has a fixed point on the middle
partition 7, = 0, which is always unstable, and there can exist two more

fixed points, symmetric with respect to the origin,

* H
T =

‘ _1—aM—b

and ) = S L R—_ (3.15)

l—a,—0 .
In general, geometric symmetry of f implies a particular property for all

its invariant sets (see [239]):

Lemma 3.3 (Tramontana et al.). Any invariant set A of f is either sym-
metric with respect to the origin, or there exists another invariant set A’ that

s symmetric to A.

There is an immediate consequence from the Lemma 3.3. An n-cycle (or
an n-band chaotic attractor) with odd n > 1 necessarily coexists with a sym-
metric cycle (or, respectively, chaotic attractor), while for even n the related
set, if it is symmetric with respect to the origin, may be unique. To describe
below the asymptotic dynamics of f depending on the parameter values and
the related bifurcation structures, it is useful to distinguish between the left
and the right parts of the middle partition 7,, = (—1,1). Hence, we define
the intervals I, = (—1,2%,) and I,,, = (27, 1), for which the corresponding

M

symbols are M _ and M, respectively.



115

As before we define the critical points as the limiting values of f at the
points of discontinuity, but in contrast to the continuous bimodal map (2.1),

(2.2), they are now four:

C, = fﬁ(_]‘)7 Crm. = fM(_Da Crmy = fM(1)7 Cr = fR(l)' (3'16)

Recall that the critical points may serve as the boundaries of an absorbing in-
terval J. For simplicity, we use the notation J~ /J7 for the absorbing interval
containing only z = —1/x = 1 and J* for the one containing both border
points. The Lemma 3.3 implies that the map f has either two coexisting
absorbing intervals, J~ and J*, symmetric to each other, or a single absorb-
ing interval, J*, boundaries of which are symmetric. Moreover, the critical
points ¢, and ¢, are always symmetric with respect to the origin, and so
are c,,_ and c,, . Consequently, the bifurcations for appearing/disappearing
of J~ and JT occur at the same parameter values. Similarly, for J*, any
bifurcation involving the lower boundary of the interval immediately implies
a symmetric bifurcation related to its upper boundary.

Denoting the parameter point for f as p = (a,,, i, b), we distinguish four
domains R;, i = 1,4, in the parameter space (1,00) x R? that are related to

different bifurcation structures:

Ri={p:b>—-a,, b>—p—a.}, (3.17)
Rgz{p c b < —ay, b>—aM—aﬁ}, (3.18)
Rs={p : b>—a,, b< —pu— aM}M, (3.19)
R4:{p t b < —ay, b<—aM—aﬂ}. (3.20)

Theorem 3.4. For p € Ry, there holds:
o Two attracting fived points x% and x, exist, if l —p—a, <b<1l—a,,.

e Two disjoint invariant absorbing intervals J— = [c. ,c.] and J© =

[Cr, Cun,] exist, if b < min{l —a, — p/au, 1 —p—au}t. Moreover, if
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>0, then f has only attracting cycles, while for u < 0, the asymptotic

dynamaics 1s only chaotic.
e A typical orbit diverges otherwise.
For p € Ry, there holds:

o Two attracting fived points x% and x), ewxist, if b > 1 — p — a,, and

b>—-1-—a,,.

e Two disjoint invariant absorbing intervals J= = s, f(s)] and J© =
1f(q),q] with s = min{c,,c. } and ¢ = max{cg,cy, } exist, if b <
max{l — pt — a,, —1 —ay} and p < —(a,, +b)*/(a, +b+1).

o A single invariant absorbing interval J* = [c,, cz] ewists if u > —(a,, +
b)?/(ay +b+1) and b < —2 — a,,.

o A typical orbit diverges otherwise.
For p € R3, there holds:
o An attracting 2-cycle O, exists, ifb< —1 —pu—a,, and b <1 —a,,.

o A single invariant absorbing interval J* = [s, q] with s = min {c,, ,c,}
and ¢ = max{c.,c,, } exists, ifb>—-1—p—a,, b>1—a,, b<1l-—
Uy — ), and p > (ay +0)(ay +b—1)/(2 —a, —b).

o A typical orbit diverges otherwise.
For p € Ry, there holds:
o An attracting 2-cycle O, exists, ifb < =1 —pu—a,, and b > —1—a,,.

e A single invariant absorbing interval J* = [s, q] with s = min {c,, c,, }
and ¢ = max {c.,,, Cx} exists, ifb> —1—p—au, b> —1—a,—p/ay,
and p < —(ayn +0)(au+0+1)/(24 ap +D).

o A typical orbit diverges otherwise.
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Proof. Let us consider the region R;. Since b > —a,,, the map f is piecewise
increasing. The line b = —p — a,,, separating R; and Rs, is related to the
final bifurcation x¢¢ = x‘*, at which both critical points ¢, and ¢, collide
with the fixed point 2% . If b > —u — a,,, there is ¢, < 0 and ¢, > 0.
From the Lemma 3.3, it follows for any x € I, U I, thereis —x € I, U1,
and their orbits are o(x) C I, U I, , o(—z) C I, U I, with o(z) being
symmetric to o(—x) with respect to the origin. Hence, asymptotic dynamics
is restricted to the two adjacent partitions and the results known for the
discontinuous map f defined by two linear branches can be applied. From
this we get that the fixed points % < —1 and z}, > 1 exist and are stable if
l—pu—a, <b<1l-—a,. Further,if b > 1—a,, and ¢,, < x¥ (equivalently
Cu, > x3) that means b > 1 —a,, — p/a,, a typical orbit o(z) C I, U I,
(o(—x) C I, U I) diverges. In such a way, nontrivial asymptotic dynamics
occurs for b < min {1 —a,, — p/a,, 1 — u — a,}. In this case the map f has
two coexisting invariant absorbing intervals J~ = [¢, ,c.] C I, U I, and
Jt =[x, cu,] C I, U I, symmetric with respect to the origin. Recall that
under the invertibility condition (1.17) the discontinuous map f has only
periodic solutions. For the map f with (3.14) it means g > 0. Clearly, for
i < 0 only chaotic attractors appear.

Let us consider the region Ry. Since b < —a,,, the two outermost branches
of f are decreasing. The line b1: — O — p/a,,, separating Ry and Ry, is

related to the final bifurcation X,CMM‘ = Xif*, at which both critical points C}A_

1
M

and C}M collide with the fixed point z%,. If b > —a,, — pu/a,,, thereis c;,, <0

and C}M+ > (0, and by the Lemma 3.3, asymptotic dynamics is restricted to
either I, U I, or to I, U I,. The fixed points 27 < —1 and z}, > 1

exist and are stable if b > max{1 — u — a,,, —1 — a,}. Outside P, = P,

provided that max{c},c;, } <0 (min{c}, ,c,} > 0), which is equivalent to

p < —(ay + b)?/(a,, + b+ 1), there exist two disjoint invariant absorbing
intervals J~— = [s, f(s)] and J* = [f(q),q] with s = min{c,,c,, } and
q = max {cg, Cp, }. When u > —(a +0)*/(an+0+1), i e, cl, <0<l

My M)
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and ¢! < ¢, (equivalent to ¢l > ¢,), corresponding to pu < —(a,, + b)(a,, +
b+1)/(a, + b+ 2), asingle absorbing interval J* = [c,, ¢;] exists. Finally,
for u > —(ay +b)(au +b+1)/(a, +b+2) (when ¢! > ¢, and ¢} < ¢,),
a typical orbit diverges. Indeed, consider some x > c¢,. Clearly, x € I,
and ¢, > f(x) € I.. Let us show that f(x) < —z, which is the same as
—f(z) > x. This is equivalent to (1 — a,, — b) > p. Note that for x > ¢,

r(l—ay—>0)> (au+b+p)(l—a,—b) > pu,

since a,, +b < —1 and a,,+ b+ pu > 1. Hence, if ¢! < ¢, the interval [c,, c,]
is absorbing. Otherwise, the absorbing interval does not exist.

Inside the region R3, in the region confined by b = —1—pu—a,, (related to
the border collision with x = £1) and b = 1 — a,, (related to the degenerate
transcritical bifurcation), an attracting 2-cycle O,, exists, as can be shown
by the straightforward computation. Further, for b > —2a,, — p (which
corresponds to ¢, < ¢,,, and ¢, > c,,_), the absorbing interval (if it exists) is
JE= = [cu ,Cu,], while it is J= = [c,, ¢ ] if the opposite inequality holds. It
means that for parameters above the line b = —2a,, — i, the existence of J*
is guaranteed by the inequality ¢, > 2% (c., < 2}), and for b < —2a,, — p
there must be ¢, > 2% (¢, < 2%). These two conditions imply two boundaries
of the domain associated with divergent orbits, namely, the region defined as
b>1—a,—p/a, and p < (ay, +b)(a, +b—1)/(2 —a, —b). Otherwise,
nontrivial asymptotic dynamics is observed inside J*.

Finally, in R4 the attracting 2-cycle O,, exists, it b < —1 — u — a,,
and b > —1 — a,, (with the equality being related to the degenerate +1
bifurcation). The existence of the invariant absorbing interval, which is either
JE = [e,, c) or JF = [Cp, Cu, ], 18 shown by similar arguments, as it is done
for the region Ry. Hence, in the region confined by u = —(a,, + b)(a,, +
b+ 1)/(a. + b+ 2) (associated with ¢l = ¢;) and b = —1 — a,, — pu/a,,
(associated with ¢}, = c,,,), the interval J= exists, while in the remaining

part of Ry, a typical orbit diverges. [
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3.2.1. Bifurcation structures related to two partitions. Our goal is
to describe main bifurcation structures related to chaotic dynamics in the
parameter space of a symmetric map f given by (3.13), (3.14). For this
we also use the results concerning regular dynamics, previously obtained in
1230, 239, 241]. At first, we consider the case when f has two coexistent
absorbing intervals J~ and J*. There hold the following corollaries from the
Theorem 3.4.

Corollary 3.5. Considerp € Ry withb < min{l—a,—p/a., 1—p—a.}. If
> 0, in the parameter space of f one observes periodicity regions organised
in the period adding structure. FEach periodicity region P, = Ps s related
to coexistence of two cycles O, C J~ and Oz C J* symmetric with respect
to the origin, where o consists of the symbols M_ and L, while ¢ of the
symbols M and R.

Corollary 3.6. Consider p € Ry withb < min{l—a,,—pu/a, 1—pu—ay}. If

1 < 0, in the parameter space of f one observes chaoticity regions organised

n

in the bandcount adding structure. Each chaoticity region Cy, . =Cg 5

k € N, us related to coexistence of two chaotic attractors Qy . C J~ and
03,6 C J* symmetric with respect to the origin, where o;, i = 1,k,
consist of the symbols M_ and L, while o; of the symbols M and R.

Corollary 3.7. Consider p € Ry with b < min{max{l — y — a,, —1 —
a,},—p}. In the parameter space of f one observes periodicity regions or-
ganised in the period incrementing structure, as well as chaoticity regions
organised in the bandcount incrementing structure. Fach periodicity region
P = Pruey, n € N, s related to coexistence of two cycles, symmetric with
respect to the origin, belonging to J— and J*, respectively. Each chaoticity

region Cy . = Ci k € N, is related to coezistence of two chaotic

ey O
attractors Q) . C J” and QF 5 C JT symmetric with respect to the
origin, where o;, i = 1, k, consist of the symbols M_ and L, while &; of the

symbols M and R.
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Proofs of the Corollaries 3.5, 3.6, and 3.7 follow directly from the The-
orem 3.4 and the results known for a discontinuous piecewise linear map

defined in two partitions.

3.2.2. Bifurcation structures related to three partitions. Before
turning to chaotic dynamics, let us recall the results corresponding to regular
dynamics associated with four symbols, namely, the even-period increment-
ing and the related period adding structures (see, e. g., [230, 239-241]).

In the domain R3 one observes an even-period incrementing structure
formed by regions P,yyru-, m > 0, related to the cycles of even periods
2(n + 1). Each such region is confined by two border collision bifurcation
boundaries and one degenerate +1 bifurcation boundary. A pair of neigh-
bouring regions P.unrae and Ppymiigynn have an overlapping part corre-

sponding to coexisting cycles O pprun and O pnvigums.

Remark 3.8. The regions constituting the period incrementing structures
in the domains Ry and R3 are symmetric with respect to the line in the

parameter space defined as

S = {(aMaﬂa b) cp=10,b= _a’/\/l)}7 (321)

associated with f.(xr) = f.(x) = 0. However, the symmetric parameter
regions are related to cycles of different periods and having distinct symbolic
sequences.

1

M

In the domain Ry for 4 < 0 and b > —p/a, —a, —1, thereis ¢, < .,
and C}M > c,, . Then the map f has an invariant absorbing set consisting
of two symmetric intervals J = [c,,_, ¢x] U [c., ¢, ]. Moreover, p(a,, — 1) <
0, and hence, f|; is invertible and cannot have chaotic attractors. In the
respective part of the parameter space one observes a particular period adding
structure. Any periodicity region related to an odd period cycle O, k = 25—
1, s € N, coincides with the periodicity region related to the cycle @k, being

symmetric to O with respect to x = 0. Any periodicity region related to
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an even period cycle Oy, k = 2s is a unique attractor, being symmetric with
respect to x = 0 itself.
The first complexity level of these regions is related to periodic orbits

with symbolic sequences that have one point in I, and one in [:
{LMERM™}, n>0, (3.22)
as well as sequences with one point in /,, and one in I, :

{/\/l_ (LR, M, (Rﬁ)”/2} , for even n > 2, (3.23a)
{M (LR)" V2 LM, (R£)<“—1>/27z} ,for odd n > 1. (3.23b)

Symbolic sequences of the second complexity level are certain combinations
of (3.22) or (3.23). For instance, regions related to coexistence of two cycles

associated with the sequences
{LMIRM™, RMPLMIETY ) 0> 0,

belong to the second complexity level. The generic procedure for obtaining
symbolic sequences related to all periodicity regions in R4 is similar to the
one described in the Section 1.2 but is more complicated than in the case of
the period adding structure based on two symbols.

Similarly to the symmetry of the period incrementing structures in Ry and
Rs3 with respect to parameter point S given in (3.21), there is a symmetry
of the period adding structure in domain R; with that in R4. The regions
constituting these two structures are related to cycles with distinct symbolic
sequences, while periods may coincide or may differ.

Similarly to the bandcount incrementing structure in R, chaoticity re-
gions observed in domain Rj3 are related to cycles O irne, K € Zy, peri-
odicity regions of which form the even-period incrementing structure. Each
chaoticity region in Rj3 is symmetric to a certain region in Rs with respect
to the point S, but the related bandcounts can be different.
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Lemma 3.9. For

b< —a, — (3.24)
A
and
(a,, +b)?
3.25
l—a, —0 ( )
the fived point o7, = 0 is non-homoclinic.
Proof. If (3.24) holds, there is ¢! = f.(c,.) > 0. It also means

that f-1(0) > c., and f71(0) < ¢, . If (3.25) holds, there is
cl = fulc,) < 0, which also means that f.1(0) > ¢, and f,1(0) < cp.
Hence, when both (3.24) and (3.25) hold, there is f.'(0) > max{c,,c,., }
and f,1(0) < min{cg,c,_}. Then the fixed point z* does not have any

preimages except itself and cannot have any homoclinic orbits. ]

Remark 3.10. Note that the bandcount incrementing structure in Rj is
located in the part of the parameter space where both (3.24) and (3.25) hold.
That is, this structure is embedded into the chaoticity region C?, related to

chaotic attractors having at least two bands.

Lemma 3.11. Consider two parameter points p = (a,, it,b) and p' = (a,,,

—u, —2a,, —b). The following statements hold:

o for any x € I, there is f.|y(z) = frlp(—2);
o for any x € I, there is fuly(z) = fulp(x);

o for any x € I, there is fr|y(z) = folp(—2);

/ /

— / / /
M_ T Crm_s CM

s Co 5 C,, are the

I o — /
o =c, d,=c.,c .= Cuy,s where ¢, ¢, €, , .

critical points of f|y.
Proof. The proof of the first statement follows from the direct substitution:
felp (@) = (an — 20 = b)z + pp = —(au +0)x + p = falp(—2).

Similarly for the other two statements. And from the first three statements

the last one follows. ]
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Theorem 3.12. The first tier of the bandcount incrementing structure in

R3 consists of chaoticity regions CM’LMRMZ,

2n+4, 2n+4 .. .
attractor and C\, ", e cpnipaen Telated to two coexisting attractors being

symmetric with respect to the origin. The bifurcation conditions for obtaining

n € Z., related to a single

the boundaries of these regions are

fonCn) = Tovovin & fenlCu) = Tamnne (3.26a)
and

Cr = Tprtopnrm. & Co = Tpeipancans (3.26D)
forn € N. For n =0 the conditions become

fenlCu,) =T & foulCu ) = Tx, (3.27a)

and

fEM(CR) = Tre <~ fRM(CL) = T,r (327b)

The second tier of this structure consists of the first additional regions
asz,4n+4
RMZH! and CM,KMZ:_lRMﬁ_l,LMiRME7
3n+4, 3n+4

—1 —1 1
My LMY RMETH LMTERM™ S LM

Cal, An+8

My MM, CAH related to a single attractor,

as well as to the regions C rnets Telated to two coexist-

ing attractors being symmetric with respect to the origin. The corresponding

bifurcation conditions are

fRMn+2£M(CM+) = Tpnrmrc = fLMn+2RM<CM_) = Tprerrr (328&)

fM”EMn+1RM(CR) = Ty crnwr A fM"RM”+11:M(Cc) = Tprmrnz s (328b)

fRM"LM"*R(CMJr) = Ty r=lepm "rm_ =

fﬁMnRM"_lﬂ(CM_) = Ty, n—lgm_om, s (328C)

and

fM”*QL(CR) = Tra,mrm_"emy <~ fM”*QR(Cﬁ) = Ty n=lepm,"rm_ - (328d)
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Proof. To prove the statement of the Theorem, we use the bifurcation con-
ditions known for the bandcount incrementing structure in Ry and the
Lemma 3.11. Let us demonstrate this for (3.26a). Consider the region

CriZ = Cul2 C Ry One of its boundaries (as follows from (3.9) and the

Corollary 3.7) is given by

fRM(CM+) = T & fem(Crn ) = Ty (3'29)

Let us demonstrate that the symmetric boundary in the region Rj3 is given
by (3.26a). Suppose p € Ry such that (3.29) holds, while p’ € Rj is symmetric
to p with respect to the point S (3.21). For the sake of brevity, below we
refer to f|, simply as f and to f|, as f’. Denote & = ., € O po, then
—% = Zyur € Oryy for f. By the Lemma 3.11, there is

frne(®) = faon(=2) = frr(Tage) = =2 (3.30)
and

frna(=2) = fane(2) = faoe(Toens) = T (3.31)
In such a way, for f’ there is

=Ty enigre € Oraiprnen - (3.32)
Similarly,

fer(en ) = fuen(=1) = flpu(1) = frulen,)- (3.33)

Combining (3.29), (3.32), and (3.33), we obtain (3.26a).
Using similar arguments we get all the other equalities in the statement
of the Theorem. O]

Figure 3.1 illustrates Theorem 3.12. There is shown a scaled parallelogram
area of the (e, ) parameter plane of the discontinuous map f defined in
(3.13), (3.14). Different colours correspond to chaoticity regions related to

distinct number of bands (upper row of the colour bar) and various periodicity
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regions (lower row of the colour bar). In the panel (b) a one-dimensional
bifurcation diagram along the parameter path marked by the red arrow in
the panel (a) is plotted. Blue and red correspond to different attractors. One
can clearly notice the regions of coexistence of two chaotic attractors, which

are symmetric with respect to the origin.

0.4

0.5 o 1|

0.5 .o MULMLRM_ LME RMZ

-3 (-2.8,0.11) w(p, b) (-1.5,-0.54)
div1l 2 6 7 &8 9 10 11 12 13 14 15 16 17 18 19 20 >20
| [ ] bandcounts
N L] || periods

Figure 3.1: (a) A scaled parallelogram area of the (e, ;1) parameter plane of the discontin-
uous map f. Different colours correspond to different chaoticity and periodicity regions.
(b) A one-dimensional bifurcation diagram along the parameter path marked by the red

arrow in (a). Blue and red correspond to different attractors.

The bandcount adding structure located in the region R, is symmetric
to the bandcount adding structure located in R;, while cycles related to the
period adding structure based on four symbols serve here as skeletons. Since
the fixed point x7, = 0 is non-homoclinic, a chaoticity region linked with a
periodicity region related to an k-cycle of an even period is associated with
an (k 4 2)-band attractor whose k gaps are engaged by the respective cycle
and one gap by a fixed point z%,. In contrast, a chaoticity region linked with
a periodicity region related to two coexisting k-cycles of an odd period is
associated with two coexisting (k 4+ 1)-band attractors. For instance, unsta-

ble cycles O prar and Oy (cr)nea, (re)nrs 1 > 1, engender chaoticity regions
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ns Tespectively. On the other hand, coexist-

2n+2, 2n+2
My M_(£R)™, My (RE)™

C2n—|—4 and C4n+6
M, LMERM? MyMm_(£R) emy (RE)
ing cycles O, (cr)r and O, (re)n, 7 > 1, induce a region C
related to two coexisting (2n 4 2)-band chaotic attractors.
Theorem 3.13. Ezpansion bifurcation conditions defining the boundaries of

a bandcount adding chaoticity region in Ry are

fl:/vl(_l) = Trrrmrnc and f/vu:(_1> = Tpnrrmr ey (334&)
for chaoticity regions Cffjﬁimﬁ, n €N,

fLM(_l) = xR(LR)SflM_L and fMg(_l) — x(RL)SM+ (334b)
for T2 ,n=2s, seN, and

My My (RE)S, M_(£R)
fLM(_l) = L(re)smy(re)SRM_L and f/\/u:(_l) = L(re)srm_c(re)smy (334C)

fOT C2n+4

My My (RE)Scm_(LR)SR?

n=2s+1,seN.

my my 8 b
13 a 9 R£1M+ o Cgl CM+RM2_£M+ CM,cMiR 2
= . SrM_c MZRM2 L
£ 1.32* =

4

"ﬂ &r = C/éi,MJar,M_ﬂR

-3 -1.32 ke - W

I 0.9 -2.32 b i e N -2.02
Cat

-2.

MyRM_LM;

divl 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >20

Figure 3.2: (a) A scaled parallelogram area of the (¢,u) parameter plane of the dis-
continuous map f. Different colours correspond to different chaoticity regions. (b) A
one-dimensional bifurcation diagram along the parameter path marked by the red arrow

in (a). Blue and red correspond to different attractors.

The Theorem 3.13 is proved by using the arguments similar to those
used for the proof of the Theorem 3.12. Figure 3.2 serves as the respective

illustration with several chaoticity regions marked.
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3.3. Bandcount accretion bifurcation structure

In this section we consider the family of maps f : R — R defined as

(

folz) =ax —p, =< —1,

v

fiﬂ?*—>f(33)=< fu(z) = az, —l<zx<l1l+e, (3.35)

| fr(®) =ax+p, ©>1+¢,

where a > 1, u < 0, € > 0. This map models the dynamics of an asset price
for the trading market involving heterogeneous interacting agents [197, 200].
However, in contrast to the map f from the Section 3.2, this case is asym-
metric corresponding to b = 0. We study a particular bifurcation structure
occurring in the parameter space of f , based mainly on the novel bifurcations
of chaotic attractors, not related to any critical homoclinic orbits. Some of
these bifurcations are direct analogues of the border collision bifurcations for
chaotic attractors. Note that the introduced parameter constellation excludes
stable cycles, and only chaotic attractors may exist.

We will consider a parameter space section with a fixed a and changing

e and p. At first, we notice that
Lemma 3.14. For u < —a(l +¢) there is d,,d. € J, if J exists.

Proof. The inequality p < —a(l + ¢€) is equivalent to ¢, < 0, which means
that the absorbing interval J*© C I,,, U I, cannot exist. It also implies that

—a—pup>ae>0 & —a—pu>0 <& c.>0.

The latter means that the absorbing interval J— C I, U I,, does not exist.
Hence, if the absorbing interval exists it is J = J* 3 {d., d.}. O

When inequality sign in the statement of the Lemma 3.14 is replaced
by the equality sign, we get the condition for the homoclinic bifurcation
of the fixed point x%, = ¢, which corresponds to the final bifurcation and
transformation of the absorbing interval between J* and J*. The related

bifurcation boundary is denoted as x 7.
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Let us consider the parameter region
D={p: —al2+¢) <pu<—a*(l+e)}, (3.36)

where a parameter point is p = (a, u, ).

Lemma 3.15. For p € D the fized point x7, is nonhomoclinic.

Proof. For —a(2 +¢) < u < —a(l + €), the absorbing interval is J= =

[Cu_s Ca]- Indeed, there is
CrR>Cu. & . <cCu. & pu>-—al2+e).

The point z*, is then left-side homoclinic if f;*(0) > ¢,, , which holds for
p > —a®. On the other hand, it is right-side homoclinic if f;1(0) < c,,,,
which holds for y > —a?(1+¢). Clearly, u < —a*(1+¢) implies u < —a(1+
g), as well as u < —a?, which means that if 2*, is nonhomoclinic from the

right, it is inevitably nonhomoclinic from the left as well. [

When p = —a?(1+¢), we get the condition for the homoclinic bifurcation
c

1
My

the expansion bifurcation and transformation of a multiband chaotic attrac-

of the fixed point 27, = . For certain parameter ranges it corresponds to

tor to a 1-band attractor. For the other parameter ranges such a homoclinic

expansion is not associated with any bifurcations of the chaotic attractor.
1

The related boundary in the parameter space is denoted as C;M*.

Let us introduce the following additional notation for an absorbing inter-
val J = [Jimin, Jmax): J° = [Jmin, 0) and J® = (0, Jpax]-

Theorem 3.16. For a fized parameter a value, consider the region
Dpcr = {(e,p) : p> —e—a’—1, p < —a*(1+¢), p < —ala+1)}. (3.37)

confined by the bifurcation surfaces v~ (related to the contact c,, = cz),
1

QCAM+ (related to the homoclinic bifurcation x%, = Ciu) and VoM (related to
the contact c, = ¢, ). Inside this region one observes a bifurcation structure

described as follows:
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e [Its first tier consists of chaoticity regions C**1 n = 1,7, each related
to a chaotic attractor QZLAH "HB with By C J* and U”HB C J%,
where

In(a + 1
n= [gl , (3.38)
Ina

with [-] denoting the integer part.

e Forn < n, the region C"* is confined by the bifurcation boundaries

n+1
VM (a contact bifurcation ¢ = 2 ) and v (g border colli-

sion bifurcation ¢, = d), expressions for which are given by
l+e+a"! 1+¢
3 2
g Certa—1 M ST (3:39)

n+1 ch 2
The region C™ is confined by v™- ’CM+, wtand VM-

e Between any two Successive Teqgions Cﬁl_l)ﬂ and C"™1, n > 2, of the
first tier, there are an infinite number of regions C*** k > 2, of the
second tier, each associated with a chaotic attractor Q"% = UMFB;
having UY_ B; C J* and U?+kk+1Bi C J*. As k increases, regions C"F
accumulate to the curve By(a) defined as an intersection of the surfaces

1 an+2

=E&p 1= ) = fn = — : 3.40
e=&= o WEQ " (3.40)

)

: . nt(k+1
o Two successive regions C™% and Cy, ( ,
n—1 n+k

the bifurcation boundary v°e M- (related to the contact ¢! = ¢

defined by

cz 1 C';\L/lJrk an(ak+1 - 1)
an+k71 _ akfl —qn—1 +1

k > 2, are separated by
n—i—k)
M_

(3.41)

Proof. At first, let us find the edges of D,..r, which are defined as the pairwise
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intersections of the three surfaces:
Sy p=—-ala+1),e=a—1,

Sp : n = —a(a+ 1), €= (342)
a? 1
a2—1"" a2-1

So: p=—

Further, there is D,eee € D, since —a(2 +¢) < —e —a®* — 1. And this
guarantees that the absorbing interval for f is J* = [, Cr.] and the point
x%, is nonhomoclinic (see the Lemmas 3.14 and 3.15 and (3.36)) Then there
is smaller absorbing set A = B, U B, C J* with B, = [y s M ] € J* and
B, = [c}, ,cu.] € J*, and a chaotic attractor is inevitably confined in A.

The sufficient condition for a chaotic attractor to coincide with A, 1. e., to

have two bands, is

¢, <l+e and c,<c, and ¢ >c} . (3.43)
Indeed, in this case any x € [ch,cfA] has at least one preimage
fol(x) € [ew el ] and any = € [} ¢, ] has at least one preimage

2

s Cu,| has at least one preim-

f;l(x) € ¢!, ,cy,]. Similarly, any = € [c

age fol(z) € [}, ,cy.] and any z € [c] ] has at least one preim-

M_?

age f7'(z) € [cu,cl ]. The first two inequalities in (3.43) hold for

My

M’M

p > —e —a®—1, i.e., inside Dye. The last inequality in (3.43) holds

for 4 > —a(a + 1); hence, the upper boundary of D, is associated with

2

the contact ¢, = 2, . For ¢, > %, , we denote the respective attractor as

Q! to emphasise that it has exactly one band inside (coinciding with) B,
and one band in (coinciding with) Bk.

Let us study what happens when a parameter point enters D,.., through
its upper boundary. Right before, for p & Daeer, there is ¢, > ¢, , and the
interval G = (¢, ,¢.) has three preimages: f-1(G) C B., f.}{(G) C B,
and f;l(é) ¢ J. Right after, for p € Daeer, there is ¢, < cfh, and the
interval G has two preimages: f.1(G) C (c\..,ch, ) and fYG) ¢ J. The

1

interval (c} Couys Can ) represents the gap of the chaotic attractor, which implies
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that G cannot now belong to the attractor (since there are no more points
belonging to the absorbing area A that map into G).

Consider also the image f(G). There can be three cases: (a) G C I; (b)
G = (c., JU[1, 3 ); (c) G C I,,. If (a) G C I, which is equivalent to

ccel, & c¢>1+e & p<-—-e—a-—1, (3.44)
then G* = f(G) = f.(G) = (¢, ) C B.. The interval G! has three
preimages: G, G* = f GHYNJ = @, and G := fLHGY) = (e, EM)
with ¥ = fo1(ch), &M = f-1( ). If G* C B,, which holds for

3
20 _ 1 3 2 a’(l+¢+a)
< = < = > — 3.45

Cai_ CM+ Cpn_ CM+ M a2 +a—1 ’ ( )

then there are no gaps appear in B,. Hence, due to p crossing u = —a(a+1)

a transformation of QLH to Qijl, having two bands in B, and one band in
B, occurs.

If (3.45) does not hold, then the interval G = ( 20 C G' has three
preimages: f.Y(G)NJ = @J, [LHG) C (CrrChe ) and fHG) c G.
Thus, there are no points inside A that map into G’ and it cannot be a
part of the attractor. In such a way, due to p crossing p = —a(a + 1) a
transformation of QLH to ij?, having two bands in B, and two bands in
B, occurs. The next image G"' := f(G') belongs to the attractor (is not a
gap), until it has a preimage f.(G"!) C (1,¢.). This holds for ¢! < ¢!, and
it can be shown that sufficiently near the bifurcation surface y = —a(a + 1)
this inequality is always true.

Consider the case (b) G = G'UG" = (c.,1]U[1, 2, ), which is equivalent
to

{cﬁelm, - {c,;<1+e, D e

3 3.46
2 el A >1+e¢, u<—&i£il,( )

M M

then G = f(G) = fu(G) U f(G") = (¢}, 0] U e, @, ). Tt can be

L? M

shown that for the parameter range (3.46) there is ¢}, < ¢2, , and hence,
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the interval f,(G”) belongs to the attractor (is not a gap). On the contrary,
fM(é”) cannot belong to the attractor, since it has two preimages G' C G

and f;l(fM(é’)) N J = &. This implies that the upper boundary of the
1

9

attractor is c,, i.e., due to p crossing u = —a(a + 1) a transformation of

Q' to Q2! having two bands in B, and one band in B,, occurs.
Finally, if (¢) G C I,,,, which holds for

at+e+1
p>
a

there is G! = f(G) = fu(@) = (¢!, ) C B.. The interval G! has

two preimages: f.1(GY) = G and f71(GY) NJ = @, and therefore also
represents a new gap of the attractor. Further, similarly to the case (a), we
must consider three cases, but for the interval G'. Then by using the similar

arguments, we conclude that
o ifc! >14+cand ¢ < 2 . atransformation from Q' to Q3! occurs:
c M_ M) M M )

eifcl >1+candc}, > c?m, one observes a transformation from Q!f!

to Q% (again the image f(cfu,ci_) does not represent a gap, since

close to the boundary p = —a(a + 1) there is ¢, < ?);

M

eifcl <1+4+eandc®, > 1+e¢, a transformation from Q! to Q3!

OCCurs;

e if 2 < 1+¢, one has to check the similar conditions for the next image

52 Frn
G* = f(G).
In general case, the above scenario can be summarised as

o if 2 > 1+¢and "' < & | one observes a transformation from

My
Q/l\j—l to Q:\lj—l;

oif 2> 1+¢and "M > C%w one observes a transformation from

Q'+l to Q"2 (the image f (c%,.,c™) does not represent a gap, since

close to the boundary p = —a(a + 1) there is ;72 < 1);

)
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o if ™% < 1+4candc? >1+¢, one observes a transformation from

Q}j—l to QTAl/l—l-l;

In such a way, we have shown that, in general, the region C*™ of the first tier
associated with the chaotic attractor Q™! having a single band in B, and n
bands in By, is confined by the bifurcation boundaries related to conditions
il — cfA+ and ¢, = d, = 1+ €. The respective analytic expressions are
derived as (3.39).

The number 7 = n(a) of chaoticity regions of the first tier revealed in

C

the bandcount accretion bifurcation structure depends on the value of a. To

2

., we compute the number

estimate 7, at the moment of bifurcation ¢, = ¢
n = n(a,e) such that ¢”2 > 1 + ¢ (or alternatively "3 € I,,). For
p=—ala+1):= ,LLCL’C%/‘—, the critical point ¢ > 0, 7 = 0,n — 2, is obtained

as
Ci = f/,f/l(cﬁ) = aicc = _ai(a =+ NCL’C%A_) =" (3'47)
The condition for ¢!3 € I,,, is

AP =a"t<1+e, (3.48)

L

Recall that for p € Dyeer and ¢, = 2, (i. e., for u = —a(a+ 1)) the value of

M_

e must range between a — 1 < ¢ < 1/a. Hence, we must find the maximum
n such that both inequalities hold:

a" !t <1+e, 1 1 In(a 4+ 1)
= a <l4+- & n<——-—=-.
a

1
€< —, Ina

a

In such a way we get the estimation (3.38).
Let us consider now the regions of the second tier, which are located in
between the surfaces defined by ¢! = d, and ¢! = cfu. For the sake of

brevity, we denote this area as D. Recall that in this case the interval G/ =

(c3,.,cu) represents a gap of the attractor. And its image Gt = (e, cn?)

is not a gap, until ¢ < ¢"~! (which holds for parameter values sufficiently
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close to the bifurcation boundary p = —a(a+1)). When p moves away from

n+2 _ n—1
M_ CL

n-+2 n—1
) for e > T

this boundary staying inside D, at some moment the contact ¢

occurs. Let us consider the interval G” = (71, ¢+

The preimage f.Y(G") C (¢*2,¢" ) with the latter being a gap. Under

L ) M

this condition the interval G” cannot be a part of the attractor, and for

n-+2 n—1

p crossing the boundary related to the contact ¢”!,”> = c!"*, one observes a

transformation from Q"2 to Q"+3. By the similar arguments, we derive that

n+k n—1

for p crossing the boundary related to the contact ¢ = ¢, one observes

a transformation from fok to Q;‘jkﬂ. The related analytic expression is
given by (3.41).

