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Äèñåðòàöiÿ ïðèñâÿ÷åíà âèâ÷åííþ âëàñòèâîñòåé i áiôóðêàöié àñèìïòî-

òè÷íèõ ðîçâ'ÿçêiâ äëÿ øèðîêîãî êîëà êóñêîâî-ãëàäêèõ ðiçíèöåâèõ ðiâ-

íÿíü àáî âiäîáðàæåíü, áàãàòî ç ÿêèõ ïðåäñòàâëÿþòü ñîáîþ ìîäåëi ðå-

àëüíèõ ÿâèù, ðîçðîáëåíèõ êîëåãàìè ç ïðèêëàäíèõ íàóê (ðàäiîåëåêòðî-

íiêè, áåçïå÷íîãî ïåðåñèëàííÿ ñèãíàëiâ, åêîíîìiêè, ïñèõîëîãi¨ ðîçâèòêó

òîùî). Äîñëiäæåííÿ êóñêîâî-ãëàäêèõ äèíàìi÷íèõ ñèñòåì, çîêðåìà, ç äèñ-

êðåòíèì ÷àñîì, íàáóëî ïîïóëÿðíîñòi íàïðèêiíöi ìèíóëîãî ñòîëiòòÿ, îñî-

áëèâî ïiñëÿ âiäêðèòòÿ áiôóðêàöié çiòêíåííÿ ç ìåæåþ i òîãî, ùî õàîñ ìî-

æå áóòè ñòiéêèì äî çáóðåíü ïàðàìåòðiâ íàâiòü â îäíîâèìiðíîìó âèïàäêó.

Íåçâàæàþ÷è íà òå, ùî öié òåìi ïðèñâÿ÷åíî òèñÿ÷i ðîáiò, òåîðiÿ áiôóðêà-

öié êóñêîâî-ãëàäêèõ âiäîáðàæåíü ùå äàëåêà âiä çàâåðøåííÿ, i ïîäàëüøi

äîñëiäæåííÿ â öüîìó íàïðÿìêó âàæëèâi.

Îñíîâíèìè îá'¹êòàìè äèñåðòàöi¨ ¹ ðiçíîìàíiòíi íåîáîðîòíi êóñêîâî-

ãëàäêi, çîêðåìà ðîçðèâíi, âiäîáðàæåííÿ ðiçíî¨ ðîçìiðíîñòi. Çà äîïîìî-

ãîþ îá'¹äíàííÿ àíàëiòè÷íèõ, ÿêiñíèõ òà ÷èñåëüíèõ ìåòîäiâ âèâ÷åíî ií-

âàðiàíòíi ìíîæíè öèõ âiäîáðàæåíü ðiçíî¨ ïðèðîäè. Äîñëiäæåíî áiôóð-

êàöi¨ ñòiéêèõ íåðóõîìèõ i ïåðiîäè÷íèõ òî÷îê, õàîòè÷íèõ àòðàêòîðiâ, à

òàêîæ ÿêiñíi ïåðåòâîðåííÿ ïðèòÿãóþ÷èõ ãëàäêèõ òà íåãëàäêèõ iíâàði-

àíòíèõ êðèâèõ, îáëàñòåé ïîãëèíàííÿ íåçìiøàíîãî òà çìiøàíîãî òèïiâ.

Îïèñàíî âiäïîâiäíi áiôóðêàöiéíi ñòðóêòóðè â ïðîñòîðàõ ïàðàìåòðiâ.

Äèñåðòàöiéíà ðîáîòà ñêëàäà¹òüñÿ çi âñòóïó òà ï'ÿòè ðîçäiëiâ. Ïåðøèé
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ðîçäië ìiñòèòü îãëÿä ëiòåðàòóðè çà òåìîþ äèñåðòàöi¨, â íüîìó ïðåäñòàâ-

ëåíi îñíîâíi îçíà÷åííÿ, äåÿêi ïîïåðåäíi ïîíÿòòÿ òà âiäîìi ðåçóëüòàòè.

Ïiäðîçäië 1.1 êîðîòêî îïèñó¹ iñòîðiþ òåîði¨ äèíàìi÷íèõ ñèñòåì i òåîði¨

áiôóðêàöié. Ïiäðîçäië 1.2 ìiñòèòü òåðìiíè, îçíà÷åííÿ òà ïîïåðåäíi ðå-

çóëüòàòè, ÿêi âèêîðèñòîâóþòüñÿ â îñíîâíié ÷àñòèíi.