To estimate the maximum k, we first note that the intersection of the

2

bifurcation surfaces related to the contacts ¢! = d, and ¢! = i, 18

n—1 n-+k

defined as &, and fi, in (3.40). Let us compute the limit of pu “v- for

k — oo:
n+k n—1 a,n+2
lim pm- = — = [ly,.
k—o00 a” — 1

This means that there exist regions C"™* of the second tier for any k > 2.

And with increasing k they accumulate to the curve B, (a). O

The bifurcation structure described in the Theorem 3.16 is called a band-
count accretion structure and is primarily unrelated to any homoclinic orbits.
Corollary 3.17. The closer a to unity, the more chaoticity regions of the
first tier are revealed. For a > (v/5+1)/2 the bandcount accretion bifurcation

structure 1s not observed.

Proof. From (3.38) it follows that lim, ,; 7 = co. And for @ > (/5 +1)/2

there is 7 = 1 and only the region C1! of the first tier is observed. []

Figure 3.3 shows a typical view of the bandcount accretion bifurcation
structure in the (e, ) parameter plane of f for a = 1.1.

The results obtained in the current investigation concerning bifurcation
structures in discontinuous maps, may be also helpful in a different area of re-

search. For dynamical systems with continuous time, especially with delays,
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Figure 3.3: (a) 2D bifurcation diagram in the (e, ) parameter plane of f, with a = 1.1.
(b) Close up of the parallelogram area marked by the dashed black line in (a).

such as, e. g., systems of delay coupled interacting neurons |76, 165, 168, 178
180, 191], it is often much more difficult to analyse bifurcations of solutions.
To simplify this analysis one chooses a lower-dimensional section and con-
structs a map acting on this section (often called a Poincaré map), replicating
the major dynamic features of the original system. If the original system has
highly nonlinear functions, the Poincaré map can have rather complicated
form and even be discontinuous. Having knowledge about generic asymp-
totic solutions of discontinuous maps, one can get some information about

bifurcations occurring to solutions of continuous time systems.

3.4. Border collision bifurcations of chaotic attractors
in one-dimensional maps with multiple disconti-
nuities

It is worth recalling that boundaries of a multi-band chaotic attractor of a

one-dimensional map are given by critical points and their images. Images
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and preimages of a critical point are also called critical points of certain
ranks. In case of a merging, an expansion, or a final bifurcation, a boundary
point of the chaotic attractor (i. e., a critical point) collides with a point of
the repelling cycle belonging to the immediate basin boundary of the attrac-
tor, that is, this cycle undergoes a homoclinic bifurcation. The bifurcation
mechanisms which are in the focus of the present section are not associated
with a homoclinic bifurcation: in our case, a critical point at the boundary
of the chaotic attractor collides with another critical point. In the simplest
case, it may be a collision with a discontinuity point not belonging to the
chaotic attractor, that is a direct border collision bifurcation of the chaotic
attractor may occur. We call this bifurcation an exterior border collision bi-
furcation of a chaotic attractor. A characteristic feature of this bifurcation is
the appearance / disappearance of one or several new bands of the attractor,
shrinking to zero size as the bifurcation value is approached. More sophisti-
cated cases are grouped under the term interior border collision bifurcation.
Their characteristic feature is that at the bifurcation moment one or several
gaps inside the attractor appear. By contrast to the exterior border collision
bifurcations, here the size of the gaps and not of the bands shrinks to zero
as the parameters approach the bifurcation value.

As the first step towards understanding the bifurcations of chaotic attrac-
tors in maps with multiple discontinuities, we consider a map with two dis-
continuities [22, 23, 173]. For simplicity, within the present work we restrict
ourselves to one-dimensional maps with everywhere expanding branches.
This condition guarantees that if the map has an attractor, this attractor

is chaotic. The simplest map satisfying this condition is the piecewise linear
map f defined in (3.13) with

de=—-d.=1 and a,=a, =a, :=a> 1. (3.49)

Note that the linearity of the branches f., f,.., and f. simplifies the calcu-
lations discussed below, but preserves the generality of our analysis for the

considered class of maps. For this reason, all the results expressed in terms
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of the limiting values f.(—1), fu(—=1), and f,(1), fx(1), are still valid for
maps with nonlinear everywhere expanding branches.

If map (3.13) with (3.49) has bounded asymptotic dynamics, this dy-
namics may be located on (1) one absorbing interval involving two adjacent
branches (either f, and f,, or f,, and f;); (2) two coexisting absorbing
intervals, each involving two adjacent branches; (3) one absorbing interval
involving all three branches of the map. As piecewise increasing maps de-
fined on two branches are already well investigated (see [21] and references
therein), only the third case is of interest to us. In this case, it is easy to see
that the invariant absorbing interval J, inside which any bounded asymptotic

dynamics takes place, is given by
J = [min{c,, , ¢z}, max{c.,cu, }]- (3.50)

For this reason, the conditions c¢,, = ¢ and ¢, = ¢,,, correspond to a change
in the boundaries of the absorbing interval, which may result also in a change
of the boundaries of a chaotic attractor.

Formulating the following results, we denote a bifurcation parameter as

«, which can be one of the four: a, p,, ., or fir.

Theorem 3.18. Let us consider a discontinuous map of the form (3.13),

(3.49) with a bifurcation parameter a.. Suppose there exists o and a neigh-
bourhood U = U(«*) such that for oo € U there hold:

1. For a < a* (a> a*) the map f|o has a single n-band chaotic attractor
Q(a) = U Bi(a), n € N, with d, € IntQ(«) and d, ¢ Q(a).

2. There exists only one critical point c¥(a) € 0Q(a), k € Z,, s € { L,
M_}, such that cf(a*) = d,.

3. For a < o* (a > a*) there is c¥(a) € I, while for a > o* (a < o)
there is c¥(a) € I, with r,q € {M, R}, r # q.

4. For a € U the map f|o has no critical homoclinic orbits.
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If fla(cg(a®)) € J\Q(a*), wherei =0,m — 1, m € N, then for a > o*
(a < a*) the intervals 7o (B()) with B(a) = [dy, ()], represent new
bands of Q(«), i.e., Q(a) has (n +m) bands.

Proof. Without losing generality, suppose that the condition 1. holds for
a < o and the boundaries of Q(a) are given by the critical points ¢! and

ES

¢, 4,7 > 0. At the bifurcation value & = a*, one (and only one) of

the boundary points of Q(a) is cf(a*) = d, with some k € Z, and either
s =L or s = M_ (the condition 2., which is the analogue of the regularity
condition for the border collision bifurcation of a cycle). For definiteness,
suppose s = L. Let a = a*. Consider critical points x € 0Q(a*) with
r=c (%), 0<i< K withsome K € N, or z = c(a*), 0 < j < k. And
denote as o(M_) = sg...sx and (L) = 5¢ ... Sx_1 the symbolic sequences
associated with the sets of points {c, (a*)}X, and {c/(a*) ];;é, respectively.

Since all three branches f,, f,,, and f, of f are linear (i. e., continuous),
there exists some neighbourhood U = U(a*) = U_UU, with U_ = U_(«) =
{a:a<a*tand Uy = Uy (a*) = {a: a > a*} such that Va € U the same
o(M_) and o(L) represent the respective finite itineraries of ¢,, and c,.

For definiteness suppose that at & = o* we have x € Q(a*) for x —
d.— (v € I,,) and © ¢ Q(a*) for v — d+ (z € I). According to the
condition 3., the critical point ¢¥(a) colliding with the border necessarily
moves due to the bifurcation from I, to I, i.e., 7 = M, and ¢ = R.

For a € U, the critical points ¢!, (), 0 <i < K, and ¢/(a), 0 < j <k,
belong to the same partitions as for & € U_, and hence, the respective bands

qualitatively remain unchanged. Consider the band B;, = [a,,, ¢* ()] and let

B(a) = [¢"(«), dy]. For a € U_, the open interval IntB(«) = (c¥(a),d,) C

J\Q(a), while for o € U,, there is B(a) C B;, and note that B(a) shrinks
to a point d, as o — o*. Consider then f|,(B(a)) = [ca(a),(a)]. If
ce(a*) = () € J\Q(a*), then the same holds for a certain range of
o > o, and consequently, f|,(B(a)) represents a new band of Q(a). The

same can be stated for ¢ (a*) = () with i = 0,m — 1 for some m €
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Z.. Choosing appropriately the right neighbourhood U, (a*), one obtains
the main statement of the Theorem.

Note that we need the condition 4. to guarantee that no homoclinic
bifurcations occur for the considered range of parameter values, 7. e., the

bifurcation is of codimension-one. ]

A statement similar to the Theorem 3.18 can be formulated for the case
with d, € Q(a), dr € Q(a) for a < a* (a > a*) by setting s € {M, R}
and r,q € {L£, M_}. The bifurcations of such kind are referred to as exterior
border collision bifurcations for chaotic attractors. A sample one-dimensional
bifurcation diagram is shown in Fig. 3.4(a), where the values of the parameter
i marked by vertical dashed lines (dark-red and grey) correspond to exterior
border collision bifurcations. The panel b shows the map f (3.13), (3.49) at
the moment of the exterior border collision bifurcation for the value p, =
—2.662 (dark-red line in a). According to the Theorem 3.18, the critical

point ¢® = ¢ collides with the border point d, = 1. At the bifurcation

M_
moment the point ¢, and two its images belong to G. Hence, three new
bands appear after the bifurcation and one observes the transition from a

3-band to a 6-band chaotic attractor for decreasing fir.

19 45 b
f() k=, |
cl=cl| -
Tl &,
+
0 N\
| | AP By By
—3.02 [ 142 -27 -1 0 1 T 45

Figure 3.4: (a) The one-dimensional bifurcation diagram versus iy of the map f (3.13),
(3.49) at a = 1.22, p, = 5.1, pp, = —0.5. (b) The map f at ur = —2.662 corresponding
to the vertical dark-red dashed line in (a).
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To explain the transformations of chaotic attractors occurring at some
of these parameter values, it is necessary to consider the invertibility of the
map on its absorbing intervals. It is well known that the invertibility plays an
important role for determining possible dynamics of a one-dimensional map.
For example, it is easy to prove that an invertible continuous one-dimensional
map cannot have other attractors than fixed points and 2-cycles. Accordingly,
to observe a more complex dynamics in a continuous one-dimensional map,
one has to require that the map is non-invertible. In order to distinguish
between several classes of non-invertible maps, it is convenient to identify in-
tervals in the state space with different number of preimages. In [154, 156], a
classification of maps has been introduced according to the number of preim-
ages in the complete domain of definition of the map. However, what matters
for the possible asymptotic dynamics and in particular for transformations
of chaotic attractors we are dealing with, is not the invertibility of the map
on its complete domain of definition (e. g., the real line), but on the absorb-
ing interval (where the bounded asymptotic dynamics takes place). In this
context, for a map with an absorbing interval .J it is preferable to define the

corresponding intervals Z as
Zy, = {x € J : the number of preimages of = belonging to J is k}. (3.51)

Following this definition, for piecewise increasing maps with a single discon-
tinuity (also known as piecewise increasing Lorenz maps), it has been proven
that chaotic dynamics can occur if the map belongs to the class of so-called
overlapping maps (such as, for example, 7y — Zy — Zy, or Z1 — Zs, or Zs),
and cannot in so-called gap maps (of the 7y — Zy — Z; class) [21]. In fact, it
is easy to show that neither the interval Zj; nor any of its images such that
fi(Zy) C Z, for j = 1,k, k € N, can contain a point of an attractor. This
property applies also to maps with multiple discontinuities and helps us to

explain several transformations of chaotic attractors.

Lemma 3.19. Consider an n-band chaotic attractor Q = U B;, B; =
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[a;, b;], of the map f with n > 2 and let an interval I C (a1,b,) be I C Z.
If f~1(I) C J\Q, then I C G = U"'G;.

Proof. Recall that the chaotic attractor Q is invariant for f, which means
that for any = € Q both, its image f(x) € Q and at least one its preimage
fY(x) € Q (where f~! is appropriately chosen). For any x € I, there is
f~Y(x) ¢ Q, which implies z & Q, i.e., x € G. O

Theorem 3.20. Let us consider a discontinuous map of the form (3.13),

(3.49) with a bifurcation parameter o. Suppose there exists o and a neigh-

bourhood U = U(«*) such that for o € U there hold:

1. For a < o (a0 > ) the map f|o has a single n-band, n > 2, chaotic
attractor Q(«a) with d,,d, € IntQ(«).

2. For a < a* (a > a*) there exist two critical points ck(a) € 0Q(a) and
ci'(a) € IntQ(a), s,q € {LLM_ M R}, s #q, k,m € Zy, such
that ¢'(or) € Zy N Zy has both preimages in IntQ(a) and i (o) € Z,

S

has the other preimage ¢(c), ¢(a) # c¥(a) being ¢(a) € IntQ(a);

3. it (a*) = dM(a”) and for o > & (a0 < oF) there is i (a) € Zy

having only one preimage c*(a).

4. For a € U there is c.(a) # d,, c'(a) # de for any i € Zy, v €
{LM_ M, R}

5. For a € U the map f|a has no critical homoclinic orbits.
Then there hold:

o for a > a* (o < a*) the map f|o has a single chaotic attractor Q(«a)
having at least n+ 1 bands, where the interval G(a) = [c*+(a), cy' ()]

represents a new additional gap of Q(«);

o if (%) € Zy, where i = 1,1, 1 € N, then for a > o (v < o) the
intervals f'|o(G(a)) also represent new additional gaps of Q(a), i. e.,
Q(a) has n+ 1+ 1 bands.
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Proof. Without losing generality, suppose that the condition 1. holds for
a < «of, that is, the bifurcation occurs for increasing a. Since both bor-
der points belong to O, the boundaries of Q can be defined by all four
critical points, namely, by the sets of points S, := {cf;(oz)}f(:ro, K, € Zy,
re {L,M_ M, R} Again due to linearity (continuity) of the branches
fe, fu, and f, as well as the condition 4., an appropriate neighbourhood
U=U(a*)=U_UU; withU_ =U_(a) ={a:a<a*} and U; = U, (a")
= {a :a > a*} can be chosen, so that for all @ € U the finite itineraries o(r)
associated with the sets S, remain the same. It means that the respective
boundaries of Q(«) do not change qualitatively.

Consider the interval G((a) confined by the critical points ¢*!(a) and
cy' (@), described in the conditions 2. and 3.. Suppose first that the preimage

c¥(a) € (a1,b,), where a; and b, are the outermost points of Q(«), i. e., for

S
a € U_ the point cf(a) represents the border of some gap G;, (on one side),
as well as the border of some band Bj, (on the other side) with jy = o or

Jo = igp+ 1. Let us denote the two branches responsible for the two preimages
of c*1(a) as fy, and f,,, namely, f;1(ck*1(a)) = ch(a) and f;(c*1(a)) =

¢(av). For definiteness, suppose that ¢f™ (o) > ¢*() for @ € U_ (and hence,
there is ¢i*'(a) < ¢'() for a € Uy).

Consider a € U and two points x < c*™(a) and y > ¢f*1(a) being suffi-

ciently close to c*1(a). Denote I := [z, ()], I, := (F(a),y). From
the conditions 2. and 3., we have that I 7%1 = [,.1() = [/} (2),E(a)] C By,
and I3 = F1(D) = (). £ () G

For o € U_, since (o) € IntQ(w), there holds Iy, = f'(I1) =

[frn (@), ()] € Q(a) and I, = f.}(I) = (¢(a), £, (y)) € (). And
therefore, even if I3} C G(a), its image is I, C Q(a), since I has an-
other preimage I, . Moreover, Gla) = [ci*(@r), ()] C I, and hence,
U G(a)) C I} C By,

Now consider o € U,. According to the condition 3. and the simplifying

assumption above, there is ¢i*!(a) < ¢"(v). Then Gla) = [ (a), cg' ()]
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C I,. However, now the preimage ¢(«) either does not exist any more, or is
located outside the absorbing interval J. The same holds for the preimage
intervals I;, and 15 . none of which can be a part of the attractor Q(a).
It means that G(a) C I, which is now I, C Z;. Then G(«) has only one
preimage f;.}(G(a)) C I C G. By the Lemma 3.19, there is G(a) CG.
If " (o) € Zy, then there is also ¢i™ (o) € Z; and for an appro-
priate U, there holds f|.(G(a)) = (i (@), ¢f"(a)] € Zy. This implies
that f|,(G(«)) C G. Similarly, it can be shown for any ¢ € N such that

" (o) € Zy. Which completes the proof.

By the similar arguments we can prove the case when c*(a) = a; or
(o) =b, fora € U_.
The condition 5. guarantees the bifurcation is of codimension one. ]

The bifurcations of this latter kind are referred to as interior border col-
lision bifurcations for chaotic attractors. A sample one-dimensional bifur-
cation diagram is shown in Fig. 3.4a, where the values of the parameter
p marked by vertical dashed lines (dark-red and grey) correspond to in-
terior border collision bifurcations. The panel b shows the map f (3.13),
(3.49) at the moment of the interior border collision bifurcation for the value
pr = —7.58 (dark-red line in a). According to the Theorem 3.20, the crit-

k+1

ical point /™' = ¢} collides with the critical point ¢’ = ¢,, . Before the

bifurcation, the alternative preimage of ¢! is ¢ = f_!(c!). At the bifurca-
tion moment two images of c¢,, belong to Z;, while Ci, € Zy. Hence, three
new gaps appear after the bifurcation and one observes the transition from

a 4-band to a 7-band chaotic attractor for decreasing fir.
3.5. Expansion of a chaotic attractor due to its colli-
sion with a chaotic repeller

In this section, we present results concerning further transformations of

chaotic attractors, generically not related to homoclinic bifurcations of any
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Figure 3.5: (a) The one-dimensional bifurcation diagram versus i of the map f (3.13),
(3.49) at a = 1.22, u, = 5.1, ppyy = —0.5. (b) The map f at ur = —7.58 corresponding to
the vertical dark-red dashed line in (a).

repelling periodic points [24, 172, 173]. Namely, if the basin boundary of a
chaotic attractor undergoing an exterior border collision bifurcation contains
a chaotic repeller, then this bifurcation may additionally lead (immediately
or not) to an expansion bifurcation at which the chaotic repeller becomes
incorporated into the chaotic attractor. To investigate this bifurcation pat-
tern, in the following we consider discontinuous one-dimensional maps with
at least four monotone branches. This is a convenient setting, since two
monotone branches are necessary to accommodate a chaotic attractor, and
we use two other branches to accommodate the chaotic repeller.

Consider a piecewise linear map f : R — R defined on four partitions as

follows
(fﬁ(x) = a,x+ |, x < —1,
fu (@)= auz+ ., -1<x<0,
fx— flx) =< (3.52)
fon (@)= ap+ fa,, 0<z <1,

\fR(x) = ArT + g, x> 1.

@, |ax| € (1,00) and fic, f,s fha,, fie € Ry
The partitions, clearly, are I, = (—oc0, —1), I, = (=1,0), I,,, = (0,1), and

The parameters are |a,|, |a,,,
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I, = (1,+00). As before the function f is not defined at the border points
x = £1 and x = 0. However, there are a few further details depending on
these definitions as commented on below. And for better clarity we will not
use the special notations for critical points, writing instead directly f.(—1),
far(=1), fu, (0), ete.

In what follows we discuss two distinct bifurcation patterns observed un-

der variation of the parameter p,, occurring at different values of u,, with
the fixed

a.>1, au >1, au>1, a;<-1, p, <0, p>0. (3.53)

We assume that before the bifurcation, the map f has a one-band chaotic
attractor Q' = By C I, U I,,,, which occupies the invariant absorbing in-
terval J = [f., (—1), f.(=1)], as long as the condition f.(—1) < 0 holds.
Additionally, f has a chaotic repeller A C I, U I.

To describe the structure of A, we need to define an escape interval Ie,
such that each point belonging to I or to any of its preimages eventually
leaves the neighbourhood of the chaotic repeller. The definition of I de-
pends on the shape of f,, and f,. In particular, the behaviour of the end
points of ... may depend on the definition of f at the border point x = 0.

At first, a bounded domain containing the repeller A is

Iy:={z x>0, f(x) >0} = [0, f1(0)]. (3.54)
And the escape interval can be defined as

Iese = {x | f(2) > f1(0)}. (3:55)

Clearly, there must be max{f,, (1), fo(1)} > f-1(0), since otherwise there
is the other absorbing interval located in the partitions I, U I, leading to
existence of another attractor. If f,. (1) > f-1(0) and f(1) > f;1(0) then

Tese = (f/\;l © f;l(o)v f;Q(O)) : (356)
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Alternatively, if f,, (1) < f-1(0), then I = (1 12(0 )), or if f.(1) <
F10), then Ise = (ful o £1(0),1). Now, the set A can be constructed as

follows:

oo

A=\ 7 o) s (3.57)

§=0
where the inverse function f=7 is considered to be appropriately multi-valued.

Note that if f(0) = f.,(0), then the end points of I. defined in (3.56)
and their preimages also escape from I, being mapped into Q'. Then to
obtain the set of all points escaping from I, one has to define I as a closed
interval. If f(0) = f,.,(0), which we assume below, then the end points of
lose, and, respectively, the border point x = 0, may escape from I, or not
(in the latter case, the border point belongs to A).

In the generic case, the point x = 0 does not belong to A, that is, it
belongs to a preimage of Io. of some rank k € N, i.e., 0 € f%(Iu), where
f~% is the appropriate sequence of inverses. By construction, f(les.) C Iy,
fQ(IeSC) C I. U1, and there may exist some m > 2, such that
[ Y Iwe) ¢ Q, while f™(I.) C Bi. For the sake of simplicity, we as-
sume that f™ 1(Is) N By = @. The opposite case f™ (1) N By # @ is
similar but a bit more tricky and is omitted here.

Then with increasing ., at
fo(-1)=—a,+p.=0 & p . =a, (3.58)

one observes first an exterior border collision bifurcation of Q' characterised
by the appearance of (kK + m — 1) new bands. Indeed, right after this bifur-
cation, there is an interval B = [0, f.(—1)] € By and B C f~*(I.), where
f~% is the appropriate sequence of inverses. Hence, f*(B ) C Iese C Iy,
FHUB) C f(lese) C I, f*9(B) ¢ By, j =2,m — 1, while f**™(B) C By.

Using the arguments similar to those expressed in the proof of the Theo-

rem 3.18, we deduce that the images f/(B), j = 1,k+m — 1 represent

new bands of the chaotic attractor, i.e., one observes a transformation
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Figure 3.6: Transition from a 1-band chaotic attractor located in the domains of the
branches f, and f,, to a l-band chaotic attractor located in the domains of all four
branches of the map f. Parameter values: a, = 1.5, ay, = 1.75, an, = 1.725, ar =
—2.8, pip, = —0.25, pr = 4.8, and (a) piu, ~ 0.22 (generic case); (b) puun, ~ 0.2216

(codimension-two case).

from Q' = B; to Q" = UMMB; with B; = f**(B), i = T,m — 2,
By,1 = By, and B; = f=""(B), i = m,k + m. Thereafter, the (k + m)-
band chaotic attractor QF ™ persists until it collides with the chaotic repeller
A. After this bifurcation, the intervals Iy and f(le.) become a part of the
attractor. Accordingly, the bands B;, i = m — 1,k + m of Q"™ expand to
a single band, leading to the (m — 1)-band attractor Q™' = U™ ! B; with
Bi=Bj,i=1,m—2,and By_1 = Bp_1 U Iy U f(Les).

For example, fixing a, = 1.5, a,, = 1.75, a,, = 1.725, a, = —2.8,
o, = —0.25, p,, = 0.2209769234, p, = 4.8, one gets k = 7, m = 2.

Changing ., one then observes at pu, = pl°® = 1.5 an exterior border

collision bifurcation (see Fig. 3.6a) related to the transition from Q! to Q?
(the point A) and at some p, = po an expansion of the chaotic attractor

corresponding to the transition from Q? to ol (the point B).

In the non-generic case when the border point £ = 0 belongs to A, the ex-
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terior border collision bifurcation and the expansion bifurcation occur at the
same moment. Hence, it is a bifurcation of codimension two and is associated
with two conditions independent from each other. The first condition is the
border collision condition (3.58). The second condition differs depending on
the characteristics of the leftmost point of A. For example, let p,,, increase

(with respect to the generic case considered above) until there holds

FO) =2 & = p (3.59)

PP

i.e., at p,, = p}, the border point x = 0 is pre-periodic to the unstable
fixed point x%. Note that x = 0 belongs to a critical homoclinic orbit of =%,
but it is not a homoclinic bifurcation for z7,, because for both, 1, < p}; and
P, > s, it is double-side homoclinic. If one changes p. and p,,, so that
at some moment both conditions (3.58) and (3.59) are satisfied, one observes
a direct transition from a one-band chaotic attractor Q! to an (m — 1)-band
chaotic attractor Qm_l, where m is defined as above.

For example, let us change p, and pu,,, (with the other parameters being

BCB

as before) so that at some moment p, = p2°* = 1.5 and p,, = ph ~
0.2215823519, at which f3 (0) = 2% (I = 3 in (3.59)). Then one observes
an exterior border collision bifurcation related to the sudden expansion of
Q' = [fu,(=1), fo(=1)] to @ = [fu,(=1), fo(1)] (see Fig. 3.6b).

A bifurcation of codimension two also occurs when the border point x = 0
belongs to an n-periodic, n > 2, or an aperiodic orbit located inside the
chaotic repeller A. The former case is associated with a homoclinic bifurca-
tion of the involved cycle, as it changes from being one-side homoclinic to
being double-side homoclinic.

In maps with more than four monotone branches, another effect involving
multi-band chaotic attractors may occur. Namely, some of the bands appear-
ing at the exterior border collision bifurcation are affected by the following
expansion bifurcation, while the other bands are not. This leads to an un-
usual shape of the bifurcation diagrams where some of the bands have vertical

edges, typical for expansion bifurcations, while the other bands have pointed
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tail shapes typical for exterior border collision bifurcations. To explain the

mechanism causing this effect, let us examine the following discontinuous

map
(f.(x) = ax+pe < —1,
fu (@)= awz+pm, —-1<x<0,
fro—=fx)=1 fu.(@)= apz+p,, 0<z<l, (3.60)
fu (@)= ayr+p, 1<z<2,
kfn(ﬂU) = ArT + [r x> 2,

defined on five partitions I, = (—o0,—1), I, = (-=1,0), I, = (0,1),
I, =(1,2), and I, = (2,00). Let the parameters satisfy

a. >1, a,, >1, a,>1, au <-1, a,<-—1, (3.61)
P, <O, pia, >0, pa, >0, e <0, (3.62)
f=(2) < fu,(=1), 0< f.(2) <1, max{f., (1), fu.(1)} >2. (3.63)

If f.,(—1) < 0 (before the bifurcation) the map f in (3.60) has a one-band
chaotic attractor Q' = By = [f..(=1), f.(=1)] € I, UI,,. And there is a
chaotic repeller A C I, U I, given by Eq. (3.57) with

Iy = [fu.(2),2], (3.64a)
Toe = {2 | f(z) > 2}. (3.64D)

By construction, f(lee) C Ir, f2(lese) C 1., and there may exist some
m > 2, such that f™1(I.) U Q! = @, while f™(I.s.) C By.

BCB

For increasing p, at the parameter value p, = p2® satisfying the condi-
tion (3.58), the right boundary of Q' collides with the border point z = 0.
Consider [ € N such that f!(0) € I, which predefines the outcome of the
bifurcation, similarly to how it concerned the border point x = 0 in the previ-
ous examples. Namely, if f/(0) € A, an exterior border collision bifurcation is
followed by an expansion bifurcation. On the contrary, for f/(0) € A the bi-
furcation is of codimension two, i. e., the exterior border collision bifurcation

and the expansion bifurcation occur simultaneously.
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B

Right after the bifurcation for p, > p2, there occurs an interval B = [0,
f.(=1)] = BiN1,,. In the generic case, there is f'(0) € f~ (Intl..), where
=% is the appropriate sequence of inverses and Int/. is the interior of .
Then f/(B) C f*(I.), and hence, f'*(B) C Ige, fH(B) C f(lese) C
L., f*"(B) ¢ By, j =2,m — 1, while fi***"(B) c B,. Using again the
arguments as above, we deduce that the images f/(B), j = 1,1+ k +m — 1

represent new bands of the chaotic attractor, 7. e., one observes a transfor-
mation from Q' = By to Qltk+tm — Uii]ﬁmgi with

o B = fiH* (B C I\ B, i=1,m—2;

e B, = By;

e Bi=fimm Y (B)YC L, \ Iy, i=m,l+m—2;

o Bi=f"(B) CI\U f(lege), i =1+m — 1,1+ k + m.

Thereafter, the (I + k + m)-band chaotic attractor Q"**+™ persists and its
bands grow in size linearly. At some p, parameter value Q7™ collides
with the chaotic repeller A. The bands belonging to Iy U f(les) expand to
a single band (that is the bands B;, i = [ +m — 1,1+ k +m). As a result

one observes a transition from Q"**™ to an (I + m — 1)-band attractor
O'tm=1 Note that the bands B;, i = 1,m — 2, also abruptly increase in

size, since they belong to the images of the escape interval I.. On the

contrary the bands B;, i = m,l +m — 2, are not affected by the expansion
bifurcation and continue to grow in size linearly. As for the band B,, i, in
case if f"(l) C By (before the bifurcation), it is neither affected by the
expansion. In case if f™(Iw.) ¢ By but f™(Ies.) N By # &, the band B,
abruptly increases in size as well (as occurs, for instance, in the example
below).

Let us fix a, = 1.5, a,, = 1.75, a,,, = 1.25, a,, = —1.3, a, = —1.2,
o, = —0.25, p,, = 0.236908479630166, w,, = 3.35, pr = —0.1. Then
[ =3, k=7 m =4 and changing p, one observes at p, = p* = 1.5 an
exterior border collision bifurcation related to the transition from Q! = B
to QM = UM B; with
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Figure 3.7: Transition from a 1-band to a 14-band and then to a 6-band chaotic attrac-
tor via an exterior border collision bifurcation occurring at p, = p2°® followed by an
expansion bifurcation at p, = uS®. In (b) the close up of the rectangular area in (a) is
shown. Parameter values a, = 1.5, ay, = 1.75, an, = 1.25, ay, = —1.3, ar = —1.2,
o, = —0.25, pia, = 3.35, pir = —0.1, pn, ~ 0.237.

° B¢CI£\B1,i=1,_2;
e By = By;
d B’L =C IMQ\[AJi:475;

e B, CI)U flese), i = 6, 14.

And at some p, = po® an expansion of the chaotic attractor occurs corre-
sponding to the transition from QM to Q% where the bands B;, i = 6, 14,
collide into a single one (see Fig. 3.7). Note that the bands B; = B;, i = 4, 5,
continue to grow in size linearly, since they do not belong to I, as well as
to either of its images. On the contrary the bands B; = B;, i = 1,3, are
affected by the expansion abruptly changing their size at p, = p=® (although

this change is not so remarkable in the large scale).
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Chapter 4

Noninvertible smooth and piecewise smooth
two- and three-dimensional maps modelling
real phenomena: Asymptotic solutions and

their bifurcations

In the current Chapter 4, we present results related to studies of various
aspects of asymptotic dynamics for two-dimensional and three-dimensional
maps with particularities, which model actually important real problems from
economics, ecology, and developmental psychology. Among the considered
examples there are noninvertible smooth maps, piecewise smooth continuous

maps, discontinuous maps, and even maps with vanishing denominator.

4.1. Preliminary facts and additional definitions

In comparison with one-dimensional noninvertible maps, for which fixed and
periodic points can have only real eigenvalues, for noninvertible nonlinear
maps of larger dimensions, eigenvalues can be also complex. This implies
the possibility for another bifurcation to occur, namely, a Neimark-Sacker
bifurcation, which is related to two complex conjugate eigenvalues crossing
the unit circle. In the non-degenerate case, it is known to be associated
with the appearance/disappearance of a closed smooth invariant curve. If
the bifurcation is supercritical, a stable fixed point is transformed into an
attracting closed invariant curve, surrounding this point. In the subcritical

case, a stable fixed point coexists with a repelling closed invariant curve,
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which disappears due to the bifurcation, while the fixed point becomes un-
stable. If a stable cycle undergoes a Neimark—Sacker bifurcation, the set of
cyclic closed invariant curves appears/disappears (depending on the super-
or subcritical bifurcation type). There are also known degenerate cases of
this bifurcation, when the structure of the phase space in the neighbourhood
of the target fixed (or periodic) point can differ (sometimes drastically) from
the one in the non-degenerate case (for details, see, e. g., [109, 133]).
Attracting closed invariant curves born due to a Neimark—Sacker bifur-
cation can undergo further transformations, when a parameter point moves
away from the Neimark—Sacker bifurcation value, and, in particular, become
nonsmooth, and eventually lead to a chaotic attractor. These transforma-
tions are closely related to so-called critical sets, existing in the phase space
of not only noninvertible smooth, but also continuous piecewise smooth and
discontinuous maps [1, 4, 112, 156]. The critical set (the critical line in
the phase plane) appeared as the generalisation of the notion of local max-
ima/minima in one-dimensional maps for a higher-dimensional framework.
And they are known to play significant role in determining global dynamic
phenomena, being responsible for qualitative changes of certain invariant sets
and their basins of attraction. For example, as shown in [94], critical lines
are crucial for transformations occurring to the closed invariant curve, men-
tioned above. Being initially smooth and “unruffled”, the closed invariant
curve, say I, eventually starts having smooth oscillations in its shape. This
happens because the curve I' intersects at the first time the set of merging
preimages LC' 1. The successive images of this intersection point are the
points of tangency between the curve I' and the critical lines LC). Moreover,
with changing the bifurcation parameter(s), the slope of I' at the points of
intersection with LC'_; can also change. Eventually this slope can become
collinear to the eingenvector corresponding to the zero eigenvalue of the map
Jacobian computed at this point (recall that for smooth maps LC_; contains

the points at which the Jacobian vanishes). After this occurrence the curve
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' starts having self-intersections and is not smooth any more.

With further change of the bifurcation parameter(s), the closed invariant
curve I' can disappear, either due to a contact with its basin of attraction
or due to a homoclinic tangle, leading to appearance of a chaotic attractor,
which can be also in the form of a chaotic area. The first studies of such
areas has been provided by, e. g., [112, 125]. In simple words, a chaotic area
is an invariant region in the phase space confined by parts of critical sets of
finite rank, the points of which give rise to orbit having sensitivity to initial
conditions. An extended notion of a mized chaotic area has been introduced
in [36]. These areas are confined not only by parts of critical sets, but also
by the relevant parts of the unstable set(s) of some saddle fixed (or periodic)
point(s). Note that the stable multipliers of the related saddle periodic points
must be positive, to prevent the points jumping outside the mixed chaotic
area (see also [156] for details).

Critical lines can be helpful also from another side. For some two-
dimensional piecewise smooth maps, in their phase space there can exist
a closed invariant curve, which is not related to Neimark—Sacker bifurcation,
but instead is made up of relevant segments of critical lines of different ranks.
In particular, it happens when a certain region of the phase space is mapped
in one step onto LC'. Then there can exist a closed invariant piecewise smooth
curve, consisting of the images of a proper segment of LC' (for more details
see, e. g., [121, 131, 228]). For the original map, it is then often possible to in-
vestigate its asymptotic dynamics by means of a one-dimensional first return
map acting on the aforementioned segment of LC', which can significantly
simplify the analysis. The best-known example of such first return maps is
a one-dimensional discontinuous piecewise increasing map (often called the
Lorenz map) associated with Lorenz-like flows (see, e. g., |21] and references
therein).

Another large class of nonsmooth dynamical systems with discrete time

are maps having at least one components in the form of a rational function.
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This implies that the respective map function has a set of nondefinition, be-
ing the locus of points in which the function’s denominator vanishes. Maps
of such kind are called maps with vanishing denominator and have been ex-
tensively investigated by many researchers. See, for instance, the triology
|45, 48, 50| and references therein, for a detailed description of peculiar prop-
erties of such maps, related to particular bifurcations and changes in struc-
ture of the phase space. One may also refer to [201, 234], where the authors
survey several models coming from economics, biology and ecology defined
by maps with vanishing denominator and investigate the global properties of
their dynamics.

Two distinguishing concepts related to maps with vanishing denominator

are notions of a prefocal set and a focal point.

Definition 4.1. Consider a map F : R? — R? and suppose that one of the
components of F' is of the form Fj(zy,x9) = % fori =1ori=2 A
point Q(aj?, :13262) € R? is called a focal point if

(i) Ny(2%,28) = Di(29,29) = 0, i. ., the component F} takes the form of

uncertainty zero over zero at ();

(ii) there exist smooth simple arcs (7)) with v(0) = @ such that
lim,_,o F'(y(7)) is finite.

The set of all such finite values, obtained by taking different arcs v(7) through
@, is called the prefocal set dq.

Note that not every point at which Fj takes the form 0/0 is a focal point.
Roughly speaking a prefocal set is a locus of points that is mapped (or often
said “is focalised”) into a single point (focal point) by one of the map inverses.
In a certain sense, the focal point can be considered as the preimage of the
prefocal set with using a particular inverse of the map. At the focal point
at least one component of the map takes the form of uncertainty 0/0, and
hence, the focal point can be derived as a root of a two-dimensional system

of algebraic equations. If it is a simple root, the focal point is called simple.
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Definition 4.2. The point @) is called simple if Nj1D;o — N;oD;1 # 0, where
N;1, Nijo, D;j7 and D;o are the respective partial derivatives over z;, 1 = 1, 2.

Otherwise, () is called nonsimple.

Presence of focal points and prefocal sets has an important influence on
the global dynamics of the map. There may occur certain global bifurcations
related to contacts of prefocal sets with invariant sets (such as basin bound-
aries) or critical lines. Such bifurcations usually lead to qualitative changes
in structure of attracting sets or basins of attraction. In particular, one
may observe creation of basin structures specific to maps with denominator,
called lobes and crescents, sometimes resembling feather fans centred at focal
points. In the Subsection 4.7, we describe a dynamic phenomenon, which has
not been observed before, namely, when for certain parameter constellations,

a focal point at the origin has a basin of attraction of nonzero measure.
4.2. Endogenous desired debt in a Minskyan business
model

In this section we consider, following |69], a family of the two dimensional
smooth noninvertible maps T : R?* 3 (Y, D) — T(Y, D) € R?, where

T(Y,D) = (T1(Y, D), T5(Y, D)) (4.1
with
B ai + as
Tl (YV, D) = Y + aas (ale_,yvy+(r+fy)D—G _'_ as 1) ’ (42)

(Y, D) = D +~(vY — D)

The parameters arte « € R, a; € Ry, i =1,2, vy e Ry, v € Ry, G € Ry,
r e (0,1).

Remark 4.3. Since Y and D denote economic variables, namely, the income

and the debt, that cannot attain negative values, we must require (Y, D) €
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2
R,

certain orbits with component-wise positive initial conditions may eventually

which is, though, not invariant under the map 7'. This implies that

leave the region of definition R? (thus having no economic significance).

Therefore, below we limit our analysis to those orbits that stay always inside
2

RZ.

Lemma 4.4. The unique component-wise positive fixed point of the map T

(% 1) | (4.3)

Proof. The statement of the Lemma trivially follows from equating ¥ =
T1(Y,D) and D = T5(Y, D). O

15 grven by

F*=(Y*,D") = ¢
r

Theorem 4.5. At v = vy with

2y — 4
p=J_t T e (4.4a)
ay(2471) ajas
the fixed point F* undergoes a flip bifurcation, while at v = v, with
1
Vpy = o1+ a2 (4.4b)

a(l+7r) ajas

it undergoes a Neimark—-Sacker bifurcation. For v < vy or for v > vy, the

point F* s unstable.

Proof. To determine the bifurcations of F*, we use the Jury conditions [83]:

P(1)=1—trJ" +detJ* >0, (4.5a)
P(—=1)=1+trJ"+detJ* >0, (4.5b)
det J* < 1, (4.5¢)

where J* is the Jacobian matrix of 7" at F™* and P()\) is the characteristic

polynomial of J*. The equalities in (4.5a), (4.5b), and (4.5¢) correspond to
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the fold, the flip, and the Neimark—Sacker bifurcations, respectively. The
trace and the determinant of J* are given by

a1a ai1a2

and detJ*  =1—~v+ayv(l+r
ap + ao 7 7( )a1+a2

tr]* =2—y+ayv . (4.6)

Substituting (4.6) into (4.5), we get that (i) (4.5a) holds for any parameter
values, which implies that F™* cannot undergo a fold bifurcation; (ii) (4.5b)
is violated for v < vy, with the latter defined in (4.4a); and (iii) (4.5¢) is
violated for v > v, with the latter given by (4.4b). [

The Theorem 4.5 has the following

Corollary 4.6. There are three different regimes of stability of F* with re-

spect to the variation of v:

1. For v < 2, the fixed point F™* 1is locally asymptotically stable for 0 <

2. For 2 <~y <4 (% + 1), the point F™* is locally asymptotically stable for
Vf <V < Upgs.

3. Forvy>14 (% + 1), the point F* 1s unstable.

Proof. Since all parameters are positive, the value vy > 0 for v > 2 and the
first statement follows. For v > 4 (% + 1), there is vy > v,s and the third
statement follows. Finally, for 2 < v < 4 (% -+ 1), there is vy < v,s and the
range v € (vy,vps) for the local asymptotic stability of F™* exists. O

Lemma 4.7. The map T is topologically conjugate to the map T:R?— R?,
T(Y,D) = (Ty(Y, D), T5(Y, D)), where

~ ai + as
TWY,D)=Y —1

~

TQ(YvD) :D+7(UY_D)7

through the homeomorphism h(Y, D) = (Y +Y™*, D + D*).
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Proof. From (4.3) it follows that y(vY* — D*) = 0 and rD* = G. Then
T\(Y+Y*, D+D*)=Y* = T1(Y, D) and To(Y +Y*, D+D*)—D* = Ty (Y, D),

which proves the statement. H

The map T has a unique fixed point (0,0), which undergoes a flip bifur-

cation at v = vf.

Theorem 4.8. If2 < v < 4(2+1), then there exists a neighbourhood U (vy)
such that for any v € U(vy) map T given in (4.7) has a local one-dimensional
invariant manifold W, such that W, is the central manifold at the moment

of bifurcation. The restriction of map T = Ty, to its centre manifold W, is
locally topologically conjugate near the fized point (0,0) to the normal form

n— —n—+c(0)n* +0(n"), (4.8)

where

2(y — 2)(r + 2)%(a? + a3 — aya9)
3(a + ag)?(ry — 4r — 4)

c(0) = (4.9)

Proof. The proof is merely technical and uses the well-known projection
method for centre manifold computation, described in detail in [133]. There-
fore only a sketch is provided.

We decompose the map T into Taylor series in the neighbourhood of the
fixed point (0, 0):

~ ~ ~ 1 1
T(x)=Jr+ F(x)=Jxr+ §B(x, x) + EC(x,a:,x) + O(Hx||4), (4.10)
where x is the two-dimensional column vector with the components Y and
D, J is the Jacobian matrix of T’ evaluated at (0,0) and, for i = 1, 2,

ZaTOOaZy oy, ZaTOOxyu
ks ) kWl-
0¢;06, e 06,0608
Clearly By(z,y) = 0 and Coy(z,y,u) = 0. Let us denote as ¢ the eigenvector
of J corresponding to the eigenvalue © = —1. We also compute the adjoint

eigenvector p such that j’p = up and (p, q) = 1 with J' being the transpose
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of J and (-,-) denoting the scalar product. Then the centre manifold W,
of fv ; 1s represented by a function whose Taylor series starts from quadratic

terms and the restriction 7, f|WUf takes the form
w s —u -+ a(0)u? + b(0)u’ + O(u?), (4.11)

where the expressions for coefficients a(0) and b(0) include J, q, p, B(q, q)
and C(q, q, q). By the Theorem about the normal form for the flip bifurcation
(see, |133, p. 121]), the map (4.11) is topologically conjugate to

£ —E+¢(0)€% +0(¢Y),
where

(0) = @(0) +b(0) = £(p. C(a0.0)) — 5(p. Bla, (7~ 10) ' Bla, )

with Id being the identity matrix. Direct computation gives ¢(0) in the form
(4.9). O

Theorem 4.9. If
C1 v # k(1/r+1), k=2,3,4,

then the map T, for values of v sufficiently close to vy, is locally topologically

conjugate near the fized point (0,0) to the normal form
2= r()e?Wz + c(v)z)2)* + O(|2]*), (4.12)
where z € C, ¢(v) € C and r(v,s) = 1. Moreover, there holds

2 2
i0(vns (e — az)*y + 2a1a9)
R (e ( )C(U"S)> T 4(1 + r)a2ala’ ' (4.13)

Proof. Again the proof is simply technical and based on the known method
described in [133]. Hence, only a sketch is provided.

We again decompose the map T into Taylor series (4.10) in the neighbour-
hood of (0,0). For v = v, the Jacobian matrix J has two complex conjugate

eigenvalues = e and 1 = e7%, 0y = 0(v,), located at the unit circle.
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Let us denote as ¢ the eigenvector of J related to (t, then g corresponds to
fi. Let p be the adjoint eigenvector such that J'p = jip and (p,q) = 1. Any
real-valued column vector z = (Y, D)’ can be represented as © = zq + zq
for some complex z. The new complex variable is then defined by z = (p, z)

and the map T in terms of this new variable becomes

2= pz+g(2,2,p), 9(22,p) = (p, Fzq + 2q)). (4.14)

The Taylor series of the function g with respect to (z, Z) starts with quadratic
terms and has coefficients denoted gi;, k + [ > 2. Taking into account the
decomposition of F'(-) into sum of B(-,-), C(, -, -) and higher order terms (see
(4.10)), the coefficients gy with &k + [ < 3 are computed as scalar products
of p and functions B and C' over arguments ¢, ¢. Omitting further technical
details, we recall that by an invertible smooth change of complex coordinate
map (4.14) can be transformed into (4.12).

Note that to have the suitable transformation, the non-degeneracy con-
ditions (i) r'(v,s) # 0 and (ii) e*® # 1, k = 1,2,3,4 are required. By

straightforward computation we get that

aaiayv(l +r
r(v)\/ 1a270( )—l—l—%

ai + as

from which the condition (i) follows. As for the condition (ii), it is always
true for £ = 1, while the values k = 2, 3,4 imply the restriction C1. ]

Now we discuss the case when the condition C1 in the Theorem 4.9 is not
satisfied and the related Neimark-Sacker bifurcation is degenerate. What is
the result of such a bifurcation needs deeper analysis. In fact, three crit-
ical values of 7 are associated with three strong resonances and represent
bifurcation points of the codimension two. The value v = 4(% + 1) is re-
lated to strong resonance 1:2, when both the multipliers of the fixed point
et®ns) — 1. The value v = 3(2 4+ 1) =: 71,3 is associated with strong

resonance 1:3, when 0(v,,) = 27/3. And for v = 2(% + 1) =: 34 strong

r
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Figure 4.1: (a) A typical 2D bifurcation diagram in the (v,~y) parameter plane of the map
T. (b) Enlargement of the art near the codim-2 bifurcation point R 3.

resonance 1:4 occurs, that is, 0(v,s) = 7/2. Below we consider only cases of
strong resonances 1:3 and 1:4. The dynamics of the map 7" in the mentioned
two cases is described numerically for the particular chosen set of parameters.
For different parameter set, the general dynamical picture can be different,
especially in case of strong resonance 1:4, which is much more tricky than
the case 1:3.

Let us first fix v = 71.3. As it is visible in Fig. 4.1a, there is no tongue
related to a 3-cycle as one could expect. Though the complete picture of
dynamics that can occur in the neighbourhood of the point R;.3 is unknown,
certain common features can be described. For all parameter values close
enough to Ry.3, the Neimark—Sacker bifurcation produces a closed invariant
curve I' surrounding the fixed point F* and there also exists a saddle 3-
cycle O3, which is located outside I' and whose stable set confines its basin
of attraction. With increasing v, the curve I' becomes larger and finally is
destroyed through boundary crisis (that is, colliding with the boundary of

its basin of attraction). In the (v,) parameter plane, the curve related to
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the boundary crisis of I' touches the Neimark—Sacker bifurcation curve at the
codimension two point Rj.3.

Let us now turn to the region related to a stable 4-cycle emerging from the
point Ry.4 = (Uns, 71.4), at which strong resonance 1:4 occurs (see Fig. 4.1b).
This case appears to be much more tricky than the strong 1:3 resonance.
Detailed description of dynamics that can occur in the neighbourhood of
the related parameter point can be found, e. g., in [133]. Here we describe
the bifurcation scenario associated with the codimension two point R4 =
(Uns, 71:4) for the map T with the particular parameter set. As one can
see in Fig. 4.1, showing a 2D bifurcation diagram in the (v,7) parameter
plane, for the values of v < 71,4 being sufficiently close to ~;.4, there are
two regions related to multistability, Pigs (shown pink) and Prgs (shown
orange). In the region Pig4 a stable fixed point F™* coexists with a stable
4-cycle Of. The latter appears due to the fold bifurcation together with
a saddle 4-cycle O, In Fig. 4.2a (which corresponds to the parameter
pair marked “a” in Fig. 4.1b) we plot in scale the parallelepiped area of
the phase space with vertices (Y4, DY), (Y5, D3), (Y5, DS), and (Y%, DY)
with Y = 1133.21, Y% = 1133.222, Y57 = 1133.447, Y5, = 1133.459,
D¢ = 499.94, D$ = 500.047, where Of is shown by blue points, O by red
points and its unstable set by red line. The stable set W*(OIf) separates
the basins of attraction of F* (light-blue) and O} (violet). One branch of
the unstable set of O is attracted to the node OI, while the other branch
asymptotically approaches F*.

With increasing v when a parameter point crosses Neimark—Sacker bi-
furcation boundary and enters the region Prgy4, the fixed point F* becomes
unstable and an invariant curve I' appears still coexisting with the stable
4-cycle. In Fig. 4.2b (which corresponds to the parameter pair marked “b”
in Fig. 4.1b) we show scaled the parallelepiped area of the phase space with
vertices (Y5, D%), (Y&, DY), (Y, Db), and (Y, DY) with Y = 1133.038,
Yl = 1133.05, Y, = 1133.347, Y, = 1133.359, D! = 499.92, D} = 500.06,
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where I is plotted by green line. The stable set W*(O11), as before, separates

the basins of two attractors.

Yo a Yo Dbyébl _b Y;sz D Y5 = & Y55

a
D2 2

D% a ’ a DE{ ﬂ b Di c . ’(’c
lel Y Yv12 lel Y Y12 Yll Y Y12

Figure 4.2: Scaled parallelepiped area of the phase space of T' corresponding to the re-
spective points “a”, “b”, and “c” marked in Fig. 4.1 with v =99 and (a) v = 0.44117, (b)
v = 0.44122, (¢) v = 0.44135. Other parameters are as before.

With further increasing v, the invariant curve I' disappears due to bound-
ary crisis, colliding with W*(OZ). The cycle Of remains the only attractor,
but now both cycles are located on the closed invariant curve IV composed by
the unstable set W*(OIf). In Fig. 4.2¢ (which corresponds to the parameter
pair marked “c” in Fig. 4.1b) there is shown the scaled parallelepiped area
of the phase space with vertices (Y5, D), (Y51, DS), (Y55, DS), and (Y5, DY)
with Y7 = 1133.038, Y5 = 1133.049, Yy} = 1132.635, Yy, = 1132.646,
D$ = 499.89, DS = 500.07, where I" is plotted by red line.

For the values of v > 7.4, the scenario with varying v is the same as for
any generic tongue. That is, with increasing v the fixed point F* undergoes
the Neimark—Sacker bifurcation and the invariant curve I' appears around
F*. With further increasing v the cycles O! (stable) and O (saddle) are
born on I' due to fold bifurcation. Then there follows the standard related
bifurcation sequence.

Note that if we fix v close to v,s; and increase v starting from the value
below 71,4 where the invariant curve I' is the only attractor, the scenario

is the following. First a pair of 4-cycles, O and OIf, appear due to fold
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bifurcation outside I'. Then I' undergoes boundary crisis and disappears,
but the unstable set W*(OI) composes now a new (wider) invariant curve
. Finally, O and O} disappear due to another fold bifurcation and there
remains an attracting I'V. For a detailed description of similar scenarios of
bifurcations associated with invariant curves we refer to [3| and references
therein.

As shown above, the map T has oscillating solutions (stable closed invari-
ant curves) occurring after the Neimark—Sacker bifurcation. The presence of
such stable attractors surrounding the fixed point F™*, at least just after the
bifurcation, follows from the fact that, according to the Theorem 4.9, the
mentioned bifurcation when non-degenerate is of supercritical type. Below
we uncover further transformations of such a closed invariant curve, leading
finally to an attracting chaotic area, when the bifurcation parameter value
moves away from the the Neimark-Sacker bifurcation boundary in the pa-
rameter space. For this we must consider the critical set of the map 7" and
its images, as explained, for example, in [94].

Theorem 4.10. The critical set of the map T is LC = @ for v < 1 or for
v>1 and

4(y —1)
P Gt 4.15
a1+ az ayv(l+ 1) ( |
Otherwise, it is
_ _ 1 =
LC:{(Y,D) Cpod+n)g
v
B (Insy +G)(vy—1) B aayyv(l +7) ( G +ay 1) }, (4.16)
v v+ a18+ + ao
where
1
S+ = ;—2 <A + \/E) , A= oo + GQ)f( t - (4.17)
aq T

Proof. Let us find the set of merging preimages LC'_1, which for the map T
is defined by

det DT(Y, D) = 0. (4.18)
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The equation (4.18) allows for analytical solution:

D:lnsi+é+ YU

Y, (4.19)
Y+ Y+

where sy are given by (4.17). For v < 1, (4.19) produces complex values,
and hence, LC'_{ = @. For v > 1, we must require that A > 0, which
implies (4.15). Substituting then (4.19) into (4.2) produces (4.16).

Let us show that the number of preimages of a point (Y, D) changes when
it crosses the set LC. We notice that both components of the map T are

invertible on D. We solve both equations
Y =Ty(Y,D) and D =TyY,D)

with respect to D, which implies

_ Y +G 1 Y —-Y
D:fl(Y7Y): ik +G+ In (a2(al&+ —)>7
Y+ Y+ al(aga—Y—i—Y)
_ vY — D
D= f(Y,D) ="
v—1

The Y-component of preimages of (Y, D) can be obtained as the intersection
of the graphs of f; and f5. Since all parameters are positive, the function
f2 represents an increasing line. Let us investigate the properties of fi. It is
defined for Y € I := (Y — aay, Y + aas) and its derivative

of1 (YY) YU ala + as)

Y _'y+7“+(7+T)(a1a+Y—Y)(a2a—Y+Y)

is positive for all Y € I. Hence the function f; is increasing in the whole

definition interval I. Further, there is

1 — - = ] A S A
Y—>117I£laa1 8Y Y—)il_/r—r&—laag 8Y oo

and

lim  f1(Y,Y)=—o0o0 and lim  f1(Y,Y) = +o0.
Y=Y —aaq Y=Y H4aao
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[t means that there must be at least one intersection of f; and f5, that is,
any point (Y, D) has at least one preimage. Let us now find the point Y (or
points if multiple) such that

(YY) 0f(Y.D)
oy 9y 4 -1

The latter results in the quadratic equation
Y24+ O +Cy=0 (4.20)
with

C, = ala; —ay) —2Y and

alar +a)(y — 1)
yu(r + 1)

Co= — (a1 — V) (aga +Y).

The discriminant of (4.20) is negative when (4.15) holds. Then the quadratic
equation has no solutions (case 1), which means that f; is always steeper than
fo. If (4.20) has a single solution (case 2), it means that f; is steeper than
fo everywhere except for the one point. Finally, if there are two solutions Y_
and Yy, Y. < Y., then fj is steeper than fo, except for the interval (Y_, Y, ),
where f; is steeper than f.

In the cases 1 and 2, f; and fy cannot have more than one
intersection, since there is always either f1(Yi,Y) > fo(Ye,D) or
f1(YL,Y) < fo(Ye, D). However, in case 3, it can be fi(Y_,Y) > fo(Y_, D)
and f1(Y,,Y) < fo(Y,,D), and then the functions f; and f, have three
intersection points: Y7 < Y_, Y5 € (Y_,Y}), and Y3 > Y. Transition from
one intersection to three intersections occurs at fi(Y_,Y) = fo(Y_, D) or
f1(Y.,Y) = £,(Y,, D). By technical transformations it can be shown that

that these two conditions are equivalent to (4.16). O

Clearly, (4.16) defines in the state space two parallel lines, say, L™ and L~.

The lines Lt and L~ divide the state space into three sub-regions, namely,
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two half-planes
H+ — {(Y,D) - D> ’YU(l‘i‘T)Y_ (1118+—|—G)(’)/— 1) —U+},
Y+ Y+
- — {(Y,D) e fyv(l+r)Y_ (Ins_ +G)(y—1) —U_},
v+ v+

aayv(1+71) [ a1 + as
Uj: = — 1
Y+ a1S4+ + as

each point of which has only one preimage and the band

B = {(Y,D) cldr)y, s+ @6=D )
¥+ v+
_eien), (st G - 1) _U+}7
Y+ Y+

each point of which has three preimages. That is, the map T is of type
71— Zs— 7.

Due to the fact that the invariant curve I', which appears after the
Neimark—Sacker bifurcation of the fixed point F™*, cannot be expressed ana-
lytically, we study its transformations numerically by using computer simu-
lations. In Figs. 4.3 we plot the respective scaled parallelepiped areas of the
phase space containing the attractor of 7' (shown with green colour) together
with the set of merging preimages LC_; (plotted grey) and critical lines LCY,
of several ranks for several different values of v (cyan colour for LC blue for
LCY, steel-blue for higher ranks). The bifurcation scenario from a smooth
invariant curve through a curve with self-intersections to a chaotic attractor
is much similar to phenomena described in [94]. For smaller value of v (in
Fig. 4.3a) the invariant curve I' does not have any contacts/intersections
neither with LC _, nor with LC. With increasing v, the curve I' expands
towards both branches of LC'_; and at some v = ¥ it becomes first tangent to
the lower branch of LC'_;. For v somewhat greater than v, the curve I' start
having intersections with LC_; at points A; (shown white in Fig. 4.3b). As
a consequence, I is then tangent to LC' at points B; = T'(A;) (shown cyan
in Fig. 4.3b). Clearly, I is also tangent to critical lines of higher rank at the
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successive images of B; (for instance, the points T'(B;) and T?(B;) located
at LCy and LCy are shown by blue and steel-blue, respectively). In such a
way, [ starts to have smooth oscillations in its shape. Note that the slope of
[' at points A; changes as v varies. Recall that at the points of LC'_; the de-
terminant det DT(Y, D) = 0 and, hence, along LC_; one of the eigenvalues
is always zero. At some v = v slope of I' at a point A; becomes collinear to
the eingenvector corresponding to this zero eigenvalue. After this occurrence
(that is, for v > ) the curve I' has self-intersections and is not smooth any
more (see Fig. 4.3¢, in particular, the respective inset). Further increase of
the constant factor v leads to occurrence of a homoclinic tangle and then
the attractor becomes a chaotic area confined by segments of critical lines
of different rank (in Fig. 4.3d LC_; is shown grey, LC' is plotted with cyan,

LCy with blue, and critical lines of higher ranks are steel-blue).

YC

Yd
22 Dg 21

Dgyﬁ a ‘ Y2a2 DS

Df
Y Vi Y Y

Figure 4.3: Scaled parallelepiped areas of the phase space containing the attractor (green),
being an invariant curve I' in (a)-(c) and a chaotic attractor in (d). The graph limits are
(a) Y = 1045, Y3 = 1049, Y2 = 1070, Y = 1074, D¢ = 492, D$ = 504; (b) Y}, = 639,
Y = 647, Y = 749, Y}, = 757, Db = 453, D} = 533; (¢) Y5 = 457, Y5 = 467, Y5 = 615,
Y5, = 625, D¢ = 415, DS = 560; (d) Y = 115, V% = 135, Y5 = 405, Y = 425, D¢ = 210,
D¢ = 710. The parameters are 7 = 2.4, = 1,a; = 4,a5 = 5,G = 10,7 = 0.02,¢ = 0.7,
and (a) v = 0.47; (b) v = 0.706; (¢) v =0.9; (d) v = 1.7.
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4.3. Global dynamic scenarios in a discrete-time

model of renewable resource exploitation

In this section we follow the paper [42]|, where a model for a renewable re-
source exploitation process is considered, under the assumption that agents
can choose between two harvesting strategies (an intensive one and an envi-
ronmentally friendly one). Asymptotic dynamics is described by a family of

two-dimensional smooth noninvertible maps F : R*> 5 (z,r) — F(x,7) € R%

F(.CU,?”) = (Fl(ZC,T),FQ(LU,T)) (421)
with
N N
Fi(z,r)= (1 +a— ;g]o) T — %$2 + %(ao% — aiqi)zr,

(4.22)

ﬂ(agro—a?%xg) -1
Fy(x,r)=r<r+(1—r)e " :

where parameters are « e R,, ke R,, NeN, ¢ € R,,a; € R,,7=0,1,
QG < q, a1 < ayp, v € Ry, B eR,, &€ R, Below we also assume that
apqo < a1q1, which follows from economic relevance (in fact, this condition
means that the technology ¢g is indeed more ecological).

Due to economic definition of the state variables (x is the available
quantity of the target resource and r is the share of agents adopting
the standard technology), the region of feasible states of the map F' is
Dr = {(z,r) : = > 0,0 < r < 1}. The region Dz is not invariant
under F'. More precisely, the value of r always stays between zero and one
but z can eventually become negative. Therefore, we must limit our analysis
to those orbits that stay always inside Dx.

Trivial dynamics of F' (concerning fixed points and their stability) has

been studied in [42] and can be resumed as follows.
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Proposition 4.11 (Bischi et al.). The lines M = {(z,r) : x =0}, My =
{(z,7) : =0}, and My = {(z,r) : r =1} are invariant under the action
of F'. The respective one-dimensional restrictions are defined as f—; : R >
r — fr—i(x) € R with

Y

k
and fr—o : R r — fooo(r) € R with
r

foO(T) = r -+ (1 _ T)e_gg' (424>

Proposition 4.12 (Bischi et al.). The map F' has five fized points, namely,
the boundary ones EJ(0,0), EY(0,1), Ei(zg,0), Ef(z},1), and an internal

one E*(x*, %), where

x;:(l— aq)k, i =01, (4.25)
2va
4 2va(l — 2 /k) — N
z" = % e = 2ol =o' /R) = Naodo, (4.26)
apdo — a1q1 N(a1q1 — aoqo)

Proposition 4.13 (Bischi et al.). The fized point E?, i = 0,1, is stable if

(Na;ig;)/(27) —2 < a < (Na;q;)/(2y) and (—1)"€B < 0.

The fized point EF, i = 0,1, is stable if

Na;qg; Naqg; ; (agqo — a Nag;
Gl o< =2 o and (—1)Zg<(—1)l( o0 —ain), () Nowgr)
2y 2y 4ry 2y

At €8 =0, the points Ey and EY undergo a degenerate +1 bifurcation.

At a = (Na;q;)/(27v) — 2, the point EY undergoes a flip bifurcation.

At a = (Na;q;)/(27), Ef and E? undergo a transcritical bifurcation.

At a = (Na;q;)/(27) + 2, Ef and E* undergo a transcritical bifurcation.

Proposition 4.14 (Bischi et al.). The fized point E* is stable if

Nayqo Naiq
(Yo _p) (Yo o
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2 27y gl
N N N —
< doto B) ( ad B) ef — qaY(@a = ad) (4.29)
2y 2y 2y
where
4
A= & B=a(l-A.

(agqo — aiq)k’
The equalities in (4.27), (4.28), and (4.29) are related to the transcritical,
the flip, and the Neimark—-Sacker bifurcations of E*, respectively.

Note that if £ < 0 (as accepted above), then xz* > 0 provided that
a3qo < a3qy, which we assume in the following. We also set the parameter
values so that the extinction boundary fixed points E) are not stable, and
hence, a > (Na;q;)/(27).

Below we continue investigation, as reported in |70, 175], of asymptotic
dynamics of the map F' when the internal fixed point E* becomes unstable.
For this we compute the critical set LC' as an image of the set of merging

preimages LC'";.
Theorem 4.15. For the map F', the set of merging preimages is

LC y ={(x,r) : ©=2(r),r €[0,1]}, (4.30)

where
8kv2(1 + ) — 4kyN(apqo(1 — 1) + arqi7r)

z(r) = : 4.31
(") = T6ar? — BN (a0t — arn) (3o — (L —7) (431

The critical set is the locus of points
LC = {(Fi(&(u), u), Fa(Z(u), u)) buefo,)- (4.32)

Proof. To find the set of merging preimages LC'_; we consider the equation
det DF(z,r) = 0. (4.33)

The latter allows for analytical solution z = Z(r) defined in (4.31). To prove

that (4.31) defines the set of two merging preimages, it is enough to show
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that for a point (Z,7), the system & = Fy(z,r),7 = Fy(x,r) has generically
either two solutions or none.

To simplify analytic transformations we rewrite the components of F' as

r
r+ (1 —r)ePs=G’

Fi(z,r) = —Az?> + Bx + Cxr and Fy(z,r) =

where
N
A:g>0, B=(14a- dodo > 0,
k 27y
N 2 2
C:g(GOQO—CL1Q1)<07 D:5W04—76L1Q1<07 G = p§ <.

The second component F; is monotone on r. Solving Fy(x,r) = 7 for r gives
a single solution

1 R:F

e = > 0.
ReDz-G 1’ 1—7

r=1

Substituting the latter into £ = F(x, r) one obtains

1
~ ReDe—G 11

gi(z) =7 —Cux <1 ) = —Ax* + Bx =: go(x).

The function gy(x) is a quadratic function with two zeros at 0 and B/A > 0
having a local maximum. Let us analyse g;(z). At first, ¢1(0) = Z > 0 and

lim, . g1(z) = Z. The derivative is

dgi(z) _C’ReDw-G (ReP*C¢ + Dz + 1)

dx (ReP=—G 1)2

The only extremum point is then

Re—W(Re_G_l)—G—l 41
Lextr = — D > 07

where W denotes the Lambert W function. Moreover, the second derivative

dgi () _ C’DI_/V(}_?e_G_l)
do W (Re—6-1) + 1

T=Textr

<0,
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and hence, the extremum is the point of maximum. The x-component of
the preimages of (Z,7) is obtained as the point of intersection of two uni-
modal maps g1(x) being strictly positive for z > 0 and the logistic-like go(z).
Clearly, there can be generically either two intersections or none, which means

that the point (Z,7) either has two preimages or none. O

Corollary 4.16. The map F is of type Zs— Zy, that is, phase points (z,7) €
Dy located to the right-hand side of the critical line LC' = F(LC_y) do not
have preimages, while the points located to the left-hand side of LC' have two

Pretmages.

A sample bifurcation diagram in the (£, 8) parameter plane is presented
in Fig. 4.4a. The point E* becomes stable due to a transcritical bifurcation
(the corresponding boundary xpg« gs is shown blue) colliding with Ej at the
line My and entering Dr from below. Then it can lose stability through a
flip or a Neimark—Sacker bifurcation (the corresponding curves ng- and (p-

are shown by red and green colours, respectively).

Remark 4.17. As follows from the Proposition 4.14, the stability region Pg-
of the internal fixed point can be confined by at most four boundaries, namely,
kp+ p; related to the transcritical bifurcation of E* and Ej, kg g related
to the transcritical bifurcation of £* and Ej, ng« associated with the flip

bifurcation of E*, and (p- associated with the Neimark-Sacker bifurcation
of E*.

In Fig. 4.4b one can see the magnification of the rectangular area marked
in Fig. 4.4a, related to the period-doubling cascade emerging after the flip
bifurcation of E*. The black dot at the curve ng« marks the the parameter
pair P = (£, B) with £ ~ —0.29355, 3 ~ 8.33, at which the type of the flip
bifurcation changes from supercritical to subcritical. Nonetheless, the other
periodicity regions associated with 2"-cycles, m > 1, do not accumulate to
the point P, as one would expect. To explain this occurrence deeper analysis

is needed. First, in Fig. 4.5a we show the magnification of the respective area
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Figure 4.4: Colour coded 2D bifurcation diagram in (&, 3) parameter plane
with different colours corresponding to different periods. The parameters are
a = 3.39203,a¢p = 1.973,a; = 1.91,qp = 0.1013,¢y = 0.404,v = 1.875, N = 15,k = 3. In

(b) the magnification of the rectangular area marked “b” in (a) is shown.