Ðîçäië 2 ¹ ïåðøèì, ùî íàëåæèòü äî îñíîâíî¨ ÷àñòèíè äèñåðòàöié-

íî¨ ðîáîòè. Âií ïðèñâÿ÷åíèé âèâ÷åííþ îäíîâèìiðíîãî êóñêîâî-ëiíiéíîãî

íåïåðåðâíîãî âiäîáðàæåííÿ ç äâîìà ìåæîâèìè òî÷êàìè, ÿêå íàçèâàþòü

áiìîäàëüíèì âiäîáðàæåííÿì. Öå âiäîáðàæåííÿ âàæëèâå ç äâîõ ïðè÷èí. Ç

îäíîãî áîêó, âîíî ïðèðîäíèì ÷èíîì âèíèêà¹ ïðè ðîçâ'ÿçàííi ðiçíèõ ïðè-

êëàäíèõ çàäà÷. Íàïðèêëàä, âîíî âèñòóïà¹ ìîäåëëþ äëÿ ëàíöþãà ×óà

ïåâíî¨ êîíñòðóêöi¨ iç çàïiçíåííÿì; âîíî âèêîðèñòîâó¹òüñÿ äëÿ ïîáóäîâè

åôåêòèâíîãî ãåíåðàòîðà õàîñó â òåëåêîìóíiêàöiÿõ i îáðîáöi çîáðàæåíü;

âîíî ìîäåëþ¹ ïðîöåñ íàáëèæåííÿ öiíè äî ðiâíîâàæíîãî çíà÷åííÿ ïðè

ñòàáiëiçàöi¨ åêîíîìiêè. Ç iíøîãî áîêó, áiìîäàëüíå âiäîáðàæåííÿ ¹ óçà-

ãàëüíåííÿì âiäîáðàæåííÿ àñèìåòðè÷íîãî òåíòó (îñòàíí¹ ¹ íàéïðîñòiøèì

ïðåäñòàâíèêîì êëàñó êóñêîâî-ãëàäêèõ âiäîáðàæåíü) i äëÿ íüîãî óìîâè

áiôóðêàöié ìîæóòü áóòè îòðèìàíi â àíàëiòè÷íîìó âèãëÿäi, çàâäÿêè ëi-

íiéíîñòi éîãî êîìïîíåíòiâ.

Ó ïiäðîçäiëi 2.1 íàäà¹òüñÿ çàãàëüíèé îãëÿä áiôóðêàöiéíèõ ñòðóêòóð

ó ïðîñòîði ïàðàìåòðiâ. Òàê, âèçíà÷åíî îáëàñòi ç îáìåæåíèìè i íåîáìåæå-

íèìè ðîçâ'ÿçêàìè; ïîêàçàíî, ùî, â çàëåæíîñòi âiä çíà÷åíü ïàðàìåòðiâ,

ìîæóòü iñíóâàòè ñòiéêi ïåðiîäè÷íi îðáiòè áóäü-ÿêîãî ïåðiîäó, òà îòðè-

ìàíî íåîáõiäíi òà äîñòàòíi óìîâè ¨õ ñòiéêîñòi. Òàêîæ îïèñàíî äâi ðiçíi

áiôóðêàöiéíi ñòðóêòóðè â ïðîñòîði ïàðàìåòðiâ, ÿêi ¹ óçàãàëüíåííÿì ái-

ôóðêàöiéíèõ ñòðóêòóð, óæå âiäîìèõ äëÿ êóñêîâî-ëiíiéíèõ âiäîáðàæåíü ç

îäíi¹þ ìåæîâîþ òî÷êîþ. Ïóíêò 2.1.3 îïèñó¹ íîâó áiôóðêàöiéíó ñòðóêòó-

ðó, ÿêà ðàíiøå íå ñïîñòåðiãàëàñÿ òà âêëþ÷à¹ ÿê ïåðiîäè÷íi, òàê i õàîòè÷íi

àòðàêòîðè. Äëÿ ïåðiîäè÷íèõ ðîçâ'ÿçêiâ îòðèìàíî íåîáõiäíi òà äîñòàòíi

óìîâè ¨õ iñíóâàííÿ òà ñòiéêîñòi. Äëÿ õàîòè÷íèõ àòðàêòîðiâ îòðèìàíî äî-
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ñòàòíi óìîâè ¨õ iñíóâàííÿ. Ó ïiäðîçäiëi 2.2 áóëî ðîçãëÿíóòî êîíêðåòíèé

ïðèêëàä áiìîäàëüíîãî âiäîáðàæåííÿ, ÿêå ìîäåëþ¹ åêîíîìi÷íèé ïðîöåñ

íàáëèæåííÿ öiíè äî ðiâíîâàæíîãî çíà÷åííÿ. Îñîáëèâiñòü âiäîáðàæåííÿ

ïîëÿãà¹ â òîìó, ùî ôóíêöi¨, ÿêi âèçíà÷àþòü äâi éîãî êðàéíi ãiëêè, ïðîõî-

äÿòü ÷åðåç ïî÷àòîê êîîðäèíàò. ×åðåç öå â ïðîñòîði ïàðàìåòðiâ áiôóðêà-

öiéíi ñòðóêòóðè, ïîâ'ÿçàíi ç ïåðiîäè÷íèìè ðîçâ'ÿçêàìè, ¹ âèðîäæåíèìè.

Îïèñàíî ïðèðîäó öüîãî âèðîäæåííÿ òà îòðèìàíî äîñòàòíi óìîâè iñíóâà-

ííÿ õàîòè÷íèõ àòðàêòîðiâ.

Ó òðåòüîìó ðîçäiëi äèñåðòàöiéíî¨ ðîáîòè îñíîâíèì îá'¹êòîì äîñëi-

äæåííÿ ¹ ñiìåéñòâî îäíîâèìiðíèõ êóñêîâî-ìîíîòîííèõ âiäîáðàæåíü ç äå-

êiëüêîìà òî÷êàìè ðîçðèâó. Òàêi âiäîáðàæåííÿ ç'ÿâëÿþòüñÿ, íàïðèêëàä,

â åêîíîìiöi ÿê ìîäåëi öiíîóòâîðåííÿ àêöié çà íàÿâíîñòi âçà¹ìîäiþ÷èõ

àãåíòiâ ç ðiçíèìè ñòðàòåãiÿìè. Ïîäiáíi ìîäåëi ââàæàþòüñÿ åôåêòèâíèìè

äëÿ ðîçóìiííÿ ôóíêöiîíóâàííÿ ôiíàíñîâèõ ðèíêiâ ç ñóòò¹âèìè íåñòà-

áiëüíîñòÿìè. Êðiì òîãî, ó êóñêîâî-ãëàäêèõ âiäîáðàæåííÿõ ç áiëüø íiæ

îäíi¹þ òî÷êîþ ðîçðèâó áiôóðêàöi¨ çiòêíåííÿ ç ìåæåþ ìîæóòü òàêîæ âiä-

áóâàòèñÿ é ç õàîòè÷íìè àòðàêòîðàìè, ùî íåìîæëèâî ó âiäîáðàæåííÿõ ç

îäíi¹þ ìåæîâîþ òî÷êîþ. Íà âiäìiíó âiä äîñi âiäîìèõ áiôóðêàöié äëÿ õà-

îòè÷íèõ àòðàêòîðiâ, çàçíà÷åíi áiôóðêàöi¨ çiòêíåííÿ ç ìåæåþ íå ïîâ'ÿçàíi

ç æîäíèìè ãîìîêëiíi÷íèìè áiôóðêàöiÿìè âiäøòîâõóþ÷èõ öèêëiâ.