(marked by “S;” in Fig. 4.4b) together with several bifurcation curves related
to the stable cycles Oy and Oy4. Below the point P the curve ng- is related
to the supercritical flip bifurcation (at which the stable 2-cycle Oy is born),
while above P it corresponds to the subcritical flip (at which the stable fixed
point £ collides with some saddle 2-cycle O, and the latter disappears).
Clearly, above P there is no stable Oy and the stable O, must appear
due to some other bifurcation. To discover the origin of Oy, in Figs. 4.64,b,
we plot 1D bifurcation diagram versus € for f = 7.9 < B along an arrow
marked “S7” in Fig. 4.5a. Red and pink lines (both solid and dashed) show
saddles and unstable nodes, respectively. The grey stripes denote the attrac-
tor at the line M, while blue and green colours are related to two different

attractors located in the interior of Dz. As one can see, there is a range of
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Figure 4.5: (a) The magnification of the area marked by “S,” in Fig. 4.4b. (b) The
schematic representation of the bifurcation structure related to periodicity regions for
023, 0254,-1, and 0254,-2, s € N.

coexistence of the two stable cycles Oy and O4. The former appears due to
the (supercritical) flip bifurcation of E* and then disappears for smaller &
due to the fold bifurcation with the related complementary saddle cycle O,
shown by solid red line. In its turn, for some larger &, the cycle O, enters

a b
/——‘g*‘ 0.06 4
: (92

T
.
08 ot @ 2 0(2) @
b -0.08 \ L oolO1
0207 3 0201 -0.297 3 0291 1.2 - 53

Figure 4.6: (a), (b) 1D bifurcation diagram corresponding to the arrow marked “F3” in
Fig. 4.4b. Green and blue lines denote two orbits related to different initial conditions; red
and pink colours denote saddles and unstable nodes, respectively. (c) The cyclic invariant
curves ['y coexisting with the stable O, for £ = —0.2927511.

the interior of D crossing the line My. At this moment O collides with
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the unstable 2-cycle O C Mj and undergoes the transcritical bifurcation
(changing from being a saddle to being an unstable node). With decreasing
¢, the cycle Oy becomes a saddle again due to a (subcritical) flip bifurcation,
while an unstable node 4-cycle O, appears (shown by cyan line). Eventu-
ally, O4 becomes an unstable focus, being surrounded by four cyclic invariant
curves I'y and then becomes stable due to a Neimark-Sacker bifurcation (p,
(see the inset in Fig. 4.6b0). The panel ¢ presents the part of the phase
space for £ = —0.2927511 (corresponding to the vertical dashed line visi-
ble in the mentioned inset) with two coexisting attractors, Oy and I'y, the
basins of which (pink and white, respectively) are separated by the stable
set of the saddle @s. The bifurcation curves 9027@2 and (p,, associated, re-
spectively, with the fold bifurcation of the stable Oy and the saddle O, and
the Neimark-Sacker bifurcation of Oy intersect at the point P = (5 : B) with
£ ~ —0.29242, B ~ 7.5 (marked by the other black dot in Fig. 4.5a). The
point P is a codimension-2 bifurcation point for the complimentary cycles
O, and @2, both of which at P have one multiplier equal to +1 and the other
to —1. Thus, at P two more bifurcation curves meet, namely, o, and 74,
corresponding to the flip bifurcations of Oy and Oy, respectively.

In such a way, the periodicity region related to the stable O, is confined
by three borders: 7+, 6, 5, (between the points P and P), and 70, (below
P). The bifurcation boundaries of the region related to the stable Oy are
no, below ]5, Co, above ]5, and np,, corresponding to the flip bifurcation of
O,. In the parameter domain confined by (p,, no,, and ng- the stable fixed
point E* coexists with the stable Oy, while in the domain confined by ng-,
Co,, and 902’@2 the stable Oy coexists with the stable Os.

Scenario similar to the one described above for the fixed point E* can be
observed for the stable 2%-cycles Oy, s € N. It is schematically represented
in Fig. 4.5b, where solid lines are related to the boundaries of the periodicity
regions and dashed lines correspond to several auxiliary bifurcation curves.

The stable Oq2s loses stability due to a flip bifurcation, which can be super-
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critical (below some point P') or subcritical (above P’). At the bifurcation
00, the saddle Os2s1 and the unstable node OY%,.1 C Mg un-

dergo a transcritical bifurcation changing stabilities. There exists some point

CUrve Kg,

P’, at which four bifurcation curves meet: 7, Co and
’ Oy2s+17

225427 Y O0y2541,0525+1

N0, Ab the curve ng (above P'), the unstable Oge.s1 becomes a saddle
due to a subcritical flip bifurcation, giving rise to an unstable node Ogzs+2.
The latter eventually transforms to an unstable focus and gains stability at
a Neimark—Sacker bifurcation curve (g, ,. At the curve 90225+1,@225+1 (the
part located between the points P’ and P’), the stable cycle Qg1 disap-
pears due to a fold bifurcation together with its complementary saddle cycle
Oy2s41. Note that below P’ at 0022”17@225“, the same two cycles undergo the
fold bifurcation but now they are a saddle and an unstable node, respectively.
Below the point P’, the stable Oy appears at the curve N0, due to a
flip bifurcation of Og2s+1. The cycle Ogzs+2 loses stability due to a (subcritical
or supercritical) flip bifurcation at no,,,,.

The bifurcation structure of the respective part of the (£, 3) parameter

plane can be summarised as follows:

Proposition 4.18. Consider the (€, 3) parameter plane of the map F with
the other parameters fixed and consider the area located below the curve ng-
related to the flip bifurcation of the internal fixed point E*. The region
P, $=0,1,..., is confined by no,, and no,,,.,, related to the flip bifur-

cations of the respective cycles, and 0, corresponding to the fold

52s+1,05254+17

bifurcation. The region Po,, ., is confined by no,,.,,, the other flip bifurca-
tion boundary ne.,.,, and Co,.,,, associated with the Neimark-Sacker bifur-
cation. In the domain confined by Mo, M0,.2s A COy..ys the stable Oges

and Og2s+2 coexist. In the domain confined by ne,., Co and 0, A

225+27 925+1,09254+17

the stable Og2s+1 and Oq2s+2 coexist. In between the curves (o and 14

22s+2 92s+1

(related to the flip of the unstable @22s+1) there exists a domain associated
with an attracting cyclic invariant curves I'o2s+2, coexisting with the other

internal attractor (either Ogs or Ogasi1 ).
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For small enough (3, when the attractor becomes non-regular, the bifur-
cation scenario further observed is non-typical for such kind maps, though
being characteristic for the map F'. In order to describe the transformations
of the related attractor, in Fig. 4.7 we show the evolution of the coordinate
r versus & corresponding to the arrow marked “.S5” in Fig. 4.4 for the fixed
p = 5.56. The dark-grey (horizontal) line at r = 0 is related to the attrac-
tor at M. Cyan colour denotes the unstable cycle Oyy commented below.
Two vertical light-grey stripes mark two sample periodicity windows of order

twenty-four and forty.

0.01 PW.245 l« »>j<p-Ww.40 g

b

0
-0.2959 § -0.2955

Figure 4.7: 1D bifurcation diagram for § = 5.56 (the respective path is marked “S;” in the
inset of Fig. 4.4b). (a) Evolution of r; (b) an enlargement of the rectangular area marked
in (a); (¢) an enlargement of the rectangular area marked in (b). Cyan line denotes the

cycle Oy when it is unstable.

In Figs. 4.8a,b we plot the state space of F' with the related chaotic
attractor, which is an 8-piece Qg for the chosen parameter set. There are
also shown two saddle cycles O4 and Og together with some part of their
unstable sets W"(O,) and W"(Os), needed for further explanation of the
dynamic phenomena. The stable multipliers of both cycles are 0 < puj < 1,
0 < pg < 1. Clearly, W*(Oy4) and W"(Os) asymptotically approach Qg, and
the structure of these sets is rather complex due to infinitely many pleats
and self-intersections.

Let us define the domain A = UL ;A; confined by the critical lines
LC,, n =0,...,7, and the appropriate segments of unstable sets W"(Oy)
and W"(QOg). The domains A; are cyclically mapped one into another,
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that is, F(4;) € Ajq, @ = 1,2,3, F(Ay) C A;. For instance, the
domain A; is shown in Fig. 4.8b. Its boundary is a closed contour
OA = (PP, P3Py P;s Ps Py), where the points P; are intersections of LC', LCYy,
LCs and W*(Oy), W*(Og). In fact, A; is the absorbing area of mixed type
for F4. Indeed,

1. F4(A1) C Al;

2. There exists a neighbourhood U = U(A;) such that F*(U) C U and
almost all points (z,r) € U\A; (except for the points belonging to the
stable sets W*#(Qy), W#(Os)) have finite rank images in the interior of
A (the boundary QU of the neighbourhood U is shown in Fig. 4.8b by
black line);

3. The boundary 0A; consists of the segments of the critical lines and the

unstable sets of the saddle cycles.

Similarly, every domain A;, i = 2, 3,4, is the mixed absorbing area for F*.
It means that A = UL A; is the mixed absorbing area for F. Moreover, it
is also known that if A is the mixed absorbing area, then its image F(A)
is the mixed absorbing area as well, according to the Proposition 4.2" from
156, p. 208]. Hence, either (i) there exists a finite M such that FM(A) is
invariant, that is, FMTL(A) = FM(A), or (i) N2, F(A) is invariant.

Proposition 4.19. Consider the (£, 3) parameter plane of the map F with
the other parameters fixed. In the area located below the sequence of flip
bifurcation curves ne,., s € N, there exists a connected parameter set Ca
associated with a mized absorbing area A = UL, A;. The boundaries of
..., 0, and the appropriate
segments of unstable sets W"(Oy) and W*(Og), where the saddle cycles O,

and Og have positive stable multipliers.

A are given by the critical lines LC,, n = 0

It is know that the invariant absorbing area of mixed type, obtained by

the aforementioned iterative process, can contain other invariant areas, and
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Figure 4.8: State space for 5 = 5.56 and (a)—(c) £ = —0.29571; (d) £ = —0.29571771307;
(e) £ = —0.29571775. The saddle cycles O, and Og together with their unstable sets are
shown red and magenta, respectively. In (b) the rectangular area marked “b” in (a) is
shown enlarged. The black line contours the neighbourhood U = U(A;). In (¢)—(e) the
magnification of the area marked “c-e¢” in (b) is plotted showing the evolution of the part

of the attractor.

hence, the attractor is not necessarily chaotic. This is also confirmed by the
one-dimensional bifurcation diagram in Fig. 4.7, where one can clearly notice
at least two periodicity windows (related to a 24-cycle and a 40-cycle for the
chosen parameter set, which are marked by two vertical light-grey stripes).
Moreover, in Fig. 4.7¢, where a part of the diagram is shown enlarged, it
becomes clear that at first (for the value of & ~ —0.2957177) the chaotic
attractor suddenly shrinks, and then for smaller £ the stable Oy is revealed.
Below we explain such peculiar behaviour.

In Fig. 4.8¢ the part of the state space for £ = —0.295715 is shown, where
one can see the rightmost piece (the closest to LC') of the chaotic attractor
Qg. This piece has a particular shape, namely, it is multiply connected.
Inside Qg the are two cycles marked, namely, the unstable node cycle Oy
(cyan points), whose evolution is also shown in the one-dimensional bifur-
cation diagram in Figs. 4.7, and the saddle cycle Oy (red points). Cycles
Oy and @24 appear for a certain larger ¢ due to a fold bifurcation. With
decreasing &, due to an interior crisis, the cycle Oay together with its unsta-
ble set W*(Oyy) “detaches” from Qg, which then suddenly decreases in size
and splits into 24 pieces. The case right after this bifurcation is depicted in
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Fig. 4.8d, where W*(Oyy) is shown by red line. When ¢ is decreased further,
24-piece chaotic attractor Qs is transformed into 24-cyclic invariant curves
["94, now surrounding the unstable focus Oy (see Fig. 4.8¢). Eventually, Osy
undergoes a Neimark—Sacker bifurcation and becomes stable with succeeding
period-doubling cascade that finally leads to the chaotic attractor Qg again.

This particular bifurcation scenario is typical for considered range of the
parameter £ and small 8 and is repeated for cycles of different periods. For
example, at £ ~ —0.29563 similar periodicity window corresponding to pe-
riod forty exists (marked by a vertical light-grey stripe in Figs. 4.7), where
the same bifurcation sequence is observed. Note that 24 = 4 -2 -3 and
40 = 4 - 2 - 5, so that with decreasing & the periods follow the Sharkovsky
ordering multiplied by four.

4.4. Revealing bifurcation mechanisms in a two-
dimensional nonsmooth map by means of the first

return map

In this section we analyse the effects of fraud in a public procurement pro-
cedure as in [176, 177, 181, 194, 195|. For this we consider the map family
S : 10,123 (z,q) = S(x,q) € [0,1]?, describing the dynamics of the model,

as
S(x,q) = (F(x,q),G(x)), (4.34)
where
) Fi(z,q), 0<g<yq,
Fle = { Fieq), §<q<l, (4.352)
Fylz,q) =z +x(1 — x)zgiz — ;Z; 1 i Fy(z,q) = 22, (4.35b)

with ¢ = A./f and
G(x) = v, (4.36)
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Here the parameters are « > 0, f > 0, v € (0,1], 5 > 0 and A, > 0.

Remark 4.20. The parameter A. only stretches the parameter space. In-
deed, one can introduce & = A, and f = f/A.. So, without losing gener-
ality, we put A. = 1, that is function F, acquires the form
a(l—fq) -1
a(l—fq) + 1’
while the threshold value becomes ¢ = 1/ f.

Fi(z,q) =2+ 2(1 —x)

(4.37)

Remark 4.21. The maps S; and Sy with, resp., 71,72 € (0,1] and fiy
= foy2, are topologically conjugate through the homeomorphism h(z,q) =
(,72q/7). To qualitatively describe the dynamics of the map S, one can fix
any value of v. We choose v = 0.9, which is reasonable from an application

viewpoint.

In the case with f < 1, and hence, § > 1, in the whole square of definition
0, 1] there is ¢ < q and the map S is smooth, since the dynamics of the
x-coordinate is defined only by the function Fj.

For the case when ¢ < 1, the map S is continuous, since for any 0 <
x < 1 there is F,(z,q) = F,(z,q) = x?, but piecewise smooth, as the related
Jacobians at the point (x, ¢) in general do not coincide. The regions, in which

the map S is defined differently, are given as
Dy={(z,q) : 0<2<1,0<q¢<q} (4.38)
and

Dy ={(z,q) : 0<2<1, ¢

IA

q <1} (4.39)

Any orbit 7 = {(zo, @), (1,91), - -, (%i,q), ..} of the map has correspon-
dence with a symbolic sequence o(7) = s9s1...5; ... where

B if i Qi) € Dy )
Si{ (@ q) , i=0,1,...

T, it (xi,¢;) € D,
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We will use this notation below to distinguish between cycles of the same pe-
riod but with different location of points. We will also use symbolic sequences

to denote the composite of n successive iterations of function F', that is, for

o=S80""S$n-1,8 €{B, T}, i=0,...,n—1, thereis F, = F, ,o...0Fj,.
The regions D, and D, are separated by the horizontal line
LC_ 1 ={(z,q) : 0<x <1, ¢g=q}. (4.40)
Its first image—the critical line—is defined as
S(LC_1) := LCy = LC = {(z,q) : q=~z?, 0 <z < 1}. (4.41)

For the map S, all points from [0, 1]* located above LC have no preimages,
while every point below LC' has one preimage. We can also clearly see that
any point belonging to the region D, is mapped in one step onto LC'. Thus,
the critical line LC' is Z -region and the map S is noninvertible of type
/1 — Zo — Zy. The asymptotic dynamics of such maps is often reduced
to a one-dimensional subset of the state space, made up of the parts of
LC;, v+ = 0,1,2,..., more precisely, of the images of a proper segment of
LC 121, 131, 228]. This allows one to study the asymptotic dynamics of
the map S by means of the one-dimensional first return map acting on the
aforementioned segment, as we shall see below.

Before considering stable cycles and more complicated attractors of the
map S by means of the first return map, let us recall the main facts about
the trivial dynamics of the map [73].

There can be at most three fixed points:

1
Ey=(0,0), BEi=(l7), E'= ((37})5 C;—f) , (4.42)

among which Fy and F4 always exist, while £* can be located outside the
feasible square or even undefined.! Concerning the stability of the fixed

points, main facts can be summarised in the following

"When a < 1, the 2-coordinate should be obtained in general as exponentiation of a negative real
number to a real power. Such a function can not be defined consistently, since depending on § it may be
non-real, have several values, or even allow multiple definitions.
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Proposition 4.22 (Coppier et al.). Let us consider the map S : [0,1]* —
0,11 as defined in (4.54)(4.57). For its fized points given in (4.42), the

following statements hold:

1. For a < 1, the fized point Ey is stable, at o = 1, a transcritical bifur-
cation for Ey and E* occurs, and for o > 1 the point Ey 1s a saddle.

2. Fora < ﬁ, the fixed point Ey 1s a saddle, at o = —1—17f’ a transcritical
bifurcation for Ey and E* occurs, and for o > ﬁ

stable.

the point E; 1s

3. The fixed point E* is stable for

oyfgland1<oc<ﬁor

o vf>1, a>1and

Z:—1+w<l (i;;)) >0

At Z =0, the fixed point E* undergoes a Neimark-Sacker bifurcation,
and for Z < 0, the point E* is an unstable focus.

™|

Remark 4.23. Note that the transcritical bifurcation for points Ey and E*
is particular, since for a < 1 and almost all values of 5 the point £* does not
exist in the real plane. Nonetheless, for o = 1 the point E* coincides with
Ey. One can interpret this situation as if before the bifurcation E* is virtual,
located outside the feasible region, and then it becomes “real” through a

transcritical bifurcation at the critical value of a.

Remark 4.24. It can be shown that if vf < 1, it is always Z > 0, and,
in this case E* cannot undergo the Neimark-Sacker bifurcation. It is also
clear that if vf > 1 and a > 1, there is always E* € D,, and therefore the

transcritical bifurcation for E* and F; cannot occur.
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Assume vf > 1 and o > 1, so that E* € D,, E; € D,. The Jacobian

matrix evaluated at point E* is
1 1
af fa=1\B [ 1 _ (a=1)P
! 2 (aﬁ) ! (afv)

g=1
v (52) 0

If det J* = 1, the characteristic equation for E* reads as

J*

(4.43)

M —A+1=0,

which corresponds to the Neimark—Sacker bifurcation with the eigenvalues

Ao = e5 related to the rotation number %.

20

Figure 4.9: (a) A typical view of the bifurcation structure for map S in the («, f) parame-
ter plane where different colours are associated with attracting cycles of different periods.

The other parameters are v = 0.9, 3 = 1. (b) The magnification of the boxed area in (a).

In Fig. 4.9a, we show a typical 2D bifurcation diagram for the map .S in
the (a, f) parameter plane. One can observe some periodicity regions that

form a bifurcation structure similar to the period adding structure, usually
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observed near a Neimark—Sacker bifurcation curve [3, 56, 229]. For instance,
between regions corresponding to periods six and seven, there is a region cor-
responding to period thirteen, and between regions corresponding to periods
seven and eight, there is a region corresponding to period fifteen. Neverthe-
less, none of these regions issues from the Neimark—Sacker bifurcation curve.
In the panel b we show the enlargement of the boxed area marked in the
panel a. One can see multiple periodicity regions, marked as P, with various
symbolic sequences o, related to cycles O, of different periods. Some regions
correspond to cycles of the same period but different symbolic sequences,
such as Pysr, Puir2, and Pyys for period six or Puor, Pusr2, Putys, and Pyaa
for period seven. Moreover, between different pairs of regions associated with
periods n and n + 1, one can see regions related to periods j-n+n+ 1 and
n+j-(n+1),7 =12, ... having symbolic sequences that are the con-
catenations of the respective basic sequences. For example, one can observe
several chains of regions of periods 13 =64+7,19=2-64+7,25=3-647,
such as Puirzgirs, Prgaroyeg,s, ete. This suggests an intuitive idea that the
bifurcation structure in this part of the parameter space of the map S has
common features with the period adding structure. Below we show that this
bifurcation structure is not associated with the Neimark—Sacker bifurcation.
Instead, it is related to the appearance of the closed invariant set made up
of the parts of critical lines LC; and the particular ordering of the periodic-
ity regions can be explained by means of the first return map acting on the
respective segment of this closed invariant set.

We make first several observations concerning critical lines LC;, 1 > 0.
The endpoints of LC' (defined in (4.41)) are the fixed points Fy and Ej.
For vf > 1 and a > 1, it is E; € D,, which implies LC' N D, # .
Since S(D,) = LC, there is always a segment of LC that is mapped by S
back to LC. More precisely, let By = LC_1 N LC and By = S(By), then
LCy D B1Ey = S(ByEy) € LC. Hence, B1E; = LC N LCy. Similarly,
there is a segment of LC4 that is mapped by S back to LC}, namely, LC5 D
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ByB1FE1 = S(B1Ey) C LCY, that is, BoB1FE1 = LC, N LCs. And so on.,

Let us consider a set £ := U;>0B;B;11. If set L is completely located in
the region D, (more precisely, below LC' in the region Z), then £ cannot
contain any closed contour. This case corresponds to the values of o and f
which are small enough. For instance, when the fixed point £* is attracting
or right after the Neimark—Sacker bifurcation. With the increase of a and f,
the set £ expands outwards from the fixed point £* and eventually some arc
By By for a certain k touches LC_q, so that from now on BpBy.1 N D, #
&. The portion of By By, belonging to D, is mapped by S to the critical
line LC. Then the segments of critical lines constitute the closed contour
By 9By ... BBy 1By9, which is, however, not invariant under the action of
S. This case corresponds to existence of an attracting closed invariant curve
I', which is nonsmooth and some parts of it belong to the closed contour
By 9By ...BpBpi1Bi 9. Finally, when By o is located on LC' to the right
of By, there exists an attracting closed invariant set A made up of the parts
of LC;,1=0,...,k+ 2, that is, A = ByBy ... By1Br2By. To sum up, we

can formulate the following result.

Theorem 4.25. Let k > 0 be the smallest number such that LC), O B B4
N LC_ 1 # @ and By, € Dy, Byy1 € D,. Let us denote by C' = C(x¢,q) the
respective intersection point. Then the closed invariant set A made up of the
segments B;B;1 C LC;, i =0,...,k+ 1 exists if S(C) is located on LC' to

the right of the point By, that is, xc > xp,, where xp, 1s the x-coordinate of

BO J
= (%C)ﬁ (4.44)

Proof. Tt is easy to show that for any point (x,q) € Dy, it cannot be mapped
onto the critical line LC, that is, S(x,q) &€ LC. This implies that if all arcs
B;Ey, 1 > 1 are located in D,, the closed invariant set A made up of the
respective segments of critical lines LC; cannot exist.

Let £ > 1 be the smallest number, such that ByEy N LC_ 1 # @, but
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first let B Bp.1 C D,. The arc B Ej has two intersection points with LC' 1,
denoted as C(z¢,q) and C(i¢,q) with z¢ < Zc. Due to the form of map
F,, the arc CC of LC), and the straight line segment CC of LC_; are both
mapped onto the same segment S(C)S(C') € LC. So, the parts of LC; now
create a closed set A := BBs. .. Bi11S(C)By. However, this set is not
invariant under the action of S. Indeed, since ByBjr.1 C D,, there is also
A c D,. Then set A does not contain any preimages of By, as By & A.
Then, the image S(A) does not contain By, the second image S?(A) does
not contain B, and so on. It means that each successive image of set A
confines the smaller area.

Now let By, € D, and By, € D, and suppose that x¢ < T g with

1\7
Tpst = (77) ) (4.45)

such that S maps the whole vertical line segment By 'B; ', where By =
(:1330—1, g) and B,' = (:L‘Bo—l, 1), to the point By. In this case, everything
depends on the images of the segment C'S(C') with C' being the inter-
section point of By 15(C) and LC_;. Suppose there exists iy such that
Sio(C'S(C)) C D,. Then using a similar argument as used in the paragraph
above, we can show that the invariant set A does not exist (with the differ-
ence that in our reasoning instead of points B; we must consider images of
C and C). On the other hand, it can also happen that S¥'(C'S(C)) C D,.
Then the set A = C'S(C)S(C)S2(C). .. 8%1(C)S%+2(C)C is invariant for
S.

It means that if the arc By1.5(C) has a non-empty intersection with Dy,
then further analysis is needed to understand whether the closed invariant
set A made up of segments of critical lines exists or not. This implies that
the sufficient condition for existence of set A is that the z-coordinate of S(C)
is zg(c) > T, Indeed, if the latter holds, there is By,15(C) C D, then
its image belongs completely to LC' and the set A = ByB;...Bpi1By is

invariant for S. [l
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Remark 4.26. Note that it can also happen that the x-coordinate of By,
is greater than T gt and point By, is located on LC' to the right of By.

Then set A also contains the segment By oBj.

When the set A exists, its bearing segment is ByB; C LC. Then there
exists a one-dimensional map ¢ : BgB; — ByBj that is the first return map.
By definition ¢ maps the x-coordinate of a point (x,q) € ByBj to the z-
coordinate of the point S"(x, q) € ByB; where n is the smallest possible. For
different initial points (x, ¢) the number n can attain different values, which

implies that the first return map ¢ is discontinuous.

Theorem 4.27. The first return map ¢ : ByB1 — ByBy always has at least

one discontinuity point and at least one kink point.

Proof. The discontinuity point(s) of ¢ is related to the intersection of
the invariant set A with the segment By'By' (see (4.45)) of D, that
is mapped into By. Let B, B,i1 C A be the segment leading to this
intersection for a certain m, and the intersection point is denoted as
Bgl = B,,B+1 N BalBO’l. Suppose also that B, 11 = S(Bn) ¢ BB,
while By, 2 = S(Bui1) € BoB1.2 Then the image of the arc Bméo_l is
S(Bméo_l) = Bp+1By (not belonging to ByBj), while the image of the
segment By 1S(C)By,s1 is S(BytS(C)Byy1) = BoS*(C)Byya (belonging
to ByB)). Hence, there exists a point £ = (#,§) € ByB; such that
S™(%,4) = By'. The points to the left of £ (close enough to it) return
to BypBy in m + 1 steps, while the points to the right of E (close enough to
it) return to ByB) in m + 2 steps. In such a way, & (the z-coordinate of E)
represents a discontinuity point of map .

Map ¢ also has at least one kink point. Indeed, set A has at least two
intersections with LC_;, one of which is By and the other is the point

C defined in the Theorem 4.25. Suppose that the situation is generic,

2Note that the relevant value of m always exists in case m > k. Otherwise, if m = k, then By,
is located to the left of segment By !By ' and By is located to the left of By. In this case instead of
segments B, By,+1 and By,+1Bpm1o one has to consider C By and S(C)Bgio
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that is, S(C') # By and let S"(C) € ByB; for a certain m. Clearly,
here there is S™ = (F™,G") = (Fm,G™). Consider the two points
(1,q1) € BrBri1 N Dy and (x9,q2) € BrBryi1 N D, sufficiently close to
C. Since map S is continuous, both points will be mapped in ByB; by m
iterations of .S. However, the symbolic sequences related to these m succes-
sive S-iterations differ by one letter, namely, o(S™(x1,q1)) = BT™ ! and
o(S™(xe,q2)) = T™. As any point from ByB; is mapped into By Bjii1 by
Sk = (F* G*) = (F4, G¥), there must exist a point (2, §) € BBy such that
S*(&,q) = C, that is, F(2,q) = z¢ and G¥(2,4) = q. The point 7 is a
kink point for the map ¢. []

Generally, the closed set A can attain more complicated forms with mul-
tiple pleats, and can have several intersections with the line x = z B!, some
of which are relevant to induce more discontinuity points for ¢. Similarly, A
can have multiple intersections with LC'_1, and hence, the first return map ¢
can have multiple kinks. Due to this reason, the map ¢ can be constructed
only numerically.

The first return map ¢ consists of several branches separated by kink and
discontinuity points. Each branch is associated with a symbolic sequence that
corresponds to the combinations of functions Fj and F), applied subsequently
while iterating the initial point from ByB; until it returns. Every fixed point
of ¢ is associated with a cycle of a period n and a rotation number % for
the original two-dimensional map S (here n is the number of steps required
for the initial point to return to ByBj). Every cycle of period m for ¢ is
associated with a cycle of a period [ > m and a rotation number 7 for the
map S, where [ is the sum of the lengths of symbolic sequences related to
the respective branches.

Since the first return map ¢ is nonsmooth and discontinuous, one ob-
serves in the parameter space dynamic aspects and bifurcation phenomena
characteristic for such kind maps, e. g., traits of several period adding struc-

tures. Moreover, ¢ often has nonlinear smooth branches, and hence, its fixed
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points and cycles may also appear due to smooth fold bifurcations. By con-
structing the respective first return map near a particular bifurcation, one
can describe the mechanism of appearance of a certain cycle (or cycles) of

the original map S and also determine the related symbolic sequences.
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Figure 4.10: (a) 1D bifurcation diagram along the strait line segment marked by letter
“B” in Fig. 4.9b. (b)—(d) The first return map corresponding to vertical dashed lines in
the panel a for (b) a = 18.4, f = 1.389; (¢) a = 19.9, f = 1.338375; (d) @ = 21.7, f =
1.277625.

To illustrate the period adding like bifurcation structure, in Fig. 4.10a,
we show a 1D bifurcation diagram along the strait line segment marked by
the letter “B” in Fig. 4.90. This segment intersects the regions Py 2,1,3,
Pstr2)2st73, and Puar2y3,45 corresponding to periods thirteen, nineteen and
twenty-five and located between periodicity regions Puar2 and Pyas. As one
can see, the related periods are combinations 7-6+7 with 7 = 1,2, 3 and the
related symbolic sequences are the respective concatenations of the basic se-
quences B*T? and B*7T3. In Figs. 4.10b-d the first return maps ¢ associated
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with all three cycles are shown. Locally, near the respective discontinuity
point, the map ¢ is of increasing-increasing type, for which period adding
structures are characteristic. However, in contrast to the piecewise linear
map f (1.6) considered in the Sec. 1.2, here every stable cycle of ¢ coexists
with its complementary unstable cycle (i. e., they appear due to a smooth

fold bifurcation or due to a fold border collision bifurcation).

4.5. Dynamics of a durable commodity market involv-

ing trade at disequilibrium

The current section is devoted to studies of asymptotic dynamics of a family
of the three-dimensional piecewise smooth maps modelling an elementary
market with two agents exchanging two stock commodities, totals of which
are normalised to unity, which was suggested in [169, 188, 190]. That is, the
current distribution of stocks is uniquely given by the current asset shares
for the first agent denoted as X and Y. We consider the relative prices of the
related stocks, and obtain the third model variable being the relative price
p. All in all, we construct the map ® : R?* > (X,Y,p) — ®(X,Y,p) € R?,

O(X,Y,p) = (®1(X,Y,p), P2(X, Y, p), ®3(X,Y,p)), (4.46)

where the map components are defined as

r1(X,Y,p) =21, (1 —22)(x1 —X) <0,
Q1 (XY, p)=1q 2a(X,Y,p) =29, (z2—21)(12—X) <0, (447a)
X, otherwise
n(X,Y,p) =1y, (21 —a2)(2 —X) <0,
Do(X,Y,p) =% (XY, p) = y2, (2 —21)(1p—X) <0, (4.47Db)

Y, otherwise

Oy(X, Y, p) = pe"277), (4.47¢)
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where
r1 = (X +pY), ro=1-6(1-X+p(1-Y)), (4.48)
1—a 1—-p
= T4, =1——=2(1—z9). 4.49
Y1 P 1 Y2 % ( 2) ( )

The values x; and y; are obtained, given the budget X + pY’, by maximising

the utility function of the first and the second agent, respectively:
U=Ulz,y) =2y, V=V(y)=>0-2)1-y)"" (450

where o € (0,1), g € (0,1) and without loss of generality, we assume that
a > . The opposite case is considered likewise. The pairs (z1,y;) and
(9,y2) are referred to as the first and the second trader’s optima. The
parameter 0 € R, denotes the sensitivity of the price change.

Since the variables X, Y, and p denote economic quantities, we must
require that (X,Y) € £, € =1[0,1]%, and p > 0.

Lemma 4.28. The region € x (0,00) is invariant under the action of ®.

Proof. For the third coordinate p, from (4.47c) it is obvious that it stays
positive.

For X and Y, the two-dimensional point computed according to (4.47a)
and (4.47b) may fall outside £. In particular, the point (x1, ;) € € if either
xy > 1 ory; > 1, while (z9,y2) € € when x5 < 0 or yo < 0. Consider a
two-dimensional section p = const. Then the points (X,Y) € &, (z1,11),
and (2, y9) all belong to the same line (defined by (X,Y)) with the negative
slope —1—1). The points (x1,71) and (x2,y2) can be located either (i) at the
same side with respect to (X,Y") or (ii) at both sides from it.

In the case (i), the result of ®; and 5 will be the point, the distance from
which to (X,Y) is smaller. And the points (z1,y;) and (x2,y2) can not fall
outside &€ simultaneously. Indeed, suppose X < 1 < 9, then Y > 31 > y»
(clearly, (X,Y) € £). There cannot be x1 > 1, since there is always x5 < 1,

while y; <Y < 1. So, even if y5 < 0 (note that x5 > X > 0), the action of
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®; and @y will result in (x1,y1) € €. Similarly, if 0 < X < x9 <z, then
1 >Y >y >y > 0. So, even if 1 > 1, the action of ®; and &, will
result in (z9,y2) € €. The remaining two possibilities: x3 < 27 < X and
r1 < 9 < X are handled in a similar way.

The case (ii) where both optima are at either side of (X, Y") corresponds
to (X —x1)(X — 22) <0, or the third row in (4.47a) and (4.47b). It means
that the action of ®; and ®y will result in (X,Y) € &, indifferently from
whether (z;,v;), i1 = 1,2, belong to £ or not. O

The map P is piecewise smooth and its state space is divided into regions

Pr={(X,Y,p) : (x1—x2)(z1 — X) <0}, (4.51)
Po={(X,Y,p) : (x2 —71)(22 — X) < 0}, (4.52)
Px ={(X,Y,p) : (X —21)(X —z2) <0}, (4.53)

where the action of the map is performed by using the different functions
(with z; defined in (4.48)). For (X,Y,p) € P1 U Py, its image O(X,Y,p) is
such that

[(21(X.Y,p), 22(X,Y,p)) — (X, V)| =m

min 71, = (X, V). (4.54)

In other words, the trader’s optimum that is closer to the initial point is cho-
sen. The intersections of P;, Py, and the closure Px constitute the switching
set of ®.

Lemma 4.29. The switching set of the map ® consists of the three surfaces

a={xrm s (xves p= (4.552)
_ | _0-pn-x)

52_{(X,Y,p).(x,y)eg,p_ =7 } (4.55b)
) | 1@ pX C
a-{xrvp s ree =R s
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Proof. The borders separating the regions P;, Ps, and Px are clearly given
by

(xl—xg)(xl—X):O, (azg—xl)(xg—X):(), (X—.%’l)(X—ZEQ):O,

which result in three equalities: 1 = X, o = X, and 21 = x5. Using the
expressions (4.48), we obtain (4.55). O

Remark 4.30. Note that at the surface & there holds z; = X, at & there

is xo = X, and at &3 there is 1 = 9.

Lemma 4.31. The surfaces &1, & and &3 all intersect along a single curve

Ls={(X,Y,p) : X €[0,1], Y =YX),p=p(X)}, (4.56)
where
e (1 - O‘)BX
= i (- 450
pe(X) _ Oé(l—ﬁ) ;&(B_Q)X. (458)

Moreover, each point (X,Y,p) € Lp is a fized point of ® and there are no
other fixed points.

Proof. The existence of the line Lz as a simultaneous intersection of all three
surfaces follows directly from the expressions in (4.55). As mentioned in the
Remark 4.30, the surfaces &1, &, &3 correspond to 1 = X, 29 = X, 1 = @9,
respectively. Then for a point (X, Y, p) € Lp all three equalities hold: X =
r1 = Ty, which mean that ®;(X,Y,p) = X. Due to (4.49), the equalities
xr1 = T9 and y; = yo are linearly dependent, and hence, Y = y; = 19, leading
to ®o(X,Y,p) =Y. From (4.47¢c) it follows ®3(X,Y,p) = p, which implies
that (X, Y, p) is a fixed point.