Ó ïiäðîçäiëi 3.1 íàãàäóþòüñÿ äåÿêi âiäîìi ôàêòè ïðî áiôóðêàöi¨ õà-

îòè÷íèõ àòðàêòîðiâ ó êóñêîâî-ãëàäêèõ âiäîáðàæåííÿõ ç îäíi¹þ òî÷êîþ

ðîçðèâó, à òàêîæ ôàêòè ïðî âiäïîâiäíi áiôóðêàöiéíi ñòðóêòóðè ó ïðî-

ñòîði ïàðàìåòðiâ. Ïiäðîçäië 3.2 ïðèñâÿ÷åíèé äîñëiäæåííþ àñèìïòîòè-

÷íèõ ðîçâ'ÿçêiâ òà ¨õ áiôóðêàöié äëÿ ñiìåéñòâà îäíîâèìiðíèõ êóñêîâî-

çðîñòàþ÷èõ âiäîáðàæåíü, ñèìåòðè÷íèõ âiäíîñíî ïî÷àòêó êîîðäèíàò. Ñïî-

÷àòêó íàäà¹òüñÿ çàãàëüíèé îãëÿä áiôóðêàöiéíèõ ñòðóêòóð ó ïðîñòîði ïà-

ðàìåòðiâ, âèçíà÷àþòüñÿ îáëàñòi ïàðàìåòðiâ äëÿ (1) ñòiéêèõ íåðóõîìèõ

òî÷îê, (2) ñïiâiñíóâàííÿ äâîõ iíâàðiàíòíèõ iíòåðâàëiâ ïîãëèíàííÿ, ÿêi íå

ïåðåòèíàþòüñÿ, (3) iñíóâàííÿ ¹äèíîãî iíâàðiàíòíîãî iíòåðâàëó ïîãëèíà-
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ííÿ òà (4) íåîáìåæåíèõ ðîçâ'ÿçêiâ. Äàëi äåòàëüíî îïèñóþòüñÿ äâi ðiçíi

áiôóðêàöiéíi ñòðóêòóðè, ïîâ'ÿçàíi ç õàîòè÷íèìè àòðàêòîðàìè, ÿêi îõî-

ïëþþòü âñi òðè ïîäiëè âiäîáðàæåííÿ. Çîêðåìà, îòðèìóþòüñÿ íåîáõiäíi

òà äîñòàòíi óìîâè äëÿ iñíóâàííÿ õàîòè÷íèõ àòðàêòîðiâ, ÿêi ìàþòü ðiçíó

êiëüêiñòü çâ'ÿçíèõ åëåìåíòiâ (ñìóã), i îïèñóþòüñÿ ïðèíöèïè, âiäïîâiäíî

äî ÿêèõ öi êiëüêîñòi çìiíþþòüñÿ âíàñëiäîê áiôóðêàöié. Òàêîæ çíàéäå-

íî ïàðàìåòðè÷íi îáëàñòi ñïiâiñíóâàííÿ ðiçíèõ õàîòè÷íèõ àòðàêòîðiâ. Ó

ïiäðîçäiëi 3.3 ðîçãëÿäà¹òüñÿ ñiìåéñòâî îäíîâèìiðíèõ êóñêîâî-çðîñòàþ÷èõ

âiäîáðàæåíü iç äâîìà òî÷êàìè ðîçðèâó òà áåç ñèìåòðié. Ó ïðîñòîði ïà-

ðàìåòðiâ òàêèõ âiäîáðàæåíü âèÿâëåíî i âè÷åðïíî îïèñàíî áiôóðêàöiéíó

ñòðóêòóðó íîâîãî òèïó, ïîâ'ÿçàíó ç õàîòè÷íèìè àòðàêòîðàìè. Äîâåäåíî,

ùî áiôóðêàöiéíi ïîâåðõíi, ÿêi óòâîðþþòü öþ ñòðóêòóðó, çàäàþòüñÿ ái-

ôóðêàöiÿìè õàîòè÷íèõ àòðàêòîðiâ, ÿêi íå ìàþòü âiäíîøåííÿ äî æîäíèõ

êðèòè÷íèõ ãîìîêëiíi÷íèõ îðáiò. Ïîêàçàíî, ùî êîíôiãóðàöi¨ õàîòè÷íèõ

àòðàêòîðiâ ìîæóòü íàëåæàòè äî äâîõ ðiçíèõ âèäiâ, çàëåæíî âiä òîãî,

ñêiëüêè ñìóã àòðàêòîðà ðîçòàøîâàíî ïðàâîðó÷ i ëiâîðó÷ âiä ïî÷àòêó êî-

îðäèíàò. Äëÿ àòðàêòîðiâ îáîõ âèäiâ îòðèìàíî ÿâíi îöiíêè ìàêñèìàëüíî¨

êiëüêîñòi ¨õ ñìóã.

Ïiäðîçäië 3.4 ïðèñâÿ÷åíèé äåòàëüíîìó îïèñó çîâíiøíüî¨ òà âíóòði-

øíüî¨ áiôóðêàöié çiòêíåííÿ ç ìåæåþ äëÿ õàîòè÷íèõ àòðàêòîðiâ. Öi äâi

áiôóðêàöi¨, ÿêi áóëî âèÿâëåíî âïåðøå, íå ìàþòü âiäíîøåííÿ äî ãîìîêëi-

íi÷íèõ áiôóðêàöié i íå ìîæóòü âèíèêàòè ó êóñêîâî-ãëàäêèõ âiäîáðàæåí-

íÿõ ç îäíi¹þ ìåæîâîþ òî÷êîþ. Äëÿ êîæíîãî òèïó äâîõ íîâèõ áiôóðêàöié

îòðèìàíî äîñòàòíi óìîâè äëÿ ¨õ âèíèêíåííÿ. Ó ïiäðîçäiëi 3.5 äîñëiäæåíî

îêðåìèé âèïàäîê áiôóðêàöi¨ çîâíiøíüîãî çiòêíåííÿ ç ìåæåþ, ùî ñïðè-

÷èíÿ¹ ïîäàëüøå ðiçêå ðîçøèðåííÿ àòðàêòîðà. Äîâåäåíî, ùî öå ðîçøè-

ðåííÿ âiäáóâà¹òüñÿ âíàñëiäîê çiòêíåííÿ õàîòè÷íîãî àòðàêòîðà ç õàîòè-

÷íèì ðåïåëåðîì, ÿêèé ïåðåä áiôóðêàöi¹þ çíàõîäèòüñÿ íà ìåæi áàñåéíó

ïðèòÿãàííÿ. Âèâ÷à¹òüñÿ çàãàëüíèé âèïàäîê êîðîçìiðíîñòi îäèí, à òàêîæ

îñîáëèâèé âèïàäîê êîðîçìiðíîñòi äâà.
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Ó ðîçäiëi 4 ïðåäñòàâëåíî ðåçóëüòàòè, ïîâ'ÿçàíi ç øiñòüìà êîíêðåòíè-

ìè ìàëîâèìiðíèìè âiäîáðàæåííÿìè, ÿêi áóëè çàïðîïîíîâàíi êîëåãàìè ç

ïðèêëàäíèõ íàóê i ìîäåëþþòü âàæëèâi ïðîáëåìè ç åêîíîìiêè, åêîëî-

ãi¨ òà ïñèõîëîãi¨ ðîçâèòêó. Ïiäðîçäië 4.2 ïðèñâÿ÷åíî äîñëiäæåííþ ñiìåé-

ñòâà äâîâèìiðíèõ íåîáîðîòíèõ ãëàäêèõ âiäîáðàæåíü, ùî ìîäåëþ¹ çàêðè-

òó åêîíîìiêó òèïó Ìiíñüêîãî ç åíäîãåííèì ïðîöåñîì ðåãóëþâàííÿ áîðãó.

Ïîêàçàíî, ùî ¹äèíà íåðóõîìà òî÷êà ìîæå âòðàòèòè ñòiéêiñòü ÷åðåç ái-

ôóðêàöiþ ïåðåâîðîòó àáî áiôóðêàöiþ Íåéìàðêà-Ñàêåðà. Äëÿ îáîõ áiôóð-

êàöié ïîáóäîâàíî íîðìàëüíi ôîðìè. Äëÿ áiôóðêàöi¨ Íåéìàðêà-Ñàêåðà

òàêîæ ðîçãëÿäàþòüñÿ äâà âèðîäæåíèõ âèïàäêè. Äåòàëüíî îïèñàíî ñòðó-

êòóðó ïðîñòîðó ïàðàìåòðiâ â îêîëi âiäïîâiäíèõ òî÷îê êîðîçìiðíîñòi äâà.

Äëÿ çíà÷åíü ïàðàìåòðiâ, ÿêi çíàõîäÿòñÿ äîñòàòíüî äàëåêî âiä áiôóðêà-

öiéíî¨ ïîâåðõíi Íåéìàðêà-Ñàêåðà, òàêîæ îïèñàíî ïåðåòâîðåííÿ ïðèòÿ-

ãóþ÷î¨ çàìêíåíî¨ iíâàðiàíòíî¨ êðèâî¨ iç ïîäàëüøèì âèíèêíåííÿì îáëàñòi

ïîãëèíàííÿ íåçìiøàíîãî òèïó.