Consider an arbitrary fixed point (X,Y,p). There must be ®(X,Y,p) =
(X,Y,p). From ®3(X,Y,p) = p it follows that z1(X,Y,p) = x2(X,Y,p),
which implies that there must hold x; = xo = X, and hence, (X,Y,p) €
Lp. ]
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Remark 4.32. For the symmetric case o = (3 the equation (4.57) becomes
aline Y = X and (4.58) degenerates to the constant function p = (1 —a«)/a.
For o # B the shape of the curve L is either convex (a > ) or concave
(aw < B). The more the difference between v and (3, the higher the curvature
of Lp.

The surfaces &1, & and &3 divide the state space into six partitions denoted
as PI, P s € {1,2, X}. In such a way, each s-region P, consists of the two
sub-regions, P! located above the surface £3 and P! located below &3. Both
sub-regions P! and PH meet exactly at the curve Lg (see Fig. 4.11). Fixed
points of the map & are infinitely many and densely distributed along the
curve Lz and each of them is always at the moment of its border collision
bifurcation, and hence, its stability must be studied by considering three
different Jacobian matrices. Nonetheless, the stability condition appears to

be rather simple.

& ’ 2

Figure 4.11: Three-dimensional state space of the map ® with three border surfaces &;

(light-grey), & (dark-grey), and &3 (medium-grey).

Theorem 4.33. A fized point (X*,Y* p*) € L is stable in sense of Lya-

punov if

pi=1-6(1-p8-(a—p)X*) > -1 (4.59)



198

Proof. Since every fixed point is a border point, we must consider three
different Jacobian matrices related to three regions of definition Py, P, and
Px.

In the region Py, the Jacobian matrix of the fixed point (X*, Y™ p*) is

r af(l —a)X*
a z
5
J = M 1—a«
rda—B)  r%(a—B)

a3 - o232 K

r=a(l-0)+ (B —a)X"

_a?(1-a)

> X* |, (4.60)

It has three distinct eigenvalues 0, 1, and p given in (4.59). The eigenvector
vp related to the eigenvalue 0 belongs to the surface 3 and the eigenvector
vy related to the eigenvalue 1 is tangent to the border curve Lz. However,
the third eigenvector v, related to the eigenvalue ;1 does not belong to P;. It
means that if we take a displacement of the fixed point in the direction v, we
inevitably fall outside the region of definition of J; in general case. Similar

statement is true for the matrix

; P aB(l- B -X)
aB(1 — ) Y e p)
Jy = 1-8 (1 — X7 (4.61)
o(o—B)  ra—p)
o a3 o 04262 H

applied in the region P,. Namely, it has eigenvalues 0, 1, and p. The
eigenvector of 0 belongs to &3, the eigenvector of 1 is tangent to Lz, and the
eigenvector of u is located outside Ps.

In the region Px, the Jacobian matrix is defined as

Jx = 0 1 0. (4.62)
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It has the eigenvalue 1 of multiplicity two and a simple eigenvalue p whose

eigenvector is (0,0, 1), being collinear to the vertical line
L= LX5 Y ={(X,Y,p) : X = X', Y =Y+, (4.63)

To sum up, whatever region of definition P;, i = 1,2, X, we consider,
the significant eigenvalue of the respective linearisation is always p (4.59).
If |u| < 1 for the fixed point (X*,Y* p*), then there exists € > 0 small
enough, so that any orbit with an initial condition inside the neighbourhood
U(X*, Y™, p*) never leaves this neighbourhood. And since v < 1 and 8 < 1,
there is always p < 1. ]

Note that © depends on X*, which means that there exists a critical value
0(1—p3)—2
Y
(o — )
such that the fixed points (X*, Y™ p*) with X* > X* are stable and those

with X* < X7 are not. Below we describe asymptotic dynamics in the

(4.64)

neighbourhood of unstable fixed points.

Let us fix the stock distribution (X*,Y™) so that it corresponds to one
of the fixed points, but allow the price to change arbitrarily. This defines a
vertical line £* (4.63) being parallel to the p-axis passing through the fixed
point (X*, Y™ p*), where p* = p®(X™) is obtained from (4.58). The line L£*
is invariant for ®, since it belongs to the region Px. Asymptotic dynamics
of ® on L* is defined by only a single row (4.47¢) giving a one-dimensional
map for the price p. With substituting x; and x5 from (4.48) with X = X*,

Y =Y into (4.47¢), this one-dimensional map is rewritten as
R : p o pel =B (@)X +pV"), (4.65)
By denoting

, B(Y)=0(8-(8-a)Y), (4.60)
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the expression (4.65) is further reduced to
R : p—p\eP? (4.67)

with A\* = A\(X*) and B* = B(X™), which is a Ricker-type map R* : [0, 00)
— [0, 00) [57, 213].

The Ricker map belongs to a family of smooth unimodal one-dimensional
maps and shows the respective asymptotic dynamics and bifurcation struc-
tures (for details see, e. g., [217]) with respect to changing parameters. More
precisely, the bifurcation parameter is A* while B* is related to scaling the
state variable p. Indeed, the map R* is topologically equivalent to the map

R : qg— Nqge ™!
through the homeomorphism ¢ = h(p) = B*p. With increasing A\*, evolution
of the attractor of R* is similar to that of the logistic map. With the only
difference that since R*(p) > 0 the final bifurcation can never occur, and for
any A* > 0 the map R* has a bounded attractor.

Clearly, the map R* always has two fixed points, p = 0 and

p"=In\"/B* (4.68)

with the latter corresponding to the fixed point (X*, Y™, p*) of the map ®.

When p becomes less than —1, the fixed point p* of the
map R* undergoes a flip bifurcation and a stable 2-cycle OF =
{pi(X*,Y"), p3(X*,Y*)} appears. Clearly, it corresponds to the cycle
OF = {(X*,Y*, pi(X*,Y")), (X*,Y*,p5(X*,Y*))} of the three-dimensio-
nal map ®, which is stable in the vertical direction. Let us now con-
sider a pair (X,Y) located in a small neighbourhood of (X* Y*). This
new pair also defines a vertical line £(X,Y) and the related Ricker map
R of the type (4.67) with A(X) and B(Y). If the neighbourhood is
small enough, this Ricker map acting on L£(X,Y) has a stable 2-cycle
OF = {p(X,Y), p2(X,Y)}. The cycle O is associated with the cycle
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07 = {(X,Y,p(X,Y)), (X,Y,p2(X,Y))} of @ provided that both points
(X,Y,pi(X,Y)) € Px,i=1,2
Technically, a map of type (4.67) with A(X), B(Y') can be defined for
any pair (X,Y) € €. Let us denote as Dy the set of (X,Y) such that the
respective Ricker map R has a stable 2-cycle OF = {p(X,Y), p2(X,Y)}.
The expressions p1(X,Y), p2(X,Y) represent a two-parametric family. In
the three-dimensional state space of ® this family defines the locus of points,
which is constituted of two disjoint surfaces
S, ={(X.Y.p) : (X,Y) €Dy, p=pi(X,Y)},
S' ={(X,Y,p) : (X.Y) € Dy, p=ps(X,Y)}
with S located below & and Si located above &. The pair of points
(X.Y,;(X,Y)) € 8, (X,Y,po(X,Y)) € Si¥ constitute the 2-cycle for @
if both (X, Y, pi( X, Y)) € Px, i =1,2. We denote the set of such 2-cycles
(if there exist any) as P, and its projection onto the plane (X,Y) as P5Y,
which generically has positive Lebesgue measure in £. We refer to a pair
(X,Y) € PXY as a disequilibrium point or a no-trade point of period two in
contrast to economic equilibria related to the fixed points.
As one can surmise, disequilibrium points can be related to solutions of

any period and even chaotic sets. Indeed, for a pair (X,Y) consider the
respective Ricker map R of the form (4.67) and let the set

AR = [pi(X,Y), ..., pi(X,Y),...}

denote the attractor for R. If all respective three-dimensional points
(X, Y, pi(X, Y)) € Py, then the set

A = {(X,Y, m(X,Y)), ..., (X, Y, pi(X,Y)),...}

is invariant with respect to ®. The collection of all invariant sets of the same
type (if they exist) is denoted as P4 and its projection PXY onto (X,Y)-
plane generically has positive Lebesgue measure. The pairs (X,Y) € P3Y
are also referred to as disequilibrium points of the respective period if A® is

periodic or chaotic disequilibrium points otherwise.
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Theorem 4.34. Any orbit of the map ® asymptotically approaches either
a fixed point on the curve Lg or a nontrivial solution with a disequilibrium
pair (X,Y) and price changing according to the attractor of the respective

Ricker map.

Proof. At first, we show that whatever the current position (X,Y,p) of the
system is, the two optima (x1, y1,p) and (x2, 3o, p) are located at either side
of the surface Y = Y¢(X). We explain the case Y > Y¢(X), and for the
opposite inequality sign similar arguments are applied.

The projection of the surface Y = Y¢(X) onto (X,Y)-plane coincides
with the projection of the border curve L£z. We refer to this projection as
LY. In the (X, Y)-plane, an arbitrary point (X,Y") defines two indifference
curves Ugy = Uy (X,Y) (convex) and Viy = Viyp(X,Y) (concave) for
the first and the second agent, respectively (see (4.50)). The curve Ugy
intersects with the budget line L7 at two points, (X,Y) and (X1,Y1). The
first agent’s optimum (z1,y;) is obviously located somewhere in between
(X,Y) and (X3,Y7). Similarly, Vgy and L7 intersect at (X,Y) and (Xs, Y3)
with the optimum (z9,%2) being located between (X,Y) and (X5, Y5). The
line L7 also intersects with the curve Eéﬂ/ at (X*,Y*), which corresponds
to the equilibrium price p* given by (4.58).

For the first trader’s optimum there holds

if p<p* then X < < X",
if p>p* then X* <z < X.
For the second trader the opposite inequalities are satisfied:
if p<p* then X* < 29 < Xy,
if p>p* then X <9< X*.

Consequently, the points (z1,y;) and (z9,y2) are always at different sides
of the curve L'é(y. Recall that the choice of the new stock distribution
((131(X, Y, p), Po(X,Y, p)) corresponds to the optimum that is closer to the

initial point. The distance between the current (X,Y’) and the optimum



203

(z;,y;) that is located at the same side of £ is obviously shorter than the
distance between (X, Y") and the other optimum. Hence, any orbit of ® never
crosses the surface Y = Y¢(X).

Moreover, if the current point is (X,Y,p) € P{ U PI!, then there
holds Y < Y*¢(X) which implies for the next iterate ®1(X,Y,p) < X,
®y(X,Y,p) > Y. Similarly, if (X,Y,p) € P UPL then Y > Y¢X)
and ®1(X,Y,p) > X, ®5(X,Y,p) < Y. It means that at each iteration
of ® the distribution (X,Y’) either approaches the surface Y = Y¢(X) (if
(X,Y,p) € Py UP,) or remains unchanged (if (X,Y,p) € Px). Note that if
(X,Y,p) € Px then &1(X,Y,p) = X, &(X,Y,p) =Y, while the new price
p' is greater or less than p depending on whether (X, Y, p) is below (9 > 1)
or above (zg < 1) the surface &. In such a way, if the orbit enters the
region Px it remains there either forever converging to an attractor related
to some disequilibrium point or until it eventually drops in P; U Py and the

next image is closer to the surface Y = Y¢(X). O

4.6. A discontinuous model of exchange rate dynamics

with sentiment traders

In this section we develop a simple model of exchange rate determination
where the market is populated by investors characterised by heterogeneous
expectations, as studied in [63-65]. In particular, we assume the presence of
three types of traders: one kind of fundamentalists and two kinds of chartists.

Skipping the economic details, for the dynamics of the exchange rate we
get the two-dimensional map 7: R2 3 (X,Y) — T(X,Y) € R%,

T(X,Y) = (f(X,Y),X) (4.69)
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with
[ AXY) i X SO0AIX —Y]> 1,
LXY) if X>0A|X-Y|<1,
F(X,Y) = S (4.70)
ABXY) if X<OA|X-Y|>1,
| A(XY) i X <SOAIX -Y| <,
where
AXY)=di X? —di| XY +aX — f.,
f(X,Y) =do X? — do XY +aX — f., W
HXY) = —di XP 4+ di XY +bX + fu,
f(X)Y) = —do X? + do XY + bX + f4.

The parameters are d; > 0,1 =1,2,a>0,b>0, f. >0, f; > 0. The map
T is discontinuous and its switching manifolds (the sets of discontinuity) are

represented by three border lines
B ={(X,)Y) : Y=X+£1} and By={(X,Y) : X =0}, (4.72)

which divide the state space into six regions of definition:

D. ={(X,Y): X>0,Y <X —1},
Do ={(X,Y) : X >0,V > X +1},
Do ={(X,Y): X>0,X—-1<Y <X+1}, 473)
D, ={(X,Y): X<0,Y <X—1},
D, ={(X,Y): X<0,Y > X +1},

D,={(X,)Y) : X<0,X-1<Y <X+1}.
The function f; is applied in the regions D, and D, _, the function f3 in the

regions D, and D, _, the function f; in the region Dy, while the function f4
in the region D, .

Every point (X, Y") in the state space is associated with a respective sym-
bol, depending on the region of definition Dy, s € {L_, Lo, L, R_, Ry, R+}
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the point belongs to. And any orbit 7 = {(Xo, Yo), (X1, Y1),...,(X;, Y5),...}
of the map T has correspondence with a symbolic sequence o(7) =
S081...8;... with s; such that (X;,Y;) € Ds.. Note that due to the sec-
ond component of the map T', the sequence of Y; values, except for the initial
Y), is represented by the sequence of X;’s shifted by one.

If the orbit 7 is periodic (a cycle) of period n, its symbolic sequence is
clearly finite (consisting of n symbols). In such a case we use the notation
O, := {p1,p2,...,pn}, where p; = (X;,Y;), i = 1,n, and 0 = s189...5,
with the sequence o being shift invariant. Clearly, for O, thereis Y; = X;_1,
i =2,nand Y] = X,,, that is, O, = {(X1, X,,), (X2, X1),..., (X0, Xs1)}.
Hence, every n-cycle is defined by n values of the first coordinate, while
the values of the second coordinate consist of the same sequence of numbers
shifted by one. This property restricts location of cycles in the state space (in
particular, 2-cycles are always symmetric with respect to the main diagonal
Y = X).

Each point p; of the cycle O, is related to a particular cyclical per-
mutation of o, namely, if p; corresponds to s;...s, then py corresponds
to S9...S,81, p3 to S3...s,5189, and so on. Whenever it is neces-
sary to distinguish different points of the cycle (for instance, to pro-
vide an explicit condition at a border collision), we use the notation
Di 1= Dsisirosnosi = (Xis Xi—1) with X = X,
let us consider a cycle O, ., = {p1,p2, 3}, then p; = (X1, X3) := Dr.corys

sia1.smsi g+ O example,

P2 = (X2, X1) = Deyroe,s P3 = (X3, X2) 1= Dryr.r,» Where correspondingly
Xl = X£+L0Ro7 X2 = XZ:O’ROL+7 and X3 = XR0£+LO'
In the parameter space, a region associated with a cycle O, is called the

periodicity region and is denoted as P,.3

Theorem 4.35. The map T can have at most two fized points, namely,

31f the cycle is attracting, one can discover the respective periodicity region by numerical simulation.
However, if the cycle is repelling (or a saddle), the periodicity region is not observable numerically, though

it exists.
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E. =(X,X!)eD,, and £y, = (X} , X ) € Dy, with

X*:_L’ X* — 7
o b—1 "ooa—1

(4.74)
which exist for b > 1 and a > 1, respectively. The point E. is a saddle if
b2 > 1 — 2fyd; (4.75)
and an unstable node otherwise. The point E., is a saddle if
a? > 1—2f.dy (4.76)
and an unstable node otherwise.

Proof. From the second component of the map T, it is clear that the fixed
points of 1" must belong to the diagonal ¥ = X. This implies that the
functions f; and f3 cannot be related to real fixed points. By using f; and
f2, one obtains the fixed points E. and E,, respectively. Conditions for
their existence trivially follow from (4.74).

As for the stability, the Jacobian matrix of the point F,, is

fady - _ Jad
Ju(XE XE)y=Jr = | 01 b—1 1 (4.77)
1 0
Then
Jads Jads
trJ, = b, detJ = 4.
rJ; 1T b et J, DT (4.78)
and the Jury conditions [83], read as
1 —trJ, +detJ, =1—-b>0, (4.79a)
2fqd
L+trJ +detJ, =1+ bfj 12 +b >0, (4.79b)
d
det J* = bfd_—i < 1. (4.79¢)
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When E,, exists (b > 1), the condition (4.79a) does not hold, and E.,, can not
be stable. If additionally condition (4.79b) does not hold, E,, is an unstable
node. Otherwise, I/, is a saddle.

Similarly for the point E,, the Jacobian matrix is

fcd2 fcd2
+a —
Jo(X: XEy =g = a—1 a—1 | (4.80)
1 0
Then

e od
trJ: = feh o det JE = feds (4.81)

© a—1 © a—1

and the Jury conditions read as

1—trJ, +detJ, =1—a>0, (4.82a)
2f.d
1+trJ, +detJ, =1+ J i +a >0, (4.82D)
a E—
Cd
det J! = feo g (4.82¢)
a —

When E,, exists (a > 1), condition (4.82a) does not hold, and E, can not
be stable. If additionally condition (4.82b) does not hold, E,, is an unstable
node. Otherwise, I, is a saddle. O

The Theorem 4.35 implies that the map 1" cannot have any stable fixed
points. In order to study asymptotic dynamics of T' further, we should de-
termine its critical set. For maps defined by discontinuous functions, the set
LC_; is defined in the same way as for continuous piecewise smooth maps,
that is, it consists of both—the set of vanishing Jacobian determinant, in case
it exists, and the switching manifolds (including the points of discontinuity).
However, the definition of the critical set LC' is slightly modified. Namely,
for each switching manifold given by the points of discontinuity, one obtains
two first rank images by using different determinations of the map at both
sides of this switching manifold. Then these two images belong to the criti-

cal set LC' if they represent boundaries of the regions containing points with
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different number of first rank preimages (see, e.g., [156]). For the map T,

four Jacobians are defined as:

2d1X — d1Y +a —le

T(X,Y) = | 4.83a
(X7) 1 \ (4580)
DX —dyY +a —doX
B(X,Y) = [ Bt TR e mea ) (4.83D)
1 0
X +diY +b diX
Jy(X,Y) = A Ar o ad ) (4.83¢)
1 0
20X 4 doY +b doX
Ji(X,Y) = (20X + &Y +b & . (4.83d)

1 U

Then the condition det J;(X,Y) = 0, i = 1,4, holds for X = 0. Hence,
the set LC'_q is only made up of the points of discontinuity. For every point

(0,Y) € By, Y € R, we compute two different images by using the functions
faand fy (if Y] < 1) or f; and f3 (if |Y| > 1). Since

[0Y) =1(0Y) =—f, f3(0,Y) = f1(0,Y) = fa,

the image of the border line By is represented by two points, (—f.,0) and
(f4,0). The images of the other two border lines By by using f;, i = 1,4,

are given by the following eight lines, respectively:

X+ fe
Bli:{(X,Y) Y = +f,Y>O},
’ CL:Fdl

X+ fe
Bgiz{(X,Y)ZY: +f Y>O},

CL:Fd27

(4.84)
Bgiz{(X,Y) R S [ Ygo},

EY

X — Ja
=4q4(X)Y) : Y = Y < .

The lines B; 4 confine images of the regions Dy, s € {L_, Ly, L+, R, Ry,

R }. If di < ds, the map T is noninvertible. Below we focus on the invertible

case di > do.
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It is worth noting that the horizontal axis Y = 0 also serves as a border
between T(D,,), T(Dx,), T(D, ) and T(D,_), although this line is not an
image of any of the switching manifolds. To explain this issue, let us take a
sample point (X', ) € T'(Dy, ) with some fixed X’ < —f.and 0 < e < 1. Its
preimage (X, Y') is obtained by using the function f; for the first coordinate,

from where we have X = ¢ and

.+ X'
X’:d152—d15Y+a5—fc & Y:5+g—f+ )
d1 d18

(4.85)

Clearly, the smaller ¢ and/or the larger the absolute value of X', the larger
Y. More precisely,

, ( a f.+ X'
lim
e—0

6+d—1— d18

) = 400 and

. a .+ X’

Jim (5 + - f : ) — oo, (4.36)
Roughly speaking, the image of the switching manifold Bj (for a bounded
value of V) under T" with f; is contracted to the point (—f.,0), while the
limit point (0,+o00) is unfolded into the ray {(X")Y’) : X' < —f., Y’ =
0}. Likewise, the limit point (0, —co) is unfolded by using f; into the ray
{(X")Y"): X' > —f., Y = 0}. For the images T(D,,) and T(D,_) one can
apply a similar argument but by using f3 instead of f; and f; instead of —f..

In what follows we describe some typical bifurcation structures uncovered
in the parameter space of the map 7'. In Fig. 4.12 we plot two typical 2D
bifurcation diagrams in (f., f4) parameter plane for a fixed 0 < b < 1, one
with 0 < a < 1 and the other with a > 1, where regions of distinct colours
correspond to attracting cycles of different periods.

As the first observation, we notice a bunch of regions issuing from the
single point (f., f4) = (0,0) and related to attracting cycles with symbolic
sequences having only letters £y and Ry. Similar bifurcation structures are
also detected in a neighbourhood of a specific type of organising centres

(bifurcation points of codimension two) in the parameter space, commonly



210

called big bang bifurcations (|25, 27, 28]). Bifurcations of this type are char-
acterised by the infinite number of bifurcation curves issuing from a single
point and were initially reported in one-dimensional piecewise smooth maps,
although they are known to occur in maps of higher dimensions as well. In
particular, a big bang bifurcation may occur in a one-dimensional map due
to the phenomenon known as continuity breaking (|96-98]). In such a case, a
single fixed point existing for the continuous version of a map may bifurcate
to a cycle of any period when the continuity is destroyed.

For larger values of f. and f;, there are periodicity regions for cycles
having symbolic sequences that involve also the other two symbols £, and
R_. In most cases, two neighbour regions related to the same base period
(say, n) are associated with symbolic sequences that differ for one letter. For
a = 1.15 (see Fig. 4.12b), these neighbour regions often overlap leading to
coexistence of the two cycles of the same period (see, e. g., the right-hand side
inset related to period three). On the contrary, for a = 0.73 (see Fig. 4.12a),
neighbour regions corresponding to the same period n are usually separated
from each other by another bifurcation structure. The latter is related to
periods that are factors of the base period (namely, j-n, 7 = 2,3,...; see
the insets in the panel a). Note that for n = 2, this structure is particular
as will be shown below.

Let us consider a particular case of f. = f; = 0. Then, the map T is
continuous at the switching manifold By; however, it is still discontinuous at
the other two border lines By. The images T'(D,,) and T (D, ) issue from the
origin (0,0), which is now a fixed point, since E., = F,, = (0,0). The point
(0,0) has two different Jacobian matrices, the right and the left, respectively:

7,.(0,0) = (Cll 8) and J,(0,0) = (i 8) . (4.87)

Clearly, the stability of (0,0) depends on the values of a and b, because the
second multiplier is always zero. Thus, if |a| < 1 (|b] < 1) the point is stable
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Figure 4.12: Typical two-dimensional bifurcation diagram in (f,, f;) parameter plane for
b=0.64,dy =0.2,dy = 0.1 and (a) a = 0.73; (b) a = 1.15.

from the right-hand (left-hand) side. If both |a| > 1, |b| > 1, the origin is a
saddle being always superstable along Y = 0 (in the vertical direction).

If at least one of the two parameters f. or f; becomes different from zero,
the discontinuity of T at By is restored, leading to a continuity breaking

bifurcation.

Proposition 4.36. Let us fix a parameter pair (f., fq) such that f. and fy
are positive but sufficiently close to zero. Orbits of the map T that are close
to the origin can be approximated by considering the linearisation in the
neighbourhood of (0,0), given by DT |0y R? 3 (X,Y) — (9(X), X) € R?
with

g(X) = (4.88)

aX — f., X >0,
bX + f4, X <0.

As one can see, the first component does not depend on Y, as well as
the second one. Therefore, locally for (f., fq) close to (0,0), asymptotic

dynamics of T" in the neighbourhood of the origin can be approximated by
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a one-dimensional piecewise linear map ¢ defined in two partitions of the
increasing-increasing type with a negative jump. In the parameter plane
(fe, fa) of the map g the point (0,0) is a point of the big bang bifurcation.
Periodicity regions issuing from this point and related to attracting cycles of
different periods are organised in a period adding bifurcation structure.

When f. and f; increase, the influence of the nonlinear terms in the
expression for f;, i = 1,4, becomes more significant and the border collision
bifurcation boundaries of the regions forming the period adding structure
become curved. Additionally, the images T'(D,,) and T (D, ,) become more
displaced from the origin. This implies that the points of a cycle move
towards one of the other two switching manifolds B4, eventually crossing
them one by one.

In Fig. 4.12 for larger values of f. and f;, one can see the periodicity
regions associated with symbolic sequences having not only £, and Ry but
also £, and R_. In most cases, symbolic sequences corresponding to two
neighbour regions related to the same period differ for one letter. For exam-
ple, the pairs Py .2 and Pr .. cs Proro2 ad Prin oy Procoroso? A0 Pryrroes?
Proc.roeo2 a0d Pr s e,y and so forth. One of the exceptions are the regions
related to period two, P, , and P, . , considered in more detail below.

Such a dependence of the symbolic sequences associated with neighbour
regions can be easily explained. As shown above for (f., fq) being sufficiently
close to (0,0), points of cycles are located near the origin in the state space.
If the parameter point (f., f4) is moved away from (0,0) so that it always
belongs to a particular region Py, 0 = s1...8,, s; € {Lo,Ro}, ¢t = 1,n,
then some of the points of the respective cycle move towards one of the other
two switching manifolds By. As a rule, only one point at a time collides
with either B, or B_. This leads to another border collision bifurcation
corresponding to the third boundary of P,. Since the map T is discontinu-
ous at B4, the cycle of the same period having the symbolic sequence with

one symbol changed cannot appear immediately after this border collision
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bifurcation.

Proposition 4.37. Two regions P, and P, related to the same period n,
with o and o' being different for one letter, can be located with respect to

each other in two ways:

(i) they can be disjoint and separated from each other by a sequence of

regions related to periods j-n, j =2,3,...;
(1) they can overlap leading to coexistence of the two cycles.

Let us consider a typical region P, .2 for a < 1, from the period adding
structure in the neighbourhood of its third border collision bifurcation bound-

ary, far from the point f. = f; = 0. The respective 3-cycle is
Opyre2 = {(X£0R027 Xocors)s (XR02£07 XEOR02)7 (XRoﬁoRoa XROQEO)}' (4'89)

As we have already shown, two boundaries of P, . 2 correspond to the border

collision conditions
Xor2=0 and X, =0. (4.90)

The third boundary is related to the collision of (X2, , X, 2) with B_,

that is, to the condition
Xor2 = Xp2., — 1 (4.91)

The region P, . x, related to the complementary cycle O, , -, is also ob-

served and is confined by the BC boundaries related to the conditions
X o =0, Xpn =0, and X, . = Xz roe, — L. (4.92)

Both bifurcation boundaries, related to (X2, X, x2) € B- (4.91) and
(X rozos Xeor_n,) € B— (the last equation of (4.92)), lead to another period
adding structure based on the symbolic sequences of the cycles O, .2 and
O.,x_=,- Periodicity regions forming this structure are clearly located in the

parameter space between P, . , and P, 2. Symbolic sequences of the cycles
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of higher periods are concatenations of Lo R_Rg and LoR3, namely, they are
LoR_Ro(LoRE) and (LoR_Ro) LoRE, 7 = 1,2,... (see Fig. 4.13a). The
same regularity is also observed between two disjoint regions related to cycles
of different periods. For example, between P, r, and the region P, )2z,
associated with a cycle of period seven, there exists a period adding structure
based on the two respective symbolic sequences. Namely, it is composed by
the regions P x ro)i(cor ro)2re A0 Prin ri((cor mo)2m0)is J = 1,2,..., associ-
ated with cycles of periods 7+ 35 and 3 + 7j. Similarly, between the region
Pror mo(cor_mo)?=, COrTesponding to period ten and P, .2 there exists a period
adding structure based on the sequences o7 = LoR_Ro(LoR_Ro)*Ro and
oy = LoRE.

For a different parameter constellation (i. e., for a = 1.15 as in Fig. 4.120),
regions related to two complementary cycles can overlap, such as Py 2
and Pr. ., leading to coexistence of two cycles of period three. Simi-
larly, the regions related to different periods belonging to two distinct period
adding structures may overlap pairwise, as for example for a = 0.73, the
regions P, r2 and Pr z)2rer Pleor ro)ire 804 Prir rocore?s Pleor mo)in, and
Pleor_ro)2eore?, €tc.(see Fig. 4.13a). In all these cases, two different attracting
cycles coexist in the state space.

As we have already mentioned, the regions related to cycles of period two
are particular. First, there are two respective regions, P, r, and P, . _, asso-
ciated with symbolic sequences that differ for two letters (not a single one).
Second, between P, . and P, . there exists a particular patchwork-like bi-
furcation structure, all regions of which are related to cycles of even periods
(see Fig. 4.13b). As shown below, some of the periodicity regions belonging
to this bifurcation structure are organised according to the period adding
principle, and ordering of the others correspond to the period incrementing.

The major reason why a cycle of period two is different from the oth-

ers, is that its points are always symmetric with respect to the main di-
agonal Y = X. Indeed, for any Oy, = {(X1,Y7),(Xo,Y2)}, s, € {L£_,
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Figure 4.13: (a) Period adding structure between periodicity regions P, r.2 and P, r_x,
in the (f., f4) parameter plane for b = 0.64,d; = 0.2,d, = 0.1 and a = 0.73. (b)
The bifurcation structure between periodicity regions P, r, and P, r in the (f., fa)
parameter plane for b = 0.64,d; = 0.2,dy = 0.1 and a = 0.73.

Lo, Ly, R, Ry, Ry}, @ = 1,2, there is Yo = Xj and Y] = X, i. e,
Os,s, = {(X1, X2), (X2, X1)}. Due to this property, the admissible symbolic
sequences for cycles of period two are £3, R2, LoRo, L L, R_R,, and
LiR_. It is easy to show further that the cycles O,2, Oz, O, ., , and
Or_r, cannot exist. Therefore, the only admissible 2-cycles are O, ., and
O,.x_, for which the two respective periodicity regions are observed in the
(fe, fa) parameter plane for a < 1.

The boundaries of the region P, ., issuing from the point (f., f4) = (0,0)
are given by the conditions X, ., = 0 and X, . = 0. The third boundary is
related to the collision (X, r,, Xr,z,) € Bx+, or equivalently X, ., = X, r, +1.
On the other hand, the same condition means X, ., = Xx,., — 1, and hence,
(Xroos Xeor,) € B—, i. e., both points of the cycle collide simultaneously with
the respective switching manifold each. This corresponds to a so-called non-

regular border collision bifurcation. Similarly, three boundaries of P, . are
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defined by the conditions X, . =0, Xy ., =0, and X, . = X, . +1,
the latter being the same as X, . =X, . — 1

Non-regularity of two border collision bifurcations of the cycles O, ., and
O, ~_ related to the switching manifolds By leads to a particular bifurcation
structure located between the regions P, ., and P, . . Roughly speaking,
this structure is mostly confined within a quadrangle ) with vertices in
points A = (a+ds, 1), B= (1,b+dy), C = (a+dyi,1),and D = (1,b+dy).
However, some regions slightly overhang the area () leading to coexistence of
the respective 2-cycle (either O, ., or O, ) with the cycles of larger period.
The symbolic sequences related to this bifurcation structure are based on
the combinations of four pairs: o1 = LyRy, 00 = L, R_, 03 = LRy, and
o4 = LoR_, among which two latter sequences correspond to 2-cycles that
are always virtual.

To describe this bifurcation structure, it is convenient to consider sepa-
rately four triangular subareas AMB, CM D, AMC', and BM D, where M
is the intersection of the lines AD and BC (see Fig. 4.13b). The ordering
principle of the periodicity regions inside each subarea is similar but based on
different combinations of symbolic pairs. Let us consider the subarea AM B,
where symbolic sequences are based on three pairs LoRo, L. Rg, and LyR_.
The cycle of the smallest period six is Og r,c, Rocor. (S€€ also Fig. 4.14
where the area @) is shown magnified). The respective periodicity region be-
gins a sequence of regions accumulating towards the point M. For the sake
of brevity, let us call them central regions. Their ordering correspond to the
period incrementing bifurcation structure with periods 4n+2, n > 1, and the
neighbour regions overlap pairwise. On the other hand, the related symbolic
sequences are LoRo(L+Ro)"(LoR-)", which differ a bit from what one typ-
ically observes in bifurcation structures of such kind. Symbolic sequences of
cycles involved in the period incrementing structure are expected to be given
as 0104 with some primary o; and oy. Here instead, there are three primary

sequences o1 = LoRo, 03 = LRy, and o4 = LyR_ that are concatenated
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according to the rule oy050}.

As the next step, we describe two groups of regions distributed along the
line AB at both sides of P, r,c.roeon. - At first, let us focus on the larger
regions associated with periods 6 + 2m, m > 1. We call them regions of the
first tier. For increasing f; (decreasing f.), the related symbolic sequences
are p, = LoR_LoRo(LiRo)™ ! (with py = LoR_LyRoL:Ry), so that
the regions P, , m > 0 represent the part of the period adding structure
of the first complexity level. Between any two (disjoint) neighbour regions
P, and P, .. there exist regions of the second complexity level related to
symbolic sequences p,,pF, 41 and PF pms1, k > 1. And between any two
neighbour regions of the second complexity level there are regions of the
third complexity level, and so on ad infinitum. Thus, the ordering of the
regions located to the left of P, r . rocx (for increasing f; and decreasing
fe) corresponds to the period adding structure built on the sequences 7, =
LoR_LoRo and 79 = LRy, related to the part of the basic regions 7)7_17_;1+1,
m > 0.

For decreasing f; (increasing f.), the regions are ordered according to
the same principle, that is, related to the basic regions PTszm+1, m > 0 of
the period adding structure, but with 7 = LoRoL:Ro and o = LR _.
Namely, the regions of the first tier are P, ; r,(cor )m+1, and between any
two neighbour regions a respective period adding structure is observed.

Similarly, each central region P, (. r)(eor s 7 = 2 induces
two sequences of regions, which we call the regions of tier n. For
increasing f; and decreasing f., the related symbolic sequences are
(LoR_)"LoRo(LLRo)™™™, m > 1, while for decreasing f; and increas-
ing f. they are LoRo(LiRo)"(LoR-_)"T™. For example, to the left of
the region P, . (c.#,)2(cor )2, cOrresponding to period ten, there are regions
Pleyr 2eors(c,mo)m+2, and to the right of it there are P, r (-, »)2(cor )mt2- Be-
tween any two neighbour regions of tier n (associated with the same central

region and forming the first complexity level of the period adding structure),
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Figure 4.14: Magnification of the quadrangular area marked in Fig. 4.13b by dashed blue

line.

there are regions of higher complexity levels again organised according to
the period adding. Two neighbour regions of tiers n and n 4+ 1 (associ-
ated with different central regions) can overlap (as, €. g., Prr 12eoro(c,r0)?
and P, . cro(c.x,)2) and can be disjoint. In the latter case, between them
another period adding structure is observed. As, for instance, between
Proro(eiro)2(cor )2 A0 Prir rir(e,mo)? ONE Observes the regions related to peri-
ods 18, 26, and 28. Or between P, = 122r0(c.n0)? A0 Prn roro(c,zo)? there is
a region corresponding to a 22-cycle.