Ó ïiäðîçäiëi 4.3 âèâ÷à¹òüñÿ ñiìåéñòâî äâîâèìiðíèõ íåîáîðîòíèõ ãëàä-

êèõ âiäîáðàæåíü, ÿêi ìîäåëþòü ïðîöåñ åêñïëóàòàöi¨ âiäíîâëþâàíèõ ðå-

ñóðñiâ. Îòðèìàíî àíàëiòè÷íèé âèðàç, ùî âèçíà÷à¹ ìíîæèíó ñïiâïàäà-

þ÷èõ ïðîîáðàçiâ, à òàêîæ àíàëiòè÷íèé âèðàç äëÿ êðèòè÷íî¨ ìíîæèíè.

Äåòàëüíî îïèñàíî äâà ðiçíèõ áiôóðêàöiéíèõ ñöåíàði¨, õàðàêòåðíèõ äëÿ

ðîçãëÿíóòèõ âiäîáðàæåíü. Çîêðåìà, ïîêàçàíî, ùî ó ôàçîâié ïëîùèíi âiä-

îáðàæåííÿ iñíó¹ îáëàñòü ïîãëèíàííÿ çìiøàíîãî òèïó, îáìåæåíà ñåãìåí-

òàìè êðèòè÷íèõ êðèâèõ ðiçíîãî ðàíãó òà âiäïîâiäíèìè ÷àñòèíàìè íåñòié-

êèõ ìíîæèí äâîõ ñiäëîâèõ öèêëiâ.

Ó ïiäðîçäiëi 4.4 ðîçãëÿäà¹òüñÿ ñiìåéñòâî äâîâèìiðíèõ êóñêîâî-

ãëàäêèõ íåîáîðîòíèõ íåïåðåðâíèõ âiäîáðàæåíü, ÿêi ìîäåëþòü áîðîòüáó

ç øàõðàéñòâîì ó äåðæàâíèõ çàêóïiâëÿõ. Äëÿ òàêèõ âiäîáðàæåíü âèâ÷à-

þòüñÿ ñòiéêi ïåðiîäè÷íi ðîçâ'ÿçêè. Ïîêàçàíî, ùî ó ôàçîâîìó ïðîñòîði

ìîæå iñíóâàòè ïðèòÿãóþ÷à çàìêíåíà íåãëàäêà iíâàðiàíòíà êðèâà Γ, ÿêà

ñêëàäà¹òüñÿ ç ñåãìåíòiâ êðèòè÷íèõ ìíîæèí ðiçíîãî ðàíãó. Îòðèìàíî äî-
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ñòàòíi óìîâè äëÿ ¨¨ iñíóâàííÿ. Òàêîæ ïîêàçàíî, ùî îáìåæåííÿ âèõiäíîãî

âiäîáðàæåííÿ íà Γ çàäà¹òüñÿ îäíîâèìiðíèì íåãëàäêèì âiäîáðàæåííÿì

ϕ � âiäîáðàæåííÿì ïåðøîãî ïîâåðíåííÿ. Äîâåäåíî, ùî ϕ ìà¹ ïðèíàéì-

íi îäíó òî÷êó çëàìó òà îäíó òî÷êó ðîçðèâó. Çà äîïîìîãîþ ϕ âèçíà÷åíî

áiôóðêàöi¨ ñòiéêèõ ïåðiîäè÷íèõ ðîçâ'ÿçêiâ i îïèñàíî âiäïîâiäíó áiôóðêà-

öiéíó ñòðóêòóðó.