Let us now turn to the subarea C'M D. The main organisation principle
of the periodicity regions is the same as in the subarea AM B, but now the
primary symbolic pairs are 0o = L, R_, 03 = L1 Ry, and 04 = LyR_. The
central regions are P, . (rr )r(c,r,)» With n > 2. Then there are regions of
tiers n, namely, P, r,yme v (cor yrtm a0 P (i (e, mo)ntm, 1> 1, m 2> 1.

Note that the central region with n = 1 related to the 6-cycle is not visible,
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though the associated sequences of regions of the first tier are observable
(for instance, P, r,c x (cor )2 a0d Py prir (cor ) @ssociated with periods 8
and 10, respectively). Two neighbour regions belonging to different tiers
can overlap or can be disjoint. In the latter case, as well as in case of two
neighbour regions belonging to the same tier, there exists a respective period
adding structure.

In the subarea AMC, all four primary pairs o1 = LyRo, 00 = L. R_,
o3 =L, Ry, and 04 = LyR_ are involved in formation of symbolic sequences.
The cycle with smallest period four is O, »_,,. The related region is the
first in the sequence of central regions P, » (,x )n-1cor(c, mo)n-1; 7 = 1, which
accumulate towards the point M. The region O, ., also starts two se-
quences of regions of the first tier, associated with the symbolic sequences
L R_LoRo(LiRy)™, m > 0 for decreasing f. and LoRoLiR_(LoR_)™
for increasing f.. Similarly, any central region P, . (sr )n-1cor(c,mo)n1s
n > 2 starts two sequences of regions of tier n. Namely, for decreasing
Je, the regions P, o (six yn-1ror(c, m)m+m-1 and for increasing f., the regions
Proro(eire)r=1eom (cor ntm-1, M > 0. Between any pair of neighbour regions
belonging to the same tier, as well as between any pair of disjoint neighbour
regions belonging to the adjacent tiers, a respective period adding structure
exists. The regions belonging to the adjacent tiers can also overlap.

In the subarea BM D, the bifurcation structure is based on only two pri-
mary pairs LoR_ and £, Rg. The central regions are P, yn(z,zo)ms 7 > 1.
The regions of the first tier (associated with the region P, .., correspond-
ing to period four) are P, . (., z,ym+1 and P, r (x ymt1, m > 0. The regions
of tier n are, respectively, P r yo(z, m)ymtm and Po pyn(zym jntm. As inside all
other subareas, two neighbour regions can overlap if they belong to different
tiers. If they are disjoint (as always happens when they belong to the same

tier), a respective period adding structure is observed in between.

Proposition 4.38. In the parameter plane (f., f4) of the map T consider the
quadrangular area @ with vertices in the points A = (a+ds, 1), B = (1,b+
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dy), C' = (a+dy, 1), and D = (1,b+ dy), located between the regions P.,x,
and P, » . Inside Q) the symbolic sequences of the related cycles are based
on elementary sequences o1 = LoRgy, 0o = L R_, 03 = L Ry, 04 = LoR_.
For parameter values belonging to

o the subarea AM B, regions of the tier n > 1 of the first complexity level

correspond to the symbolic sequences o10hay™™ or o105 ™o, m > 0;

o the subarea CM D, regions of the tier n > 1 of the first complexity level

correspond to the symbolic sequences oo0fayt™ or oy ™ol m > 0;

o the subarea AMC, regions of the tier n > 1 of the first complexity
level correspond to the symbolic sequences o10io90} ™™ or o0y ™ oq90],

m > 0;

e the subarea BM D, regions of the tier n > 1 of the first complexity level

correspond to the symbolic sequences oo™ or o} ™™o}, m > 0.

The central regions with m = 0 accumulate to the point M = ADNBC. Two
neighbour regions of the same tier and the same complexity level are disjoint.
Two neighbour regions, belonging to the tiers n and n+1, can overlap or can
be disjoint. Between two disjoint neighbour regions there exist other regions

organised according to the period adding principle.

4.7. Modelling learning and teaching interaction by a

map with vanishing denominators

In the current section we consider, following [150, 151], a two-dimensional
map modelling an educational process, changing interaction between the
learner (or student) and the helper (or teacher), initially suggested in
[102, 103], which though lacks for deeper mathematical analysis. Formally
speaking, the educational goal can be considered as a stock of information
and skills K and a student can be represented by a certain amount of knowl-

edge A < K that he has already picked up. The process of learning is
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formalised as a flow from the goal stock, K, to the individual stock, A. The
teacher continuously estimates the student’s potential level of development,
P, that also must change as the student is learning.

Following the seminal works, we consider the two-dimensional map F' :
R% > (A, P) — F(A, P) € R? defined by

F(A, P) = (Fi(A, P), Fy(A, P)) (4.93)
with ]

Fi(A P) = A |1+ Ri(A, P) (1 - %)] | (4.94)

B(A P)= P |1+ R(A,P) (1 - %)] | (4.95)

where functions R,(A, P) and R,(A, P) (change rates of the actual and the

potential developmental levels, respectively) are given by

P 0.lb (1 - %) | (4.964)

A
e P P
R(AP) YR =1, — (Z - Op) b, (1 - ?> . (4.96b)

We remark that due to modulus function in the expression for R, the map

def

R,(A, P) = Ra:ra—| -0,

(4.94) is piecewise smooth. Hence, the phase space is divided into two regions;
namely, D, for that P/A > O, and D_ for that P/A < O,, where the lines
P =0,A and A = 0 constitute the switching set.

Let us consider for sake of shortness the set of all parameters as a point

in a seven-dimensional space

p=(ra,7p,ba, by, Og, Op, K) € RZF. (4.97)
For a certain representative of the map family (4.94) we then use the notation
F,.

Recall that from the application viewpoint, A is the actual developmental
level of the student, P is the potential developmental level, and K is the final

educational goal. It follows that the inequalities

A<K, P<K, A<P (4.98)
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confine the feasible domain Dz for the states of the system (4.94). The
boundary of D is denoted dDx. Notice that if O, > 1, then the feasible
domain Dy is divided into two parts, that is, Dy = (DrND_)U(DxrND,).
Otherwise, it is completely contained inside D, .

The domain D7 constitutes quite a limited area in the R? space, and
moreover, Dz is not invariant under F),. It is important then to distinguish
between feasible orbits, which completely belong to Dz, and non-feasible
ones, which eventually leave the feasible domain. Although from applied
context we have to restrict our studies to the orbits located completely in-
side Dz, we consider larger part of the phase space. The main reason is that,
in general, dynamic phenomena occurring outside D may influence also the
feasible part of the phase space. For example, suppose that some homo-
clinic bifurcation occurs outside D and this changes the complete structure
of basins, including those related to attractors belonging to Dr. In other
words, considering orbits that are located outside Dr may shed light on the
feasible dynamics of map (4.94). And this way we also obtain a better un-
derstanding of the map dynamics in cases in which some of the conditions
in (4.98) are relaxed. Moreover, in some cases violation of (4.98) can be
explained in applied context. For instance, A > P means that the actual
student’s developmental level is greater than the potential level estimated by
the teacher, that is, the student already knows what he is expected to learn.
Generally speaking, in the real learning process this may happen.

In the following, as parameter K denotes the final educational goal repre-
sented by the stock of information and skills, it is not restrictive to normalise

K to unity (or assume any other positive value).

Lemma 4.39. Any two maps from the family (4.94), F,, and F,,, with
two different values Ky and Ko, respectively, and the other parameters being

wdentical are topologically conjugate.
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Proof. Consider the homeomorphism

K, K
h(A,P)=|—=A—P|.
( ) ) (K2 ,KQ )
It holds that Fj,, oh = ho F,,. O]

Without loss of generality we can assume that the set of parameters be-
longs to the six-dimensional hyperplane p € RS x {K = 1}.

One of the particular characteristics of the map F), is that both its compo-
nents assume the form of a rational function. Indeed, (4.94) can be rewritten

in the following form:

AP~ 5 ]
A(JAIP + (ro| A| = [OsA — Plba(1 — A)) (P — A))
AP . (4.99a)
Ny (A, P)
Fo(A.P) = DQ(A P)
_ P(A+ (r)A— (P — OjA)bp(l — P))(1-P)) | (4.99h)

Clearly, at points belonging to the set &, < {(A,P): A=0}}U{(A P):
P = 0}, at least one of the denominators D;(A, P) or Do(A, P) vanishes.
Hence, the set 0, represents the set of nondefinition of F),. Maps of similar
kind are called maps with vanishing denominator and have been studied by
many researchers (see, e. g., [46, 49, 51, 201, 234] to cite a few). Particular
feature of such maps is possibility of having focal points and associated prefo-
cal sets/curves (recall the Definitions 4.1, 4.2). Due to contact between phase
curves and these prefocal sets or a set of nondefinition, certain bifurcations
can occur, which are peculiar for maps with denominator.

Consider a focal point @ of F'. For any smooth simple arc y(7) = (y1(7),
v¥2(7)) from the Definition 4.1, its both components can be represented as

Taylor series:

Nnr)=&+ar+ &+ ..., (4.100a)
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(7)) = no +mT + et + . (4.100b)

If a focal point is simple, then there exists a one-to-one correspondence be-
tween the slope m = n; /& of a curve (1) at this focal point and the limit
point lim,_,o F,(y(7)). In case of a nonsimple focal point this generically
does not hold.

Theorem 4.40. Consider a map F,, with u € RS x {K = 1}. The points
SPy = SPy(0,0), SP, = SP1(0,1), and SP, = SP,(1 — r,/(O.b,),0) are

focal points with the respective prefocal sets

dsp, ={(A,P) : A=0}U{(A,P) : P=0} =, (4.101)
dsp, ={(A, P) : A= —b,}, and (4.102)
dsp, = {(A,P) : P=0} CJs. (4.103)

Proof. At first, we consider the points with A = 0 and arbitrary P and
consider arcs (7) through this point implying & = 0, 79 = P. The function
F1(0, P) assumes uncertainty 0/0, while Fy(0, P) = —P?b,(1 — P)?/0. If
P # 0,1, the limit of F,(y(7)) with 7 — 0 is (—b,Psgn(P), 00), where oo
means either 400 or —oo depending on whether limit is taken from the left
or from the right, respectively. Hence, the point (0, P), P # 0,1, is not a
focal point.

Let us check whether SPy = SFy(0,0) and SP; = SP;(0, 1) are the focal
points. Note that now also the function F5(0, P) assumes uncertainty 0/0.
For S Py, clearly, & = ng = 0. First, we suppose that & # 0 and n; # 0. The
limit is then lim, o F,(y(7)) = (0,0) regardless of the arc v(7). It means
that the focal point SFy belongs to its prefocal set dgp,. It also implies that
whatever is the slope m = 1, /& of y(7) at SFy, the image F),(v(7)) always
intersects dgp, at the same point, namely, SFy itself. In a certain sense the
focal point SFy plays a role similar to that of a fixed point of F,. However,
the set dgp, contains also other points. Indeed, if we put & = 0, 71 # 0 then

iy 7,0 () = (0.2 )

7—0 52
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while if 9y = 0, & # 0 then

(i{%(ra + O,b,) O)
?72 Y Y
where ‘+’ and ‘—’ are chosen depending on the signs of A and (P — O,A).

lim F,(y(7)) =

7—0

Hence, the prefocal set

S, = {(A,P) : A=0}U{(A,P) : P=0},
which coincides with the set of nondefinition d,. Note that, the derivatives
Nia = Nijp = D;p =D14=0,1=1,2, Dyy = 1, and therefore, the focal
point S F is nonsimple.

Similarly, we get that the prefocal set of SP; is

dsp, ={(A, P) : A= —b,}.

For SP; there holds N;p = D;,p = 0, ¢« = 1,2, and this focal point is

nonsimple as well.

Finally, F1(A, P) also assumes uncertainty 0/0, if A = 1 — r,/(O,b,)
and P = 0, while F5(A, P) is finite. The prefocal set of the focal point
SP, = SP,(1 —r,/(0O4b,),0) is the line

dsp, ={(A,P) : P=0} Cds.

The point SP, is simple provided that r, # Oub,. If r, = O,b, then
SP, = SFy. The point SP, belongs to its prefocal set dgp, , similarly to
SP,. However, there exists only one slope m = /& for which the image

F,(v(7)) intersects dgp, at SP,, since SF, is simple. O

Theorem 4.41. Consider a map F,, with pn € RS x {K = 1}. It can have

from two to eleven coexisting fized points:

o the points F1(1,1) and Ex(Ar), 1) always exist, where

1 1 1\> 4
ALl_E BI-I-O—Q—\/(BI—I-O—a) _O_a ) (4.104)

Ta
By=1+—; 4.105
I + Oaba7 ( )
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o the pair E3(Aq,,1) and E4(Af}’1, 1) with

2
Ajpy = % B + Oia + \/(Bn + %) - Oia (4.106)
Byu=1-——%. (4.107)
Ouba
exists for
Ta 2
p, <= VO E>(1+\/07>2. (4.108)
O, > 1. ba

e the point E5(Aq, Aq) with
Tp

Ag=1+—=2L
bp(Op_l)

(4.109)

exists for almost any parameter values except for the set {p: Oy, = 1};

e the triple Fg, Er, Es (not necessarily ezistent) is obtained from

A2 — BiA
i A® + asA’ +asA+ay =0, P= Tfoa (4.110)
with
4y = 0,(0, — 0,),
ay = % + (0, — 0)(20, +1) + %(Op ~20,),
p a
4111
a3 = (04 — 0,) (00 +2) + 2 (142 +20, -0, ) —2:2, (4111
b by b,
_ 0 _ ™ _Ta,
CL4 — Op Oa + bp ba,

e the triple Eg, Eyo, F11 (not necessarily existent) is obtained from the
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same expressions as in (4.110) but with
a1 = 04(04 — Oy),
ay = 7 + (0 = 0a) (20, + 1) + :4(20, = O,).

b, a

) - (4.112)
a3 = (O — 0,)(Oq +2) + b—<b——1+0 0)—zb—p,
p

r

=0,-0,+-L+-2.
a4 D + bp ‘|‘ ba
and By replaced by Byr.

Proof. Fixed points of the map F), can be defined by solving the following

equations:

A:A<1+Ra. (1_%»’ (4.113)
P=P(1+R, (1-P)).

This is equivalent to
e A
fi(A,P) < AR, (1 - F) 0, (4.114a)

fQ(A,P) def

Each of the equations (4.114) defines a geometrical locus of points in the

PR, (1-P)=0. (4.114b)

(A, P)-plane. Every intersection of the two loci of points is a (potential)
fixed point of (4.94). We use the word “potential” here because some of inter-
sections may correspond to focal points, as for instance, the point SPy(0,0).

From (4.114a) the function fi of the two variables A and P equals zero

when one of the following holds:
P=A, AR, A,P)=0. (4.115)

The values A = 0 are omitted since they correspond to the set of nondefi-
nition Js as seen above. Let us solve the remaining equation R,(A, P) = 0.

Expanding the modulus we get two different equations:

P T P T
A Y=o ™ G %= aTay
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where one has to require A < 1. This implies the following two functions

—r, — Oub, + 0,0, A A% — BiA
P = A=""""0 =P(A 4.11
bo(1 —A) A—1 O 1(A), ( 6a)
—r, + Oub, — b, 0, A A% — BjjA
P = A= ———0,:= Pi(A 4.116b
ba(1 — A) A-1 O u(4) (4.116b)

with By and Byy defined in (4.105) and (4.107), respectively. In general, both
equations (4.116a) and (4.116b) define curves in the (A, P)-plane consisting
of two branches each (one for A < 1 and the other for A > 1): P£, P® and
PE, PR However, only branches PF and P§ reduce R, (A, P) to zero.

Note that the curve P = PF(A) is strictly increasing and have two asymp-
totes: A =1 and P = O,A — r,/b,. As for P = Plf(A), it has a local

maximum at
T'a € max max max
A=1- \ 6.0 CAR, Pu(AR™) = O, - (AF™)2 (4.117)

Obviously, Afj™* < 1 for any parameter values. Additionally, if r, < b,0,
then Al > 0, otherwise Al® < (. The function P = P%(A) also has two
asymptotes: A =1and P = O,A+ 1,/b,.

For the sake of shortness, we omit the upper indices

£ writing simply

Pi(A) and Pi1(A), except for the cases where it is necessary to distinguish
between the two different branches.

From (4.114b) the function f; equals zero when one of the following holds:
P=0, P=1, R,(A P)=0, (4.118)

where the first line P = 0 belongs to the set of nondefinition ds as discussed

above. The last equation of (4.118) is equivalent to

14+ 0,A + \/(1 — 0 A) — AR
2

= P.(A), A#N0. (4.119)
Note that the curves PL(A) are defined only for those values of A which

guarantee positive discriminant

pP—

(1-0,4)? — 442 > 0.
bp
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Solving this inequality gives A < A or A > Afl  with

) b,Op + 21, £ 2, /b,0,r), + 7,]%
A = . (4.120)

lim — b02
b~p

Both A . Al

lim>  lim
curve P_(A) and Py (A) consists of two branches, one defined for A < A

(denoted P*(A) and P£(A), resp.) and the other for A > Al (P®(A) and

PR(A), resp.). Both curves have also two asymptotes:

are always positive and may be less or greater than one. Each

.

—J(AP): P=14+ 2 4121

El {( 7 ) +bp0p}’ ( )

Ly = {(A,P) : P:OPA—T—p}. (4.122)
prp

The fixed points of the map F), are found as intersections of fi(A, P) =
0 (4.114a) and f5(A, P) = 0 (4.114b). As one can surmise, the branches of
fi(A, P) = 0 and f2(A, P) = 0 may cross at several points, whose number
changes depending on the parameter values. And they always intersect at
the point SPy(0,0), which is a focal point.

Consider the intersections of f; = 0 with P = 1. First of all, there is
always a fixed point Fj(1,1) (being the intersection of P = A and P = 1),
which is the desired target state from application viewpoint. For determining
the points of intersection of P = Pj(A) and P = 1 we solve
A? — BiA

A(A) = —r—

O, =1, (4.123)

where By is defined in (4.105), which gives two solutions Aj} with Ap; given
in (4.104) and A{| being the same but with the opposite sign at the square
root. They are real whenever the discriminant A is not negative:

1\* 4
A=(B+—)| ——>0.
(I+Oa> 0. =

Adding the term 44r,/b,0? to the left-hand side of the last inequality gives
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7“2 +1+27“a+2+27“a:|:47“a
v:o2 0?2 b0, O, b,02 b,02

(g Lo L 2+4T”>0
“\""ho, " 0,) Thor T

The latter always holds since r, > 0,0, > 0. Moreover, the inequality is

A=1+

always strict. It means that the two solutions Alil are always real and
- -
A <1, AL > 1L

Clearly Ap; is the intersection point of P = PF(A) and P = 1, while Affl is
the intersection of P = P*(A) and P = 1. Hence, only A 1s related to the
fixed point, since only branch P reduces R, (A, P) to zero. We additionally
remark that Ar; > 0 because P = Pi(A) is increasing and

P(0) =0, lim P(A) = oc.

A—1—

The fixed point Ey = Eg(Ail, 1) € Dx, or more precisely, Fy € 0Dx.
Similarly, the points of intersection of P = Pjj(A) with P = 1 are ob-

tained from

A? — BpA

CA-1

where By is given in (4.107), and thus, the fixed points E374(Aﬁ71, 1) are ob-

tained. Again, the solutions A, (4.106) are real whenever the discriminant

Pu(A) = O, =1, (4.124)

A (Bas B) D45 (4.125)
— 11 Oa Oa_ ) :

but in contrast to the case of P{(A) = 1, now the opposite inequality (A < 0)
is possible. This happens when

(1—\/07)2<Z—Z< (1+@)2. (4.126)

For the related parameter values both Ali11 are complex, and Es4 do not

exist. When A is positive, Aﬁ , are distinct real numbers. However, it does
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not immediately imply that the fixed points Fs 4 exist. Indeed, recall that the
expression (4.116b) defines two branches: P5(A) for A < 1 and PJF(A) for
A > 1, but the right branch PF does not reduce fi(A, P) to zero. Formally,
if Afil > 1, then the points E3 4 are intersections of P = PJF(A) and P = 1,
but they are not fixed points of F},. In case where Aﬁ@ < 1 the fixed points
FEs 4 are intersections of P = P5(A) and P = 1.

To derive the region of parameter values for that the points Fs 4 exist, we

recall that Pij(A) has a local maximum

max Piy(A4) = ( Z—Z— @)

attained at AJ}® given in (4.117). Then we have to require that

2
. pmax

II

(1) the opposite to (4.125) holds (A > 0) and
(2) Pp™ > 1.
The condition (1) is nothing else but

Z—Z< <1—@)2 or Z—Z> (1—|—\/07a>2.

The condition (2) is equivalent to

_ T

2 < (O, —1)?,
‘/%<\/Oa—1, b, ( )

- Al O, > 1,
Vo, VOt > (VO 1)

L. Ya

Combining both conditions together implies

Ta 2

— < (1—=+0,)",

b, < ) or %> (1+ \/07)2. (4.127)
o, > 1. ba

The location of AIiL1 trivially holds from the respective condition (4.127).
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Consider now the intersection of f; = 0 and P = Py(A). For P = A and
P = P_(A) we solve

14+ 0,A — \/(1 — 0,A)? — 44

P_(A) = >

= A, (4.128)

which is equivalent to

14+0,A—24= \/(1 —0,A)?2 — 4Ag—p.
p

This gives two solutions: A = 0 and A = Aq (4.109). The solution A = 0
corresponds to the focal point SF, and always exists, while A = Ay exists

only provided that

Alg, = (1 — 0,Aq)% — 4Ad% >0, (4.129)
p
and 1+ OpAd — 244 > 0. (4130)

The first inequality (4.129) can be rewritten as

O,—2 r 2
Alg, = [ =2 Ly0,—-1) >0
‘Ad <Op—1 bp+ i > 7

which is always true. The second inequality (4.130) is equivalent to

p p
or or O,=2. (4131
r bp(Op B 1)2 r bp(Op B 1)2 i ( )
= 2-0, P= 2-0,

If (4.131) is obeyed, the map F), has a fixed point E5 = E5(Aq, Aq).

132
Let us emphasise the particular case when the equality r, = b(0p—1)

2-0,
holds. It immediately implies that 0 < O, < 2, since for O, > 2 the value

of r, either falls outside the considered region for parameters or is infinite
(for Op = 2). Moreover, depending on whether 0 < O, < lor1l < O, < 2,
the solution of (4.128) is either Aq = A, or Aq = A (with Afi[m defined
in (4.120)).
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For the intersection of P = A with P = P, (A) there is

1+@A+¢@—Qﬁﬁ-@%

having the only solution A = Aq defined in (4.109). Though Aq has to satisfy

244 — 1 — 0,Aq > 0, (4.132)

which is just the opposite to (4.130). Hence, the inequality (4.132) is equiv-
alent to the opposite of (4.131):

2-0, 2-0,
S, _C S,

bp(op o 1) or bp(op - 1) (4 133)
< (O 1)° s (0 —1)°

= 2-0, P= 2-0, °

This means that the two conditions (4.133) and (4.131) are complementary.
And the fixed point Ej5 exists for any parameter values, except for the case
when O, = 1 implying Aq = +oo. However, Ej is located on either P =
P_(A) or P = P,(A), which depends on the parameters.

For P = Pi(A) with P = P_(A) we obtain the equality

P(A) =P (A) & 1+0,A—

r A r
_la = /(1-0,A)2—4A-L (4.134
z(ba<%+aA>A_1 ¢( 0,4 1A}, (4131)

which immediately separates into A = 0 and the cubic polynomial of A given
in (4.110), (4.111). This polynomial always has three roots denoted as AII’Cub,
A%’Cub, A%,Cub, among which there must be at least one real root. Suppose that
Aicub is always real.

We also remark that for raising to the square both sides of (4.134) one
has to guarantee that

r, A
—2 -2 -~ >0. ,
1+0,A 2( b Oa+OaA>A_1_0 (4.135)
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Thus, every Af., also has to satisfy (4.135). Let us denote
Ly = EG(AIl,cub7 I,cub)? Er = Er(Af s Plow) Es = Es(4 eubr 11 cub) Then
P oy @ = 1,3, are the values of Pi(A) at Aj . Note that even if the cubic
equation (4.110) always has at least one real root A} cubs 1t does not imply
that Eg always exists. Indeed, if Aj ., > 1, then the point (Af ., Pfeg) 19
the intersection of P = PR(A) and P = P_(A), and hence, it is not a fixed
point of F,, since only branch P§ reduces R,(A, P) to zero. The same is
true for FP7 g, which exist provided that A ~p are real and less than one.

The intersection points of Pi(A) with P+(A) are obtained from the cubic
equation (4.110) with coefficients defined in (4.111) (the same equation as
for the intersection of P(A) with P_(A)). The only difference is that now
every solution of (4.110) has to satisfy the inequality

Ta A
+ 2 -=_0, + < _
14+ 0,A—2 ( o= O OaA) - <0 (4.136)

having the opposite sign with respect to (4.135). The same fixed points Eg 75
can be obtained.
For the intersection of P = Pji(A) with P = P_(A), the equality

PH(A) = Pf(A> & 1+ OpA—

A T
2 p
(ba O, OA) \/(1 OpA)? — 442 (4.137)

p
immediately separates into A = 0 and the cubic polynomial of the form
(4.110) but with coefficients given in (4.112). The roots of the polynomial
are referred to as A}'Lmb, = 1, 3, with supposing that Aj; cub 18 always real.

Each A%I’Cub has to satisty the inequality

A
— — — _— > .
1+ 0,4 z(ba O+OA>A_1 0. (4.138)

so that to guarantee validity of raising to square (4.137). The points denoted
as By = E9(A111 ,cub? PII cub) Ey = ElO(AH ,cub’ PII cub) En = EH(AII ,cub?
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cPI?i,CHb) are fixed points of F), provided that A%l,cub are real and A}'I’Cub <1
by the same reason as for F'Fg 5.

Similarly, equating P(A) to P, (A) implies the same cubic polynomial
as equating Pij(A) to P_(A) giving the roots A}'I’Cub, i = 1, 3. However, now
they have to satisfy inequality opposite to (4.138), that is,

r, A
N <. _
1+0,A -2 (ba Oa+OaA> TS 0 (4.139)

[]

Since the map F), is piecewise smooth, the Jacobian matrix for an arbi-
trary point (A, P) is defined differently depending on whether (A, P) € D_
(P/A < O,)or (A, P) e Dy (P/A> O,). However, in particular cases these

two matrices coincide.

Theorem 4.42. Concerning the stability of fived points of the map F),, the

following statements hold:

o The fized point Ey is (i) a stable node if both rq, 1, < 2; (ii) a saddle if
either ro, > 2 orry, > 2; (i) an unstable node if both 4,1, > 2.

o The fized point Ey is (i) a saddle if r, < 2; (ii) an unstable node if
Ty > 2.

o The fized points Es4 (if existent) are (i) a stable node and a saddle,
resp., if rp < 2; (i) a saddle and an unstable node, resp., if r, > 2.

Proof. The Jacobian matrix for the fixed point E; is defined as

J(Ey) = <1_7"“ ra ) (4.140)

0 1—r,

regardless of whether £y € D_ or £y € D, (which depends on O,). Eigen-
values of J(E,) are v1(Ey) = 1 —r, and v»(E;) = 1 —r,. The corresponding
eigenvectors are v; = (1,0) and vo = (r,/(rqa —7p),1). Clearly, whenever

e, Tp € (0,2), the point Ej is asymptotically stable. Both eigenvalues are



236

real and r,, r, are strictly positive. Thus, the only bifurcation due to that
E; can lose its stability is the flip bifurcation (at r, = 2 or r, = 2).

We remark, that the singularity arises when r, = r,. In this case there
is only one eigenvector v; related to the eigenvalue vy of the multiplicity 2.
This implies that if the fixed point Ej is stable, namely, r, € (0,2), then
every orbit attracted to F4 is asymptotically tangent to the line P = 1 in
the neighbourhood of Ej.

The fixed point Ey(Ay;, 1) is always located inside D, that is, 1/A; >
O,. Indeed,

(AL1>2 — BiAL,

1= PF(Ap;) = AL -1

o, > OaAIj1 &

T'q

(A0)" - B < (An)" -4 & 15

A <0

and the latter inequality is always true (recall that 0 < A, < 1). The

related Jacobian matrix is then computed as

J(E) = ) (4.141)
0 1—-m,

where

Jin = (ba(1—O0,) + Ta)Ail —bo(1 = O0y) + 74 +1,

5 5 (4.142)
Ji2 = —=ba0a (Ar1)" + (0:0a + 74) (Ar1)” + baAry — ba.
The eigenvalues of F, are
Vl(EQ) = JH, VQ(EQ) =1- Tp. (4143)

The related eigenvectors are

vy = (1,0), vy = ( 12 1). (4.144)

1—7“p—(]11’

Both eigenvalues of F are real and the second is also strictly less than one.

Hence, the only possible bifurcation in the direction v is the flip bifurcation
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(at 7, = 2). It can be further shown that the other eigenvalue is always
11 = Ji1 > 1. Hence, the point Ej is either the saddle or the unstable node.
If it is the saddle, then it becomes the unstable node when r, = 2 giving
rise to a saddle 2-cycle with one point located above the line P = 1 and the
other point below this line. Moreover, this flip bifurcation is the only local
bifurcation that EF5 can undergo.

Let us show that the fixed points E3(A;;,1) and Ey(Aj,, 1) are always
located in D_. Recall that these two points exist when (4.127) holds. If the
first condition of (4.127) is true, then AJ}* > 0 and

dP a dA
—! =0, — e 4 1< < O,.
dA |, ba dA |,

The derivative dPi1(A)/dA clearly decreases to zero on the interval [0, A
and then becomes negative on (A, 1). It means that

PH(A) <0,A for 0<A<l = E374 eD_.

On the other hand, if the second condition of (4.127) holds, then
d Py

dA

—0,— "« _9./0,~1<0.
A=0 ba

This implies that
A, <0 = FEsyeD_.

The Jacobi matrix for Fj3 is

Ju  J
J(Ey) = """ ), (4.145)
0 1—-m,

where

Jin = —36,0, (Ayr,)’
+ (40,0, + 2b, — 2ra)AI‘L1 —2b, — b,0, + 71, + 1,
Ji2 = 004 (A1) + (ra — 5a04) (Af,)” — baAy, + ba. (4.146)
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For obtaining similar expressions for E; one has to replace Ay, with Aff,

in (4.146). The eigenvalues of F3 (and similarly of Ej) are
I/1(E3) = JH, VQ(Eg) =1- Tp. (4147)

The related eigenvectors are

vy = (1,0), wy= ( iz 1). (4.148)

1—7“p—z]11’

Let us check which bifurcations can appear in the direction v,. For that

we make certain transformations in the expression for Jy:

1 1\> 4 1\> 4
1= (By+——2 B+ —) - — (Bp+—) - —.
J1 ( H"‘Oa >\/( H"‘Oa) o, ( H—|—Oa> O,

The latter equals zero if

[ 1\? 4 r 2
Byp+—) ——— = = = Vv
( H+Oa) o. 0, b, (1£+v0,)",
B+1_22_B+12_4 "o _
] il 0. = 11 0. 0. b,0,

Notice that for r,/b, = (1 — \/Oa)2 with 0 < O, < 1 the branch P =
Plf(A) is tangent to the line P = 1, and hence, the points E3 4 do not exist.
Consequently,

r

==V,
n(ks)=Jnm=1 <« O, > 1, (4.149)
%: (1+v0,)°.

When (4.149) holds, the point Ej5 (together with E,) appears due to the fold

bifurcation. Moreover, for

Ta 2
— < (1—-+0,)",
0 YO e

O, >1 “
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the eigenvalues are
I/1(E3) <1 and I/l(E4) > 1.

If additionally 7, < 2, then Ej3 is the stable node, while Ey is the saddle.
Otherwise, Ej3 is the saddle and Fj is the unstable node. It can be also
shown that there is always v1(E3) > —1. Thus, F5 cannot undergo a flip
bifurcation in the vy direction.

The second eigenvalue for both points is always 1o, < 1, and the only
possible bifurcation in the direction ve is the flip bifurcation (at r, = 2).

Notice that this bifurcation occurs for both points simultaneously. [

As for the fixed point F5(Aqg, Aq), it is located inside D_ (D) if O, > 1

(O, < 1). In both cases its Jacobi matrix has in general all four non-zero

elements:
Tpba(Og—1) Tpba(Og—1)
l=rex 40557 T T o0
J:I:(E5) — ( TZ bp(Op—1) bp(rO%}ZOi)2)> (4150)
bp(op_1)2 1 + ’I“p + bp(Op_l)z

The eigenvalues of J*(E5) may be complex numbers. It happens when

2
7pba(Of — 1) r2(0, — 2)
2 —r, + L 2P | —4det JE(E . (4.151
( ' bp(Op_1> +Tp+bp(0p_1)2 o ( 5)<0 ( )

In such a case it is possible for this point to undergo a Neimark—Sacker
bifurcation. However, the left-hand side of (4.151) is too cumbersome to

study analytically how different parameters influence its sign.

The expressions for E;, 1 = 6, 11, are also too complicated to study their
stability properties analytically.

Below we present two examples of phase plane of the map F), for different
parameter sets. Both examples show the complexity of the dynamics and,
even when restricting the phase plane to values relevant for the application,
coexistence of different attractors.

Let us fix the parameter point p; with r, = 0.03,7, = 0.01,0, = b, =
0.1,0, = 3,0, = 1.5. For such parameter values, the application target
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fixed point Ej is a stable node. Fig. 4.15a shows a phase plane of the map
F,,,, where different colours correspond to attractors of different period or
divergence. Namely, some orbits are attracted to a fixed point (pink and
brown colours), some to an 8-cycle Og (violet colour), some converge to a 35-
cycle Oss (orange colour), while the others are divergent (grey colour). The
cycles Og and Os; are located outside the feasible domain Dr. Hence, the
orbits having initial conditions inside the respective regions are non-feasible
and should be excluded from consideration in the applied context.

Let us consider the orbits convergent to the fixed points in more detail.
We notice that for the mentioned parameter values there exist seven fixed
points: F;, i = 1,6, and ¢ = 9. All these fixed points, except for F'Ps, belong
to the feasible domain (to its interior or its boundary 0Dz). The points E;
and Fj5 are stable nodes, the points Es, Ey, E5, and Eg are saddles, the point
Eg is an unstable node. In Fig. 4.15a basins of attraction of £4 and Ej5 are
shown by pink and brown colours, respectively, and some of their boundaries
are marked by blue curves, which are stable sets of the four saddles.

The intersection of the basin of attraction of the application target point
F'P; and the feasible domain D is relatively small for the chosen parameter
values. However, from the form of the immediate basin of F'P; one can
conclude that for the learning process to be effective, the initial value of
the actual developmental level A must be sufficiently high regardless of the
initial potential developmental level P. As has been already mentioned,
evaluation of the current learner’s knowledge level is a complicated task often
requiring time and usage of multiple techniques. Therefore, in reality it
can sometimes happen that the potential developmental level is estimated
incorrectly and there is P < A. Though if initial A is large enough, the orbit
eventually enters the feasible domain Dz converging to the desired point
FP. In Fig. 4.15a two orbits with different initial conditions, one being
outside and the other one located inside D, are shown by cyan and black

lines, respectively.
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As for the orbits whose initial points are located in the yellow region, they
asymptotically approach the focal point SFPy. Recall that SFy belongs to its
prefocal set dgp,. Moreover, if coefficients &; and 7, in Taylor series (4.100)
are different from zero, the image of the respective arc v(7) intersects dgp,
exactly at S Py regardless of the slope m = n1/&. And hence, SPy may play
a role similar to that of an attracting fixed point. The basin of attraction
of SP, contains elements characteristic for maps with denominator, as one
can see in Fig. 4.15b. In particular, let us consider the part of this basin
with three vertices in the points ()1, ()2 and SF,, denoted as By. The points
()1 and @)o are the intersections of the respective basin boundaries with the
prefocal set dgp,, and hence, are both focalized into S P; by one of the inverses
of I,,. Due to this there exists a crescent between the two focal points, SF
and SP;, denoted as Bo_,% in Fig. 4.15b, such that Fm(BO_j) = By. Clearly
there also exist an infinite sequence of preimages of B }, each having a form
of crescent between S Fy and a respective preimage of SP;. For instance, one
can notice the region B; 7, between SPy and SP;, where F,, (SP;{) = SP;
and F,,,(By1,) = By1.

For further details on characteristic basin structures occurring for maps
with vanishing denominator see [46, 49, 51].

In the second example we fix the parameter point s with r, = 0.098,
r, = 0.09, b, = b, = 0.1, O, = 0.2, O, = 0.11. All in all, there are seven
fixed points: two stable nodes E; and Ej, four saddles Ey, E7g9, and an
unstable focus Fy. In addition, there are two non-periodic invariant sets.
Figure 4.15¢ shows basins of different attractors in the (A, P) phase plane.
Blue points correspond to initial conditions whose orbits are attracted to
FE4, the basin of Ej5 (which is non-feasible though) is plotted brown, orange
region is related to the chaotic attractor Q located at the line P = 1, and
the points coloured pink have orbits ending up at the invariant closed curve
[’ (shown violet). Grey region corresponds to divergence.

We remark further that the basin of E; is separated from the others by
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Figure 4.15: Phase space of F' revealing basins of different attractors with grey mark-
ing divergent orbits. (a, b) The parameters are r, = 0.03,7, = 0.01,b, = 0.1,b, =
01,0, = 3,0, = 1.5. Pink and brown are related, respectively, to the stable nodes
FE, and FEj; yellow corresponds to the focal point SFy; violet and orange are associ-
ated, respectively, with Og and O35 (both located outside 0Dx). (¢) The parameters are
re = 0.098,7, = 0.09,b, = 0.1,b, = 0.1,0, = 0.2,0, = 0.11. Light-blue and brown
are related, respectively, to the stable nodes E; and Es (located outside 0Dgx); orange
corresponds to the chaotic attractor Q@ C {(A, P) : P = 1}; pink is associated with the

closed invariant curve I'.

the stable set of the saddle E5. Note that in comparison with the previous
example, for the current parameter set the part of basin of F'P; located
inside the feasible domain Dr is essentially larger. However, the initial actual
developmental level A again must not fall below a certain value in order to
achieve the final educational goal K = 1. In case when the initial A is too
small, or the original evaluation of the current learner’s knowledge level is
too far from the reality, that is, initial P is too far below the initial A, the
learning is not effective. Indeed, such an orbit either eventually leaves the
feasible domain Dz or is attracted to an invariant curve I'. This curve I' can
be interpreted as a cyclic learning process in which the student achieving a
certain developmental level gives up (for instance, gets bored of the subject)
and gradually loses the skills acquired. At some point he/she starts fighting
the educational goal anew, but eventually gives up again.

Note also that the focal points SFy and SP; are involved as well into for-

mation of the basin structures, typical for maps with vanishing denominator,
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such as lobes and crescents. For example, the basin of Q consists of multiple
lobes issuing from S F, forming a structure which resembles a fan centred at
S Py. And the parts of the basin of infinity (divergent orbits) located between
these lobes have form of crescents.

Finally, the points E7 g g are located in the third quadrant of the plane and
fall outside both, the feasible domain Dz and the area plotted in Fig. 4.15¢.
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Chapter 5

Piecewise smooth maps of higher dimensions:

Asymptotic solutions and their bifurcations

The current Chapter is devoted to studying several families of higher-
dimensional piecewise smooth maps that model an oligopoly market. These
models were suggested by a famous Swedish economist Tonu Puu as an an-
swer to the so-called Theocaris—Cournot problem, when the market is desta-
bilised with increasing the number of competitors. Due to high dimensional-
ity of the maps considered here, the combination of analytical methods and

numerical experiments is widely used below.

5.1. A brief historical note: oligopolistic competition

models

Economics textbooks consider three stylised market situations, perfect com-
petition, monopoly, and oligopoly. In perfect competition the firms are
very small and numerous, so they cannot perceivably influence market price
through their supply; neither can their competitors, so it does not need to
be concerned about their reactions. In monopoly there is just one supplier
who knows the consumers’ demand function, and it deliberately limits its
supply, thereby being able to charge a monopoly price in such a way as to
maximise monopoly profit. Oligopoly, the case of few rather big competi-
tors, is an intermediate case, which analytically is more complex than either

perfect competition or monopoly. This is because the oligopolist takes in
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account how it, like the monopolist, affects market price, but also how the
competitors react back on its own moves. This market situation was first
formalised by French mathematician Augustin Cournot in 1838 [75].

There followed a sizeable literature on oligopoly with many developments
which we will not trace here. The general idea was that with an increase in
the number of competitors the monopoly, over oligopoly, would ultimately
transform into a competitive market. However, with the current models,
assuming linear demand functions and constant marginal costs, Theocharis
in 1959 [232] pointed out that when the number of competitors exceeded the
small number of three, the Cournot equilibrium would be destabilised. This
became known as the “Theocharis Problem”, though it was stated under more
general assumptions 20 years earlier by Palander [164].

In this research we will assume not a linear, but a hyperbola shaped
demand function. However, the same destabilisation was shown to occur
in this model; only the bound for destabilisation was pushed from three to
four competitors (see [2, 5]). The cause for destabilisation in both cases
obviously was the assumption of constant marginal costs. In the scenario of
increasing competition described above, it is implicit that the more numerous
the competitors are, the smaller they will be. However, a firm producing with
constant marginal cost, 7. e., under constant returns to scale, is potentially
infinitely large as it can increase any tiny profit margin without bound by
increasing the scale of operation. That the addition of infinite sized firms
will destabilise equilibrium is, however, neither very interesting, nor very
surprising.

A first attempt to deal with the issue can be found in [211], where a
given total capacity of the branch is supposed to be split in equal shares
between the firms. In this way the firms automatically become smaller the
more numerous they are. Of course, it was necessary to skip the constant
returns to scale and to assume a production function incorporating capacity

limits. The conclusion from this study was that the destabilisation did not
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necessarily occur any longer. Oligopoly could in fact transform smoothly into
a competitive market without any destabilisation.

However, the model still just assumed an exogenous change of the number
of competitors and automatically their capacities. A new start was taken in
[210], where the firms were assume to enter the market one by one, choosing
their capacity through investing in a capital equipment according to current
market conditions, and replacing the capital when it was worn out. This

made the market evolution endogenous.

5.2. A 2n-dimensional nonautonomous map

Let us consider an abstract market with n, n > 2, competitors (or agents)
all producing the same good, as it was done in [182-187, 212]. At a fixed
time period, the supply of the i-th competitor (the produced good amount)
is denoted as ¢; and the whole production set is then represented by a vector
a=(q1,q,-..,q:,) € R}. To produce g;, the agent uses a certain amount of
capital k; and the set of capitals is denoted as k = (ki, ks, ..., k,) € R". We
suppose that at each time period the competitors are able to learn the current
total production volume and have “naive” expectations, which means that
they assume the others will produce the same amount in future. Possessing
this information, the i-th competitor decides about future production size by
maximising their profits taking for granted that the residual supply (the sum
of quantities produced by the rivals):

j=n

Ry Qi(q) =Qi= Y g (5.1)
j=Lj#i

will remain unchanged. The agents should also take into account that the

capital has finite lifetime (or durability) T', assumed here to be constant and

indifferent of 7. It means that every T' time periods every capital k; has to

be renewed.
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Skipping technical details, we report that the evolution of the market is
defined by a 2n-dimensional nonautonomous map ® : Z, x R* 5 (¢,q, k) —
(d, k) € R*" where ® = (P, D, ..., Py,) with the components

FwE i7ki ’ m .7t 07
d=otqlg = L@l oD 7 (5.20)
Gw,r,e(Qi)a O-m(zvt) = Y,
ki, m(3,1) # 0,
ki = ©niilt,q. k) = onli ) # (5.2b)
(1_{’\/7) wra Qz O'm(Z,t):O,
for i« = 1,n. The function o, : N X Z, — Z,
om(i, t) = (t —mi) mod T (5.3)

defines time periods at that the respective capital is worn out and these
periods are diversified among agents depending on the parameter m € Z.,
while T" € N is the fixed capital durability. If m = 0, all competitors renew
their capitals synchronously. The function F, . : Ry x Ry — Ry

rk@_f(cg k) Q<
FocQR) =3 key/2 T T

\

1
w (5.4)
1

with the parameter w € R, w > 0, denoting the wage rate, represents the
optimal production size for the fixed value of capital and is referred to as the

“short run” function. And the function Gy, : Ry — Ry

e~ Q=10u:(Q), Q< er
ViV A N N a
Gure(Q) = (5.5)

2 Q>
with the parameter » € R, » > 0, denoting the capital rent, is called the “long
run” function and is used at the moment when the capital has to be renewed.
The parameter € € R, represents a tiny stand-by output, which is supplied

in case of nonprofitable production instead of closing down completely. If
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e = 0, the functions F, . and G, . are nonsmooth but continuous, while for

e > 0 they both have a point of discontinuity at () = % and Q = m,

respectively, since fw(i, k) = gu.r <m) = 0.
From the application viewpoint the balanced market is attained at the
so-called Cournot equilibrium, when all competitors are equal in size and

possibilities, and therefore, all produce the same amount denoted as ¢*. From

(n—1)¢*

= gur((n—1)g") = Yo (n— 1),
¢ = gur((n—1)q") NG (n—1)q
assuming ¢* = 0, one obtains
—1
= . (5.6a)

(Vr + Jo)n?

Substituting (5.6a) into

¢ = fu((n—1)g, k)

and solving for k implies

(4Bt

Clearly, the values ¢* and k* define a fixed point of ®.

In general, concerning the fixed points of the map ®, we can formulate

the following
Lemma 5.1. The map ® has at most three fized points:

Er= k) =(. Ok F), (5.7)
Ey = (0,0,...,0), n n (5.8)
——
Be= (g0, Gy ke Koy o), (5.9)
where ! :

=)
™
I

e, k.= (1 + \/g) €. (5.10)

The points E* and Ey always exist, while the point E. exists if either
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e (n—1)ew>1 or

e (n—1)ew < 1, (n—1)e(/T+w)? > 1, and \/rvVn — 1 = ny/w(y/T+
Vw)ye.
Proof. By derivation of ¢* and k¥, the point E* is a fixed point of ®. For
¢ = 0,7 = 1,n, there is Q; = 0 and F,.(0,k) = Gy,-(0) = 0 for any
k € R, which implies that Ej is always a fixed point.

For an arbitrary fixed point there must hold

qi = Gw,r,a(Qz’) — Fw,E(Qia kl)?

ki = (1 + \/?) Gure(Qi), i=T1n. (511)

At first suppose that Q; < m < < for all i = T,n. Then the first

equality of (5.11) implies
¢i = Qrot — Cngt, i=1,n, where Q= Z qi- (5.12)
i=1

Summing up (5.12) over ¢ gives the quadratic equation of Qio, from which
one gets

n—1
Qiot =0 or Qior =

n(vr+vw)

The first solution corresponds to Ej, while the second implies E*.

(5.13)

Let us now consider the case when for some ¢ there is ); > ﬁ Not
losing generality, we assume that it happens for ¢ > n — [, for some [ < n.
Then the equation (5.12) holds for i < n — I, while for i > n — [, there is

¢; = €. Summing up all equations for ¢; again gives a quadratic equation of

Qrtot:
(VT + V)i (n —DQ%, — (n — 1 + 1)Qop — le = 0. (5.14)
Solving (5.14), gives only one positive solution

n—1+1++/(n—1+1)24+4(/r + Vw)el(n — 1)
2(vr + vw)*(n 1) '

Qrot = (5.15)
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Substituting (5.15) into (5.12) implies for i = 1,n —{

4= (n—1)2%—(V(n =1+ 12+ 41+ w)el(n —1) + 1) <0, (5.16)

AV 4+ Vw)A(n = 1)?

ﬁa for all 1 < ¢ < n, which implies

The last case is when @Q); > <
¢ = € = ¢, and hence, Q; = (n — 1)e and k; = (1 -+ \/g) e = k.. First we

suppose that (n — 1)ew < 1. For the point E. to be the fixed point we must

require that F, .((n — 1)g., k.) = ¢, which implies the particular relation

between the parameters /rv/n — 1 = ny/w(y/r+w)/e. If (n—1ew > 1,

then @); > % for all 7, and E. is the fixed point of ®. ]

Remark 5.2. In case when ¢ = 0, the fixed points Ey and E. coincide.

Since the map ® is nonautonomous, to study the stability of a fixed point
one has to consider a finite composition of T" respective functions ®(¢, q, k),
t=ty,to+ T — 1, for some ty € Z, . Indeed, due to the form of the function

om (5.3), at each t € Z, there can exist a set of indices Z; = {i1,42,...,ix}
with 0 < K < n such that 0,,(¢,4;) =0, j = 1, K. If K = 0, then Z;, = @
and 0,,(t,i) # 0 for all i = 1,n. Since for each pair of coordinates (g;, k;),
the switching from the short run (F, . and the identity function) to the long
run (Gy . and (1 + \/g) Gure) appears every T steps, the set of indices
7Z; changes periodically with the same period. Hence, the composition of
T consequent iterates of ® is enough to obtain the stability condition for
an arbitrary fixed point £(q,k) with q = (q1,...,q), k = (k1,..., k).
Namely, one has to compute the eigenvalues of the matrix product

D®(q,k,tg+ T —1)-D®(q,k,t —0+T—2)-...-D®(q,k,to), (5.17)

where D® denotes the Jacobian matrix of ®.



In the case Z; = &, the Jacobian matrix is given by

/0 aig ... QAip d1 0 ... O\
a9y 0 .. Aoy 0 d2 ... 0
_ - Anp1 QApy ... 0 0O 0 ... dn
D® ,k,t ::J = )
@k =Jo 0 0 ... 0 1 0 ...0
0 0 0 1 0
\0 0 0 0 0 1)

where
Qi = - _
o 2 (\/5 + l%\/E)Q No
d — aF(Qi,/;i) Qi (1 - @)

= 1=1,n.

i ok; (\/@_{_Ei\/@)Q?

, JF
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(5.18)

(5.19)

Suppose Z; = {i1,...,4j,...,ix}, K <, thatis, 0,(¢,i;) =0,j =1, K.

The action of the map ® for the coordinate ¢;, switches from the short run

function F, . to the long run function Gy.e, and for k;; from the identity

function to (1 + \/g) Gu,re. The Jacobian matrix becomes

_ Az D
D®(q, k. t) :JL< h It)

Bz, Iz,
with
( 0 ap ... ai(i;—1) A1y Q1(i;+1) - -- aln\
agnn 0 ... agy1) G2 Q2(i41) --- A2n
Mg o= | |
bijl szQ sz(zj—l) 0 i (1;+1) bz]n

(5.20)

(5.21)



252

By, = . (5.22)

where 4 =1 + \/g,

DIt = diag{dl, dg, c e 7dij—17 0, dij—i-l) <o ,dn}, (523)
and
I, = diag{1,1,...,1,0,1,...,1} (5.24)
where a;; and d; are given by (5.19) and
0G(Q;) 1 L —
bi; = = — —1, j=1,n, j#1. 5.25
J 8qj 9 CQZ' ( )

In other words, the matrix Jz, is obtained from Jg by replacing the rows 4,
and n +1;, j = 1, K with

(bijl bij2 bi]’(ij—l) 0 bij(ij+1) bijn 00 ... O) and
(5.26)

(“bijl pbiz oo pwbio1y 0 pbi g1y oo pbim 000 L. O),

Then for the appropriate T' successive iterates of the map ® starting from

the time ¢y, the Jacobian matrix takes the form
R N P |- S P (5.27)

WithItjﬂItlzﬁ,j#l, Uleztj:{l,l...,n},LSN, tL:t0+T—1

Lemma 5.3. The fized point Ey cannot be stable.
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Proof. In general, the coefficients a;;, b;; and d; at Ey are undefined. Let us
take ¢; = O(0), k; = O(9) and consider § — 0+, then we have

li =0 d limd =1, 4i,j=1n, 1i4#]j.
Jim ay; and  lim d; =1, 4,j=1n, L F ]

However, there is

1. b: . .:1_ . ..
Jim b = o0, i,j=1mn, i ]

Consider t such that Z; = {ip}. The limit of the product Jz|s_0 - J7,|5-0 for

some 1 < iy < n results in

0 0 0 0
Br 1 SO
P ) with By, = .
th IIt 00 00 ... 00 0 oo ... 00|
\0 0 00 0 0/

Due to the form of the matrix above, the orbit of the map ® linearised at
Ey becomes unbounded in all directions. The same conclusion follows if for

some t the set of indices Z; contains more than one element. ]

Remark 5.4. In case € > 0, if the fixed point E. exists, it is superstable,

since its Jacobian matrix is a zero matrix.

Note that the points Ey and E. are not interesting from the application
viewpoint, since their economic interpretations correspond to a completely
empty and an almost empty market, respectively.

Let us consider the fixed point E* and recall that it is associated with
the economic Cournot equilibrium, which means that all competitors in the
market are completely equal (in possibilities and size). Hence, it is impor-

tant to derive the stability conditions for £*. The elements of the Jacobian
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1, n attain the following form

matrices for all 1 = 1,n,

n—2
L a,

2(VInt+ 1) (n—1)
R V] (V) R (528)

n—2 [r
= = —n+1 =:b.
b 2(n—1) ( wn )a b

Taking into account the forms of the Jacobian matrices Jz (5.18) and
Jz, (5.20)-(5.24), we surmise that the stability of the fixed point £* depends

essentially on the value of the capital lifetime 7. The simplest cases are

CLZ']' =

obtained when T takes limit values, i.e., T'=1 and T" — oo. The former
case implies 0,,(i,t) = 0, 1 = 1,n, t € Z,, whatever the parameter m is. It
corresponds to using only the long run function G, and was considered in

210, 211|. In particular, the following result has been proved:

Proposition 5.5 (Puu). In the long run dynamics, the Cournot equilibrium
is destabilised if n > 4.

In terms of the map ® this result can be formulated as

Corollary 5.6. Consider the map ® with T' = 1. Whatever the other pa-
rameters are, the fived point E* is stable if n < 4, neutrally stable if n = 4,
and unstable if n > 4.

The other limit case T — oo implies 0,,(i,t) # 0, 1 = 1,n, t € Z,,
whatever the parameter m is, and is associated with using only the short run

function F, ..

Theorem 5.7. Consider the map ® with T — oo. The fized point E* 1is
stable if n <4 orn >4 and w(n — 4)* < 4n’r.

Proof. Since at every iteration only the short run function £, . is used, the
Jacobian matrix is always Jg. It is a block upper triangular matrix, and
hence, its eigenvalues are the union of eigenvalues of two diagonal blocks.

The lower diagonal block is the identity matrix resulting in the eigenvalues
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vi = 1,4 = n+1,2n. The eigenvalues of the upper block are v; = —a,
i=1,n—1, and v, = (n — 1)a, where a is given in (5.28).

Due to using only the function F), ., the last n coordinates never change,
i. e., once set k; = k*, ¢ = 1,n, remain as such forever. Therefore, the fixed
point E* can be only neutrally stable. Let us check the stability with respect
to the first n coordinates.

For n = 2, there is a = 0, while a < 0 for n > 2. The former case
immediately implies stability of £*. Suppose n > 2 and consider the multiple
eigenvalue v; = —a. We must require that —a < 1. In fact, even stronger

inequality —a < % holds, since

—2
<1 and o

< 1.
1+5n n—1

1+£n>1 =
w

For the remaining eigenvalue v, = (n — 1)a < 0, there must hold
n—2
— >
S(/En )

By transformation of (5.29), for n < 4 we get

Uy —

1. (5.29)

M >0>n—4 = v, >—1.
w

For n > 4, we obtain the relation for r and w in the form

2n\/r > (n — 4)v/w,
which guarantees v, > —1. ]

Now, we assume T = 2, which is more realistic from the application
viewpoint. In case of odd m, regardless of its value, at each moment ¢ there
are multiple coordinates that make a jump from the short to the long run,

namely, those having odd an even indices alternatingly.

Theorem 5.8. Consider the map ® defined in (5.2), (5.3) with T = 2 and
an odd m. The fized point E*

e s stable for allr >0, w >0 ifn < 4;
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e is stable for w < 100r if n = 5;
e is stable for w < 36r if n = 6;

e is unstable if n > 7.

Proof. For the fixed point E* its Jacobian matrix is of the form J = Jodd. jeven,

where the i-th row of the matrix J°dd ig

( b, t=1,n, ¢isodd, j =1,n, j #1,
(1+ %)b, t=n+4+1,2n, 1isodd, j=1,n, j #1—n,
Jodd _ ) a, i=1,n, iiseven, j =1,n, j #1,
Y d, t=1,n, 1is even,j = n + 1,
1, 1=n+1,2n, 71s even, j =1,
\ 0, otherwise,

(5.30)

and the 7-th row of the matrix J¢°" is
4

b, i=1,n, iiseven, j =1,n, j #1,

—_
+
15
SN—"
=
~
I

n+1,2n, iiseven, j = 1,n, j #1i—n,

, i=1,n, iisodd, j =1,n, j#1i,

I =

: t1=n+1,2n, 1is odd, j =1,

a
d, 1=1,n, tis odd,j =n +1,
1
0

: otherwise.

(5.31)
Here a, d, and b are given by (5.28).

Let us find the eigenvalues of the matrix J explicitly. First, it is easy to
show that there will be vy = = ... =y, =0and 11 = ... = V9, o =
b(a — (14 /%) d). To find the last two eigenvalues we use the fact that

(i=2n

Z v; = tr j,
i=1

9 1=2n j=2n 1=2n j=2n

2 2 =232 I(5).

i=1 j=i+1 i=1 j=i+1

(5.32)

\
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where J (2 ‘;) are the principal second order minors of J , namely, in notation

J={J;}
j>.

=1
.32) for v, _1, V9, we get that

1(19) =
Von—1.2n = T £ /Y,

Solving the system (
For the sake of shortness, we introduce the notation a = \/?, and obtain

1

— &

<

_KO ko

Jji

ot

for an even n = 2s, s € N,

(s — 1)2(2s* + 4(a — 2)s> + 2(a® — da + 2)s* — 2a(a — 2)s + a?)

e (25 — 1)2(25 + )2 ’

4% (s — 1)}(s + a)?
(2s — 1)*(2s + «a)?
—20(a—2)s + a2>

Yy = <s4+2(a—4)33+ (o — 8ar + 4)s?

and for an odd n = 2s + 1
(25 — 1)?
a’/’ _—
3252(2s + 1+ «)
— 2a+3)s+ ala+ 1)),

4 3 2 2
5 <4s + 8(av — 1)s” + (4a” — 4o — 11)s

= 16 32(2a0 — 2 8(12a” — 36 — 15
Y 32254(2s + 1+ a)* s+ 32020 = 2)s" + 8(12a “ )s

+16(4a® — 200* — 120 + 3)s” + (160" — 160a” — 320° + 176cr 4 121)s*
—2(16a* — 320° — 8402 — 66a — 29)s”

+ (24a* + 320 + 6a% 4 6a + 9)s* — 2a(a + 1)(4a® + 6 + 3)s

+ o (a + 1)2>.

[t is easy to show that for any @ > 0 and s € N, there is 0 < b(a —
(1 + \/g) d) < 1. Hence, there remains the inequality

max{|r + /y|} < 1. (5.33)
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Solving (5.33) directly for s is not possible. However, it is possible to show
that for n = 2s, s > 6 and n = 2s+ 1, s > 5, there is

0
02(5:0) _ 0 and w(s,0) > 1. (5.34)
0s
Similarly, for n = 2s, s > 8 and n = 2s + 1, s > 7, there is
0
w >0 and y(s,0)>0. (5.35)
S

Combining (5.34) and (5.35) one can see that |z + /y| > 1 for n > 15.
The remaining values of n are considered directly, and by this we obtain the

statement of the Theorem. []

As follows from (5.35), there is y(s,) < 0 for s and a being small
enough. It means that for these values the fixed point £E* is a focus. If E* is
an unstable focus, in its neighbourhood an attracting invariant curve I' can
exist. This is depicted in Figs. 5.1. As one can see, for smaller a = 1.2 (see
the panel a) I" is smooth. With increasing « the curve I' starts having smooth
oscillations in its shape (see the panel ). And finally T disappears and
an attractor becomes chaotic (see the panel ¢). These transformations are
rather similar to those, described in Secs. 4.2 and 4.3, for the two-dimensional
case, when a fixed point loses stability due to a supercritical Neimark—Sacker
bifurcation. Also in the current higher-dimensional case, such evolution of
the attractor is related to the critical set C'S.

Even if the map ® is nonautonomous, both functions F,, . and G,
defining its components, have one unimodal branch with a local maximum
and one flat branch given by €. The set C'S_ in this case is defined by the
extrema of f,, and g, , and the sets of discontinuity given by % and

1
W )
Namely,

CS_1=UL {(a.k) : Qz: N
: {(q,k):Qi (\er\/— }UU { :qz:i}

g
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0 o 1
UUi_l{(qak) L (\/F+\/@)2}’ (5.36)

where

— 2(\/Fw — Vkiw + Dkin/Faw + ks (5.37)

is the point of maximum of f, (@, k;) over Q). Then the critical set is
CS=&(CS_1) =Ur, {( q,k L g = ful(Qelki), ki)

U;'l:l{(q»k)i% (\/—+\/— }UU21{Q7 cq; =0}
Uuizl{qa c ¢ =c}. (5.38)

Recall that for a border subset given by points of discontinuity, one obtains

points of the critical set by taking two first rank images using different de-
terminations of the map at both sides of this border subset.

In Fig. 5.1b, one can see that the invariant curve I' is tangent to the
part of C'S defined by ¢ = ¢ (this also means that I' has intersection with
the respective part of C'S_;). With increasing « further, the slope of I" at
the intersection point with C'S_; may become collinear to the eingenvector
corresponding to zero eigenvalue of I', implying I' being nonsmooth. Later
due to a homoclinic tangle the invariant curve I' transforms to the chaotic

attractor, visible in Fig. 5.1c.

0.z F=025,W=03 a] 0 T=025 w=05 5] 025 r=025,w=125 c

'] '] o

o o o
AN
AN
IR NN

o~ )\
0 0 0 e
0 9y 0.25 0 9y 0.25 0 gy 0.25

Figure 5.1: The section (g1, g2) of the phase space of ® for T'= 2 and n = 7. The other
parameters are ¢ = 1075 r = 0.25, and (a) w = 0.3 (a = 1.2); (b) w = 0.5 (a = 2); (c)
w =125 (a =5).
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5.3. A 3n-dimensional map having a flat part

We again consider an abstract market with n competitors, each being defined
by two variable quantities, the output ¢; and the capital k;. However, now
we take into account the fact that the capital lifetime is, in reality, not
constant and usually depends on how heavily the respective equipment is
being utilised. To this aim, for each competitor we introduce an additional
variable T; € R, representing the remaining time during which the old capital
is still usable (in other words, the current individual lifetime of the capital)
[170, 174, 189]. At each iteration we allow this variable to decrease according
to a certain law and to indicate the reinvestment moment when becoming
negative.

In such a way, the state space becomes 3n-dimensional with the state
vector (q,k, T) ER¥ X R, q = (q1,¢2,--.,qn) ER", k= (ky,ko,... k) €
R%, T = (11,15, ...,T,) € R". The evolution of the so constructed market
model is described by a 3n-dimensional map ® : R x R 3 (q,k, T) —
(d, k', T') € R¥" x R, where ® = (P, Do, ..., P3,) with the components:

Fue(Qis ki), T; >0,
GW,T@(QZ’)? ,Tz < O,
ki T, >0
ki = ®pii(q k,T) =< " o 5.39h
ol | { (1 + \/g) Gure(Qi), T; <0, ( )
T g
/_TZ'—/{% VitV T’Z >0’
T = Pl k6 T) = (5.39¢)

1o, T; <0,

for i = 1,n. The functions F, . and Gy, . are defined in (5.4) and (5.5),
respectively, @); is given by (5.1), the new parameter Ty € N denotes the
global durability of the capital, the base k € R, k > 1, while w, r, and ¢ are
as before.

The value qut = \/Ff ﬁki is the optimal output in the following sense: as

long as the competitor produces less than ¢; Pt it would be advantageous to
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choose a lower amount of capital, while if more than ¢; P is produced, it would
be beneficial to choose a higher amount of capital. Then the expression for
changing T; in (5.39¢) means that if the current output of the i-th competitor

q; is equal to the optimal output ¢°"

7

, then the capital durability T; decreases
by one. If ¢; < qut then T; decreases slower and if ¢; > q?pt then T; decreases
quicker. In other words, the more intensively an agent uses their capital
equipment, the quicker it depreciates. As soon as T; < 0, it indicates that
the capital has been worn out and the reinvestment is needed. Note also
that in practice we always consider T; < Ty, since the values T; > Tj are
non-feasible from the application viewpoint. Moreover, once having become
less than Tj), the coordinate T; cannot exceed T any more.

First we notice that the parameter w only scales the parameter space.

Lemma 5.9. The map ® is topologically conjugate to the map ® : R%r” X
R" 3 (q,k,T) = (¢, K, T) € R* xR, & = (01, Dy,...,D3,) such that

fori=1,n

F g 19 kl ) CTZ > 07
¢ = 0i(q,k,T)=4 " (@i, k) (5.40a)
G17:(Qi), T; <0,
K = ®,,i(q,k,T) " =0 (5.40D)
i = Pntilq, K, — 14 \/;) G1’7775(Qz), TZ < O, ]
T, — RN T >0,
T%, = (I)Qn_H'(q, k, T) = (540C)
TO; E < 07

O - 1
where 7 = &, € = we, K = Kv.
w

Proof. Consider the homeomorphism A : R3 — R3" defined as

1 1
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Having regard to

we conclude that

Fw,z—: (Qa E) = lF’l,ws(Qa k) and Gw,r,s <Q> =
w w w

w

The equation (5.42) implies for i = 1,2n

®;,0h(q,k, T)=ho®;(q,k,T). (5.43)

For the last n coordinates we notice that

¢ vr k_1 q—ik
VitV

which implies (5.43) also for i = 2n + 1, 3n. O

Remark 5.10. The map ® can be also obtained from @ by setting w = 1.
For the sake of notation simplicity, without loss of generality, everywhere

below we consider the original map ® but with the fixed w = 1.

One of the peculiarities of the map ® is that it can not have any fixed
points. Indeed, due to the form of the function defining the evolution of T;,
i = 1,n, the last n coordinates continue to change. For a generic orbit, T}
change non-regularly. However, for particular values of ¢; and k;, i = 1,n,

the vector T changes periodically.

Lemma 5.11. Consider the map ® defined in (5.2) with w = 1 and
consider a point P* = (q*,k*,T) with q* = (q1,-.-,¢) = (¢*,...,q"),
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k* = (ki,...,k,) = (k" ... k%), where ¢*, k* are given in (5.6), and
T = (T1,...,T},) such that T; € N, T; < Ty, i = 1,n. FEvery such point
15 pertodic with the period Ty + 1.

Proof. As k* = (1 + \%) g, if ¢ = ¢* and k; = k*, then the exponent
in (5.39¢) equals zero for 7 = 1,n. Thus, each T; decreases exactly by one
at every iteration. It means that 7; assumes exactly Ty + 1 values, which

implies the statement of the Lemma. H

The Lemma 5.11 implies that for the map ® there exist n different (7 +
1)-cycles corresponding to the economic Cournot equilibrium. Below we
refer to these cycles as CE-cycles. Their stability properties depend on how
much synchronised the competitors are in performing the renewal of their
capitals (i. e., how many competitors switch from the short run to the long
run function at the same moment). Such a synchrony can be formalised

through defining the so-called reinvestment synchronisation manifolds.
Definition 5.12. Let us consider sets of indices Z; = {2{,2;, . ,2’{]}, z‘,7€ €
{1,2,....,n} =T, k=1,1l;, j =1,m, m < n, such that Z,NZ}, = @, j # k,
and UL, Z; =7, 71 I; = n. The manifold

(5

Ta=Tg= =T, ..., Typ=Typ==Typ} (544)

51 2 Yy

MIlaI27“'aIm - {(q7 k7 T) : CZTL% = T.l == j—zt.ll17

induced by Z; is called the reinvestment synchronisation manifold.

Since the map ® is qualitatively invariant with respect to the ar-
bitrary renumbering of the elements of the three state vectors, namely,
asymptotic dynamics of the maps ®(qi,...,qn, k1,..., kn,T1,...,T,) and
D(qiyy- -G Kiyy oo ki Ty 1), where {iy,...,1,} is some permuta-
tion of the set {1,...,n}, is qualitatively the same. Therefore, it is enough

to consider reinvestment synchronisation manifolds given by

To=...=Tk, Tks1=-..=Txkyp, s T iy1=...=Tp, (5.45)
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with m < n and some K; < Ky < ... < K,,_1. The case m = n corresponds
to a point with all 7}’s being different.

The simplest reinvestment synchronisation manifold corresponds to m =
1, when all T;’s are equal. The respective CE-cycle then belongs to the

manifold
MC:{(q7k7T) - q1 = ... = (n, klz---:kn, Tl ::Tn}, (546)

which we call the full synchronisation manifold. The manifold M is, clearly,
invariant under the action of ®. The dynamics of ® restricted to M can be
reduced to a three-dimensional map ¥ : R2 xR > (¢, k, T) — (llfl(q, k,T),
Us(q, k,T), U3(q,k,T)) € RZ x R defined as follows

( Fi.((n—1)g,k), T >0,

\Ill((b ka T) - <
Gire((n—1)g), T <0,

(K, T >0,

Us(q, k,T) = < A7
(k1) (HL) Grre((n—1)g), T<0, (547

\/77

g——Lk
T—rk" v, T >0,
\113(q7k7T) - <

T, T <0.

\

The characteristic feature of the map W (5.47) is presence of the “flat
branch” defined by the plane I, = {(¢,k,T) : ¢ = €}. In case when there
exists an absorbing area that does not include points from II., the asymptotic
dynamics of ¥ is defined by unimodal branches Fy (5.4) and Gy, (5.5) only.
The related bifurcation sequences have much in common with those observed
in a the class of unimodal maps. In particular, for a unimodal map, with
changing its bifurcation parameter so that the maximum value of the map
smoothly increases, one can observe periodic windows appearing according
to Sharkovsky ordering. Though, for the map ¥, due to the form of its third

component W3, every period from this ordering must be multiplied by Ty + 1.
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If the trapping area includes a part of the plane II., the bifurcation structure

of the related parameter space will be completely different.

Lemma 5.13. The domain
1 } " [0 1
i) " D v

is the absorbing area for the map V. If n <5, then IINII, = &,

Proof. First we notice that

lim max Fy.((n — 1)g, k) = +00

k—o00 geR 4

and for k; > ko there is

max [ .((n — 1)g, k1) > max F1 .((n — 1)q, ka).

geRy geRy

On the other hand,

1
G1,e —1)g) = ———.
(Izrelﬂaﬁj_{ 1,r, ((TL )Q) 4(1 + ﬁ)Q
It means that the value of k£ does not exceed

k< 1 =k
T AVl

Hence, the value of ¢ does not exceed

1

q < max Fl,g((n — 1)q, ]C) = W = max-

T gE€R k€0, kmay]

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

Finally, if T' < T} it can not exceed Tj) and it also can not fall below — g %max,

For n <5, there is

1
(”_1)9§m<1a

(5.53)

and, at each iteration of W, for both functions F . and Gi, . only the uni-

modal branch is used.

[]
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If n > 6, the condition (5.53) does not hold, and therefore some orbits
may have points on the plane II.. In Fig. 5.2a a typical one-dimensional
bifurcation diagram for the map ¥ (5.47) is plotted with n = 6 and Ty = 2
(the panel b is a magnification of the rectangular area outlined in the panel
a, the panel ¢ contains further magnification of the region outlined in b).
The numbers at the top of the graph denote periods of the underlying cycles.
As one can see, the bifurcation structure is self-similar and has infinitely
many “spider-like” nodes, more and more of which show up when zooming.
These patterns consist of the cycles which appear and disappear through a
border collision bifurcation and all have a point belonging to the plane II..

As expected, every period is a multiple of T + 1 = 3 but the principle,

c
21 24 212415

0.25

— B N L]

0 A Ay =  E—— o 4
0.002 r 150 0.008 0.01 0.0085 r 0.009

Figure 5.2: One-dimensional bifurcation diagram for the map ® with T, = 2, ¢ = 0.0001,
k = 1. The graph (b) shows a magnification of the rectangle outlined in (a), and (c)
presents the further magnification of the area outlined in (b).

according to which period changes with the varying parameter, is not so
obvious. From Figs. 5.2, it is seen that on one side of each “spider-node” the
cycle periods are odd, and on the other side they are even, more precisely,
3-2sand 3-(2s+ 1), s = 1,2,.... However, it is also noticeable that
between any two nodes there is another one (in fact, infinitely many ones),
and therefore the sequences of odd and even periods are highly intermingled.
As a result, it is difficult to predict the asymptotic dynamics of the system,
as small changes in parameter values may cause abrupt modification of the
map orbits.

In contrast to the full synchronisation one may also consider the case
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when the competitors form smaller groups—clusters—inside each of that the
renewal of capitals is synchronised. For that one needs to choose the ap-
propriate initial inactivity times TV, e.g., with T = (2,4,6,8,10,12) or
TY = (2,4,5,7,8,10). In the first case, after a small number of iterates
we observe three groups of two synchronised firms, while in the second one,
two groups of three synchronised firms are formed. Hence, an initial condi-
tion may be taken already on the appropriate synchronisation manifold, like
TV = (0,0,1,1,2,2) and TY = (0,0,0,2,2,2).

The typical two-dimensional bifurcation diagrams in the (r, ¢) parameter
plane, for n = 6,7 = 2 and the two initial vectors T = (0,0,1,1,2,2) and
T = (0,0,0,2,2,2), are plotted in Figs. 5.3. Note, that the region related
to the Cournot equilibrium is denoted by 1, although the periodicity of this
solution is 3, because the coordinates T; always change cyclically. As one
can see, for larger r-values the bifurcation scenarios in both cases are similar
and do not depend on e, meaning that these solutions do not contain any
points on the flat part with ¢) = ne. On the contrary, for smaller r-values

the dynamics in Fig. 5.3a and in Fig. 5.3b are totally different.

5.4. A 3n-dimensional map with an adaptive scheme

In this section we consider a 3n-dimensional map in which for updating the
first 2n-variables a so-called adaptation scheme is used [66, 67]. The state
point is (q,k,T), a = (q1,92,.--,qn) € R}, k= (k1, kg, ..., k) € R}, T =

(T1,T5,...,T,) € R%, and a map ® : R¥ > (q,k, T) — (¢, kK, T') € R*",
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Figure 5.3: Typical two-dimensional bifurcation diagrams in the (r,¢) parameter plane.
(a) T¢ = (0,0,1,1,2,2); (b) TY = (0,0,0,2,2,2). n=6,Tp = 2.

where ® = (&1, &y, ..., P3,) with the components defined as:

Fw,@(qi7Qi7ki)7 CTZ > 07

Gw,r,G(Qia QZ)7 712 < 07

g = ®i(q,k, T) =

ki, T; > 0,

(1+\/_) wrﬁ@z Egoa

T — k(e s,

Y

n, (5.54)

tTi/ — (I)Qn—f—i(q) k7 T) -
To, T; <0,

where Q); is given by (5.1), the functions F,¢(q, Q, k) and G, ,9(q, Q) are

efw(Qak)+(1_0)Q7 Q < %7
Fopl(q, Q. k) = (1-6)q 01 (5.55)
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1
Corsla.Q) = 09ur(@)+(L—=0)q, Q< (5.56)
(1-0)q. Q> <,
the global capital lifetime Ty € N, the adaptation parameter 6 € (0, 1), and
the other parameters are as before.

By the arguments similar to those expressed in the proof of the
Lemma 5.9, we can show that ® given in (5.54)—(5.56) is topologically conju-
gate to the map with setting w = 1. And this fact allows for economic inter-
pretation. Indeed, the capital rent r and the wage rate w, due to definition
of the model, are not independent, and it is only their ratio that influences
the asymptotic solutions. As capital is our only fixed input, labour is our
only variable input, the price ratio r /w represents just the fixed to variable
input unit cost which is constant over time.

As it is shown below, asymptotic dynamics of the map ® (in particular,
the stability of the Cournot equilibrium market state) depends crucially on
how much synchronous the competitors are in decision to renew their capitals.
In other words, it is essential how many competitors make the investment
(choose long run branch G, ) in each time period. However, one should
keep in mind that the last variables T;, i = 1,n, denoting the remaining
capital lifetimes change, in general, in a non-regular way according to (5.54).
Hence, the number of reinvesting firms may also change non-regularly. To

formalise this we define a sequence of integers
ny:= (ny,ng,...,ngy...), 0<n,<n, t=12 ..., (5.57)

such that n; firms use the long run branch (5.56) in the period ¢ = 1, ny of
them are in the long run for ¢ = 2, and so on. The value n; = 0 means that
all firms use the short run branch (5.55).

For instance, let n = 6, Ty = 5, and suppose all the firms synchronise
their reinvestment periods putting 77 = TJQ = 0, ¢ # j. Then in the first

time period ¢ = 1 the number of reinvesting firms is ny = n = 6, while for
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consecutive Ty = 5 periods they are no = ... = ng = 0. Therefore we get
n; = (6,0,0,0,0,0,6,0,0,0,0,0,...), where between two successive sixes
there are always five zeros. In other words, the sequence n; consists of a
repeated pattern (6,0,0,0,0,0).

In such a case, when n; = (ng,..., %y, Ny, ..., Ny, .. .) with a repeated
sub-sequence (ny,...,n,) we put, for sake of shortness, n; = (n;,...,ny,)
and refer to the related orbit as an orbit of type (ny,...,n,) or simply
(ng,...,ny,)-orbit. For the example given right above the orbit is of type
(6,0,0,0,0,0).

Moreover, since the sequence (ng, ..., n,,) is repeated endlessly, the types
(ngs1, Mig2y ooy, ny) and (ny, ..., n,y,) are considered to be equivalent.

Thus, the orbit of type (6,0,0,0,0,0) is also of type (0,6,0,0,0,0), or of
type (0,0,6,0,0,0), etc. Similarly, the orbit of type (4,0,2,0,0,0) is also of
type (0,2,0,0,0,4), or of type (2,0,0,0,4,0), etc. On the contrary, the orbit
of type (4,0,0,2,0,0) is not equivalent to the orbit of type (4,0,2,0,0,0).

Note also that if x = 1 then the remaining lifetimes 7}, i = 1,n, de-
crease ezxactly by one in every period while being positive and are reset to
To when becoming zero. This implies that the last n variables of ® (the
vector T') change all the time periodically with the period Ty + 1. Hence,
the parameter value s = 1 is particular, because the initial values T} de-
fine immediately the type of the related orbit. For instance, let n = 6,
Ty = 2, T = (2,1,1,1,2,1). Then the vector of remaining capital life-
times T will jump cyclically between three different vectors (1,0,0,0,1,0),
(0,2,2,2,0,2), and (2,1,1,1,2,1). The resulting orbit is, clearly, of the type
(4,2,0), regardless to how ¢; and k; change with time.

One should, however, keep in mind that in general case the sequence nj
is non periodic. For instance, if the orbit is chaotic.

Let us denote the set of parameters of the map ® as P = {r, 0, k,Ty,n}.
As the first step in analysing asymptotic dynamics of the orbits of ®, we

consider the case where all the firms start production at the same time and
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at the same level, i.e., , T? =0, ¢ = ¢°, k) = k°, i = 1, n. The manifold
A={g=...=qho=q¢ki=...=k,=kT1=...=T,=T} (5.58)

is invariant under the action of the map ®, and we can study the dynamics
of ® reduced to A. The restriction of ® to A is the map ¥ : R? — R? which
is defined as (¢, k', T") =V ((q, k,T)) with

;o { Fwﬂ(Qa (n_l)Q7k)7 T>07
Guwro(q,(n—1)q), T <0,
) k, T >0,
k' =
(1—}_\/7) wr@qan_l) )7 TSO)
A GV L AN
T = ’
T07 T S 07

(5.59)

where F, o given by (5.55) is related to the short run branch of ¥, while
Gu.re given by (5.56) corresponds to the long run branch.

Consider a point (¢*, k*,T) where ¢* and k* are defined in (5.6a)
and (5.6b), respectively, and T° < Ty is taken arbitrarily. Due to defini-
tion, under action of W the first two variables are fixed as ¢* and k*, while
the last variable T still continue to change at each iteration. Moreover, since
k* = (1 + \/g) q*, the difference ¢* — (1 + \/g) k* equals zero, and there-
fore at each iteration the value of T" decreases exactly by one. This implies
that for any T < Tj the point (¢*, k*,T) is (Ty + 1)-periodic. Indeed, over
Ty consecutive periods (while 7" > 0) the short run branch of U is applied,
and in the Ty + 1 period the long run branch of W is used.

To derive the local stability condition for the point (¢*, k*,T') inside the
set A we compute the related Jacobian matrices for the short and long run

branches, respectively,
aip az 0 biu 0 0
JS = 0O 1 0 and JL=1| by 0 0 |,
aszy ass 1 0 00
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where

nd(1l+2/7) nér

=t 2+ 2nr "’ a12_1+(n+1)ﬁ+nr’

[w n [w
azg = — (1 + ?> ag, bn=1- 957 bar = (1 + ?) b1

The resulting matrix product over Ty + 1 consecutive iterations is

i dy 00
JST.JL=| dy 0 0
0 0 0

and therefore, the only non-zero eigenvalue is dy1, which can be computed as

i = ajtbiy + aaba (1 +an +aj + ...+ a1T$_1>

w 1—al?
= ajbyy + (1 + \/?> a12b11 7 all-
—a

The point (¢*, k*,T) with T" < Tj is locally asymptotically stable provided
that |dy1| < 1 (where dy; depends on Ty, r, 6 and n).

When turning back to the original 3n-dimensional map @, the point

(q¢*, k*,T) corresponds to pr = (q,k’, T), where

a =(q....q), k =(k....k), T=(T,...,T). (5.60)
- e —

The orbit (pg, PT,, P, 1,---) 18, clearly, of the type (n,0,...,0) where the
number of zeros is Ty. The point p} is associated with the Cournot equi-
librium market state in case where all firms synchronise their investment
periods. Its local stability is defined by the eigenvalues {v;}3", of the related
Jacobi matrix, among which 2n are equal zero, v; = 0,1 =n+1,...,3n. As
for the remaining eigenvalues, the first of them is 1 = dy; and shows whether
p* is locally stable with respect to perturbations inside A. The eigenvector

related to vq is of the form

vn=>1,...,1,a,...,a,0,...,0),
—— N——— N —
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Figure 5.4: Stability regions in the (6, r) parameter plane for the Cournot equilibrium p*
with (a) To = 5, (b) To = 20. Solid, dashed, and dash-dotted lines show the boundaries
corresponding to the number of firms n = 5, n = 6, and n = 15, respectively. The

associated regions are shaded with differently slanted lines.

where a € R depends on T}, r, 6, n. The remaining n— 1 non-zero eigenvalues
v, i = 2,n, show whether p* is locally stable with respect to perturbations
in the directions which are transverse to A. Each of them is related to the

eigenvector of the form

7 n+1
vi=(1,0...,0,'=1,0...,0,b,0...,0, =b,0...,0,0,...,0),
1\ - 7\ - /h/—‘

where b € R depends on Tj, r, 8, n. The value of v; is then derived as
2(n—1) —0n
vV, =V =
2(n — 1)(2n/r —24/r + 1)

O(n — 2) To ,
X<<19+2(n—1)(n\/7_“—|—1)> +2(n1)\/7_“>, i=2,n.

Forany 0 <6 <1,r>0,n>1,T, > 0 there holds 0 < v| < 1. Hence, the

point p* is locally asymptotically stable provided that |di;| < 1.
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Fig. 5.4 shows the stability region for p* in the (0, r) parameter plane, that
is, the region where |dq1| < 1, for the number of firms n = 5,6, 15 and Ty =
5,20. As one can see, with increasing n the region shrinks, while changing T
does not have remarkable influence. These plots allow to conclude that for
the map W, Theocaris problem is resolved to a certain extent. One can see
that there is no more exact threshold for the number of competing firms at
which Cournot equilibrium loses its stability. Moreover, the related stability
region is always present in the parameter space, although this region becomes
smaller with increasing the market size. Hence, by choosing the appropriate
parameter values one can always get that almost all orbits are attracted to
Cournot equilibrium.

It should be also mentioned that for 7y = 2s — 1 with s being a positive
integer, both equations di; = —1 and d;; = 1 have solutions. In Fig. 5.4a the
upper boundaries of all regions correspond to di; = —1, while at the lower
boundaries there holds di; = 1. On the contrary, for T, = 2s the equation
di1 = 1 does not have any solution. Thus, in Fig. 5.4b all stability region
boundaries are associated with d;; = —1.

Finally, note that for the map ®, any point p* := (q},k*, T1,...,T,)
with T; € {0,1,...,Ty}, i = 1, n, represents the Cournot equilibrium market
state. Moreover, this point is always T + 1 periodic, even if all T} are
different, and the related orbit is of the type (n1,ng,...,ngp41) with n; €
{0,1,..., Ty}, i =1,n, ZZTQA n; = n. Asshown above, in case where T; = T;
for any i # j, the local stability of the point p* can be studied in terms of
the reduced map W given in (5.59). However, if there exists at least one pair
i, j such that T; # T}, then the general formula for the largest eigenvalue
of the Jacobi matrix cannot be derived, and examining local stability of p*
analytically is rather cumbersome.

To continue studying the role of each model parameter in general case we
need to make numerical simulations. We examine first behaviours of orbits

in case where all competitors synchronise, that is, we study the asymptotic
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dynamics of the 3-dimensional map ¥ given in (5.59). Then we focus on the
orbits of the 3n-dimensional map ® defined in (5.54)—(5.56).

As the first step we fix the set of parameters P = {r,0,x = 1,Ty = 5,n =
6} and investigate how asymptotic dynamics of the map ¥ depends on r and
0. As Fig. 5.4a suggests, for the chosen parameter values the stability region
for Cournot equilibrium extends up to 8 =~ 0.8. Hence, to uncover dynamics
distinct from a stable fixed point we have to consider 8§ > 0.8. Moreover,
when Cournot point loses stability the related eigenvalue becomes di; = —1,
and after the bifurcation an attracting cycle of period 2(Ty + 1) (equal to
twelve for chosen P) exists. It can be further checked that for 0.8 < 6 < 0.92
asymptotic dynamics of the map W is related to the period doubling cascade
of the Cournot solution. Therefore we restrict our analysis by larger values
of # to uncover more interesting dynamics.

Figure 5.5a shows a typical two-dimensional bifurcation diagram in (6, r)
parameter plane, where regions related to periodic orbits are shaded green,
and their boundaries are shown in black. Several regions are marked with
numbers which indicate the period of the related orbit. As it can be seen,
all periods are multiples of T + 1 = 6 which is explained by the fact that
during Ty periods the short run branch is used while at the period Ty + 1
the long run branch is taken. Further, one may clearly distinguish here two
parameter domains, namely, for smaller r and for larger r, whose bifurcation
structures differ remarkably. To understand the difference between these
two domains we plot in Figs. 5.5(b, ¢) one-dimensional bifurcation diagrams
versus changing parameter 6 with » = 1 and » = 2. The numbers at the top
of each graph correspond to the periods of the shown orbits.

For the parameter values belonging to the domain with smaller r (see
Fig. 5.5b with r = 1), the value of ¢ always belong to the range corresponding
to the non-linear branch of the related, short or long run, function. Namely,
for ' > 0 (short run) the output is 0 < ¢ < 1/(n — 1), while for 7" = 0 (long
run) it is 0 < ¢ < 1/((1 + /7)*(n — 1)). Hence, asymptotically orbits of ¥
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do not have points belonging to the linear branch (1 —#)q. This implies that
solutions of the map (5.59) are completely defined by the non-linear branches
of both, short and long run maps (Fy, g and G,.g, respectively). Each of these
non-linear branches is unimodal, thus one may expect to observe bifurcation
phenomena similar to those which characterise the class of unimodal maps,

although the map W is three-dimensional, but not one-dimensional.

0.074

24 48 967260'36 72 48

72 60 60 48 60 66 54 42

Figure 5.5: (a) Bifurcation structure of the (6, r)-parameter plane of the map ¥ with
n =6, Ty = 5, k = 1. The periodicity regions are shaded green, while their boundaries are
plotted black. The numbers indicate the periods of the related orbits. (b), (¢) Bifurcation

diagrams along the red arrows marked b, ¢ in (a).

Resemblance to unimodal maps is revealed on the bifurcation diagram
shown in Fig. 5.5b. As it is known for a unimodal map, with changing its

parameter related to the maximum value of the map, periodic windows ap-
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pear in a certain order. This order is closely related to the so-called kneading
sequences, or symbolic sequences (also called U-sequences), as described, for
example, in [152] (see also [58]). For the map W, with increasing the pa-
rameter ¢ the maximum value of functions 6f((n — 1)q, k) + (1 — 6)q and
Og((n — 1)q) + (1 — 0)q, which represent the non-linear unimodal parts of
the short and long run branches of W, respectively, increases as well. As it
was already mentioned, any periodic orbit has the period which is a multi-
ple of Ty + 1. As a consequence, the periodicity windows for W appear in a
certain order that can be obtained from the order, in which they appear for
unimodal maps, by simply multiplying all periods to Ty + 1. For instance,
the period doubling bifurcation cascade 24 = 48 = 96 when divided by 6
corresponds to the part of a bifurcation cascade 4 = 8 = 16 of a fixed point
for a unimodal map. Similarly, the periodic window related to the period 36
is associated with the periodic window of the period 6 for a unimodal map.

On the contrary, for the larger values of r (see Fig. 5.5¢ with r = 2), the
orbits of ¥ have points belonging to the linear branch (1—6)q. In the current
case it happens due to that for 7' = 0 (long run) some values of ¢ exceed the
value of the border point 1/((1 4+ v/7)*(n — 1)), and a part of the orbits occur
not due to flip or fold, but due to border collision bifurcations [33, 227]. The
related one-dimensional bifurcation diagram has a special structure which
resembles to some extent the bifurcation structure described in [236]. This
reference considers properties of a piecewise smooth map consisting of the
nonlinear unimodal branch and the linear flat branch. As shown in the
mentioned reference a particular “spider-like” bifurcation structure appears
when asymptotic orbits have one point on the flat branch. Note, however,
that the map W is of more complex form than the map studied in [236],
moreover, ¥ does not have any flat branch. Uncovering the mechanism of
formation of a bifurcation structure observed in Fig. 5.5¢ still requires further
investigation.

As the next step we take the parameters P = {r =1,0,k,Ty = 5,n = 6}
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and study how the bifurcation structure changes when x > 1. In such a
case the remaining capital lifetime T may decrease by less or more than one
depending on how intensively capital k is used (the relation between ¢ and k).
Hence, switching between the short and long run branches can be irregular.
In Fig. 5.6a a typical two-dimensional bifurcation diagram in the (6,log;, %)
parameter plane is plotted. The first notice is that for k > 1 periods of
attracting cycles increase with respect to the case Kk = 1. For instance, with
r=1,0 =0.93 and k = 1 the asymptotic orbit is of period 12 (as it is seen
in Fig. 5.5a). On the other hand, from Fig. 5.6a it is clear that for x > 1 the
period of the related orbit increases: first it becomes 13, then 14, then 15,
and so on. Similarly, for # = 0.95 one observes a sharp jump from period 24
for kK = 1 to period 26 for x > 1, and then period incrementing bifurcation
structure is revealed.

For larger values of 6 things get more complicated. Fig. 5.6b shows the
enlargement of the rectangular area outlined red in Fig. 5.6a. Although the
period incrementing structure is still recognisable, but the regions related to
adjacent periods m and m 4+ 1 are “shifted” with respect one to the other.
In addition, regions associated with certain periods are rather small. For
instance, the region related to the period 79 which is almost negligible, or the
one corresponding to 83 (which is only distinguishable in the inset showing
the enlargement of the area outlined red). Nonetheless, the main conclusion
which can be made is that with increasing s the periods of orbits increase as
well.

Note also that the vertical axis corresponds to the logarithmic scale
log;, k. The first abrupt change of the bifurcation structure happens when x
increases over unity. The other changes, however, are observable for rather
large values of k > 107.

Now we turn to asymptotic dynamics of the original 3n-dimensional map
®. The immediate question which appears is whether an orbit tends asymp-

totically to the set A in case where initial values are chosen arbitrarily. In
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Figure 5.6: (a) Bifurcation structure of the (0, k)-parameter plane of the map ¥ with
n =6, Ty = 5, r = 1. The periodicity regions are shaded green, while their boundaries
are plotted black. The numbers indicate the periods of the related orbits. In (b) the

region outlined red in (a) is shown enlarged.

other words, if the set A is attractive transversally when the Cournot equi-
librium belonging to A is unstable.

Recall that for k = 1 the way in which the competitors synchronise
their investment periods is defined completely by the initial capital lifetimes
T?. Hence, as soon as T = TJQ this relation remains for ever. Moreover,
numerical simulation suggests that if 7; = 7T} then after a finite number of
periods there holds ¢; = ¢; and k; = k;. In particular, if T) = ... =T? then
after a while the related orbit is attracted to the set A. Hence, in case when
all initial capital lifetimes are equal and x = 1 the asymptotic dynamics of
the map @ is described by the map W.

On the contrary, for x > 1 the initial equality T} = TJQ does not neces-
sarily mean that ¢-th and j-th firm retain their investment periods always
synchronised. Depending on the evolution of ¢;, g;, ks, k; the relation T; = T}
may be held or broken. Nevertheless, the similar effect as for k = 1 is still

observed, namely, as soon as the firms approximately synchronise their us-
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age of capitals T; ~ T}, they tend to adjust as well their outputs ¢; ~ gj,
clearly implying also similarity of the capitals k; ~ k;. Then the orbit is

asymptotically attracted to a manifold
M ={(a,k,T) : ¢i=q;,ki=k;, T, =Tj}, i#J (5.61)

Any manifold of the above form is invariant under the action of ® for any
parameter set P. Namely, if at a certain time period the orbit is trapped by
a manifold M;; (or any intersection of several such kind manifolds) then it
stays there for ever. Clearly, when the orbit is attracted to some intersection
of manifolds (5.61), it means that the competitors clusterise. That is, they
form a few groups—clusters,— inside each of which the long run function is
chosen simultaneously. Denote the number of firms in each cluster as n;,
i = 1, m, where m is the number of clusters. Then the related orbit is said to
be clusterised in type ny : ... : n,,. Obviously, if all n firms synchronise their
investment periods (full investment synchronisation) it means clusterisation
of type n.

To study orbits of the map ® in general case we fix a certain parameter
set P = {r,0,k,Ty,n}, but consider random initial conditions. The values
for outputs and capitals are taken as ¢; € (0, qmax] and k; € (0, kyay], while
the initial capital lifetimes are T € [0, Ty|, 7 = 1,n. Since we investigate the
dynamics of ® qualitatively, it is useful to introduce the following numbers:

m—1 n m—1 n

- 1 . — 1 :
Q=3 D ali), Ki=—23 > k() (5.62)
7=0 =1 j=0 =1
where {qi(j)}7 and {ki(j)}Ly, @ = 1,n, represent samples of size m of
the time series of output and capital, respectively, for each individual firm.
In other words, () is the mean total supply over m periods, while K is the

mean total capital. Ergodic theory (see e. g., [244]) teaches us that the above
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averages @ and K converge almost everywhere to

m—1 n
lim @ = lim — ¢i(J) = / Giclpr,
m%oo m—0o0 M jzo zzl [0,@max]™ %[0, kmax]" X R" Zzl
m—1 n "
lim K = lim — ki(7 / hidp,
m—00 m—o0 M JZO ; [O,Qmax]nx[o,kmax]n xR ; A

where p is an invariant ergodic measure. We compute the numbers Q and K
for a sample of L orbits for each parameter selection P = {r, 0, k, Ty,n}. As
one can expect that such ergodic measures will be either atomic (supported by
periodic orbits) or absolutely continuous with respect to Lebesgue measure,
the existence of different values among these L sets implies the existence of
different ergodic measures, and therefore the coexistence of different metric
attractors [153].
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Figure 5.7: Total means for (a) output @ and (b) capital K over L = 100 initial condition

sets versus 6. The other parameters are r = 1, k = 50, Ty = 5, n = 6.

We fix the parameter set as P = {r = 1,0,k = 50,7y = 5,n = 6},
and vary the parameter 6. In Fig. 5.7a,b we plot () and K, respectively,
over I, = 100 initial conditions versus 6. The solid lines show the values of
Q*, the total output, and nk*, the total capital, at the Cournot equilibrium
market state. In this graph one can clearly distinguish two different groups
of values for the means @ and K. Hence, simulation suggests there exist at

least two metric attractors for each considered P.
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The values of @ and K located near the lines Q* and nk*, correspond-
ingly, clearly reveal convergence to the Cournot equilibrium. However, al-
though producing the same amount of good ¢* at each time period, the firms
do not invest in a synchronised way, that is, not all of them invest in the same
period. On the contrary, clustering of various types takes place, namely, the
competitors form a few groups, inside each of which reinvestment happens
simultaneously (while individual outputs are always ¢; = ¢*, 1 = 1,n). Let
us consider for example the point marked e in Fig. 5.7a for 6 = 0.969. This
point is a combination of asymptotic orbits, representing Cournot equilib-
rium, generated by 93 initial condition sets. Among them we observe all
possible clusterisation types, except for the full synchronisation, which can
appear for 6 firms. For instance, some orbits are related to the case when
competitors form two groups with clustering type 3 : 3, or clustering type
4 :2,0r5: 1. There are some other orbits related to the case when competi-
tors form three groups associated with clustering types 2:2:2, or 3:2: 1,
or4:1:1. We observe as well situations when four or five groups are formed,
and even the case when all firms are completely desynchronised, that is, ev-
ery firm makes the investment in the time period different from the others
(note that in such a case with Tj = 5 at each time period exactly one firm
uses the long run branch).

Now we turn to the other group of Q, K values visible in Figs. 5.7(a,
b), which are distant from the Cournot equilibrium state Q*, nk*, and are
plotted by filled triangles. All of them correspond to the full synchronisation
of the competitors, that is, they are related to the orbits attracted to the
set A (5.58). Clearly, these orbits reveal asymptotic dynamics of the map
U (5.59). In Fig. 5.7¢ we plot time series for the total market output @ at
the point marked c in Fig. 5.7a, which corresponds to the orbit of period
52. In Fig. 5.7d time series for () at the point marked d is shown, which is
associated with the chaotic orbit.

Similarly to the case of n = 6 firms we consider the case of n = 10.
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Figure 5.8: (colour on-line) Total means for (a) output @ and (b) capital K over L = 100

initial condition sets versus #. The other parameters are r = 2, kK = 50, Ty, = 5, n = 10.

We fix the parameter set as P = {r = 2,0,k = 50,7, = 5,n = 10}, and
again vary the parameter 0. In Fig. 5.8a,b we show the values Q and K,
respectively, versus 6. Different symbols are related to orbits with different
number of clusters, namely, filled triangles represent full synchronisation,
filled circles are associated with the Cournot equilibrium (again related to
different types of clusterisation, but not full synchronisation), and asterisks
correspond to other orbits which show clusterisation of various types (except
for the full synchronisation), but are distinct from the Cournot equilibrium.
The graphs plotted suggest that for each parameter set P there exist at least
three different metric attractors, which belong to various invariant manifolds
being the unions of the synchronisation manifolds M;; of the form (5.61).

With deeper investigation we see that the firms tend to form a few clusters.
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Conclusion

The thesis is devoted to studying properties of asymptotic solutions for
a wide range of piecewise smooth, in particular discontinuous, maps. We
have investigated periodic and chaotic attractors for these maps and exam-
ined various local and global aspects of their dynamics. In the course of this
research we have discovered some novel bifurcation phenomena and exhaus-
tively described several bifurcation structures, which were unknown before.

In particular, we have obtained the following results:

e For a family of one-dimensional piecewise linear continuous maps with
two boundary points, it has been shown that stable periodic orbits of any
period can exist depending on the parameter values. We have obtained
necessary and sufficient conditions for their stability. In the param-
eter space of such maps, we have described three distinct bifurcation
structures. Two of them represent the generalisations of already known
bifurcation structures, while the third one, has not been observed before
and involves not only periodic but also chaotic attractors. For the latter

sufficient conditions for their existence have been obtained.

e For a bimodal map family, such that their functions defining two out-
ermost branches pass through the origin, it has been shown that the
bifurcation structures related to periodic solutions are degenerate. We
have described the nature of this degeneracy and obtained the sufficient

conditions for existence of chaotic attractors.

e For a family of one-dimensional piecewise monotone discontinuous maps

with two discontinuity points, having the symmetry with respect to the
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origin, we have exhaustively described two distinct bifurcation struc-
tures related to chaotic attractors, for the case when a single absorbing
interval exists. Necessary and sufficient conditions have been obtained
for the existence of chaotic attractors having different number of bands
and the bifurcations due to which these numbers change have been deter-
mined. We have also found parametric regions of coexistence of different

chaotic attractors.

In the parameter space of a family of one-dimensional piecewise in-
creasing asymmetric maps having two discontinuity points, a bifurcation
structure of new kind, related to chaotic attractors, has been discovered.
It has been proved that most of the bifurcation conditions, defining the
boundaries of the related chaoticity regions, were not associated with
any critical homoclinic orbits. Chaotic attractors of two different config-
uration types have been shown to exist, and for both of them we obtain

explicit estimates for the maximum number of their bands.

We have discovered two novel bifurcations of chaotic attractors, which
cannot be observed in one-dimensional piecewise monotone maps with
a single discontinuity points, only with multiple ones. These are exte-
rior and interior border collision bifurcations, which have been shown
to be not related to any homoclinic bifurcations of repelling periodic
points. We have obtained sufficient conditions for occurrence of both

bifurcations.

For a family of one-dimensional piecewise monotone discontinuous maps
with more than two discontinuity points, a particular case of the exterior
border collision bifurcation has been investigated. For certain param-
eter constellations, this bifurcation implied a sudden expansion of the
attractor, due its collision with a chaotic repeller, located at the im-
mediate basin boundary of the attractor. We have shown that in the

codimension two case, this sudden expansion occurs immediately after
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the border collision.

For certain smooth noninvertible maps, local asymptotic phenomena as-
sociated with a flip and a Neimark—Sacker bifurcation of the fixed point
have been studied. We have described an atypical period-doubling bi-
furcation cascade in the neighbourhood of the parameter point, related
to changing the type of the flip bifurcation. Two degenerate cases of the
Neimark—Sacker bifurcation have been also investigated. Global bifur-
cations associated with critical sets of different ranks, inducing trans-

formations of attracting invariant curves have been analysed.

For a family of two-dimensional piecewise smooth noninvertible contin-
uous maps, we have obtained sufficient conditions for existence of an
attracting closed invariant curve, consisting of parts of critical sets of
different ranks. It has been shown that the restriction of the original
two-dimensional map to this curve is given by the one-dimensional first
return map, which had at least one kink point and at least one discon-

tinuity point.

We have studied a family of three-dimensional piecewise smooth con-
tinuous maps, having a continuum of fixed points, all being located on
the border set. We have obtained sufficient conditions for the stability
of these fixed points and proved that for any initial point its orbit ei-
ther approached asymptotically one of these fixed points, or ended up
at the so-called “disequilibrium point”. For the latter the first two co-
ordinates remain unchanged, while the third one changes according to

the Ricker-like map.

For a family of two-dimensional discontinuous maps, the sufficient and
necessary conditions for a continuity breaking bifurcation have been
obtained. We have shown that in the neighbourhood of the correspond-
ing parameter point of codimension two, the original two-dimensional

map can be approximated by a one-dimensional piecewise linear map
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defined in two partitions. We have also described three distinct bifur-
cation structures, associated with periodic solutions. In particular, we
have provided an exhaustive description of a novel bifurcation structure,

related to stable cycles of even periods.

We have considered a family of two-dimensional noninvertible piecewise
smooth maps, characterised by vanishing denominators in both compo-
nents. We have found all focal points and the corresponding prefocal
sets. It has been proved that one of these focal points—the origin—
belongs to its prefocal set. For certain parameter constellations, it im-

plied that this focal point had a basin of attraction of positive measure.

Several families of piecewise smooth maps that model an oligopoly mar-
ket have been investigated. In case when maps are nonautonomous, the
stability properties of fixed points have been examined and the sufficient
stability conditions for the Cournot equilibrium have been obtained. For
autonomous maps, we have proved that they could not have fixed points,
but only periodic solutions, periods of which were multiples of a certain
map parameter. We have considered a restriction of the original map
to the full synchronisation manifold, which was represented by a three-
dimensional piecewise smooth map. For this three-dimensional map we
have described several bifurcation scenarios depending on the parameter

values.
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