Ïiäðîçäië 4.5 ïðèñâÿ÷åíî äîñëiäæåííþ ñiìåéñòâà òðèâèìiðíèõ

êóñêîâî-ãëàäêèõ íåïåðåðâíèõ âiäîáðàæåíü, ÿêi ìîäåëþþòü ñïðîùåíèé

ðèíîê òîâàðiâ òðèâàëîãî êîðèñòóâàííÿ. Ìíîæèíà ïåðåìèêàííÿ âiäîáðà-

æåííÿ ñêëàäà¹òüñÿ ç òðüîõ ãëàäêèõ ïîâåðõîíü. Äîâåäåíî, ùî ïåðåòèí

óñiõ öèõ ïîâåðõîíü ¹ ãëàäêîþ êðèâîþ, êîæíà òî÷êà ÿêî¨ íåðóõîìà. Äëÿ

íèõ îòðèìàíî óìîâè ñòiéêîñòi. Òàêîæ äîâåäåíî, ùî áóäü-ÿêà îðáiòà àáî

àñèìïòîòè÷íî íàáëèæà¹òüñÿ äî îäíi¹¨ ç íåðóõîìèõ òî÷îê, àáî íàçàâæäè

çàëèøà¹òüñÿ â òàê çâàíié �òî÷öi íåâðiâíîâàæåíîñòi�, äëÿ ÿêî¨ ïåðøi äâi

êîîðäèíàòè çàëèøàþòüñÿ íåçìiííèìè, òîäi ÿê òðåòÿ çìiíþ¹òüñÿ âiäïîâiä-

íî äî îäíîâèìiðíîãî âiäîáðàæåííÿ Ðàéêåðà ç ôiêñîâàíèìè ïàðàìåòðàìè.

Ó ïiäðîçäiëi 4.6 âèâ÷à¹òüñÿ ñiìåéñòâî äâîâèìiðíèõ ðîçðèâíèõ âiäîáðà-

æåíü, ùî ìîäåëþþòü âàëþòíèé ðèíîê ç åìîöiéíèìè ó÷àñíèêàìè. Îòðè-

ìàíî óìîâè, çà ÿêèõ âiäáóâà¹òüñÿ áiôóðêàöiÿ ïîðóøåííÿ íåïåðåðâíîñòi.

Ïîêàçàíî, ùî â ïëîùèíi ïàðàìåòðiâ, â îêîëi âiäïîâiäíî¨ òî÷êè êîðîçìið-

íîñòi äâà, âèõiäíå âiäîáðàæåííÿ ìîæå áóòè íàáëèæåíå îäíîâèìiðíèì

êóñêîâî-ëiíiéíèì âiäîáðàæåííÿì ç îäíi¹þ òî÷êîþ ðîçðèâó. Ó ïëîùèíi

ïàðàìåòðiâ îïèñàíî òðè ðiçíi áiôóðêàöiéíi ñòðóêòóðè, ïîâ'ÿçàíi ç ïåði-

îäè÷íèìè ðîçâ'ÿçêàìè. Çîêðåìà, äåòàëüíî îïèñàíî íîâó áiôóðêàöiéíó

ñòðóêòóðó, ÿêà ïîâ'ÿçàíà çi ñòiéêèìè ðîçâ'ÿçêàìè ïàðíèõ ïåðiîäiâ.

Ó ïiäðîçäiëi 4.7 ðîçãëÿäà¹òüñÿ äâîâèìiðíå íåîáîðîòíå êóñêîâî-ãëàäêå

âiäîáðàæåííÿ, îáèäâi êîìïîíåíòè ÿêîãî ìiñòÿòü äðîáîâî-ðàöiîíàëüíi

÷ëåíè. Ó ôàçîâié ïëîùèíi òàêèõ âiäîáðàæåíü iñíóþòü ìíîæèíè, íà ÿêèõ

ôóíêöi¨ ñèñòåìè íå âèçíà÷åíi. Çàçíà÷åíå âiäîáðàæåííÿ âèñòóïà¹ ìîäå-

ëëþ ïðîöåñó êîàäàïòèâíî¨ âçà¹ìîäi¨ ìiæ ó÷íåì i â÷èòåëåì. Äëÿ íüîãî
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îòðèìàíî óìîâè iñíóâàííÿ íåðóõîìèõ òî÷îê, à äëÿ äåÿêèõ ç íèõ � óìî-

âè, çà ÿêèõ âîíè ¹ ñòiéêèìè, ñiäëîâèìè òà íåñòiéêèìè. Òàêîæ çíàéäåíî

âñi ôîêàëüíi òî÷êè òà âiäïîâiäíi ïðåôîêàëüíi ìíîæèíè. Äîâåäåíî, ùî

îäíà iç öèõ ôîêàëüíèõ òî÷îê (à ñàìå ïî÷àòîê êîîðäèíàò) íàëåæèòü ñâî¨é

ïðåôîêàëüíié ìíîæèíi òà ìîæå ìàòè áàñåéí ïðèòÿãàííÿ äîäàòíî¨ ìiðè.

Çàêëþ÷íèé ðîçäië 5 ïðèñâÿ÷åíî âèâ÷åííþ ñiìåéñòâ êóñêîâî-ãëàäêèõ

âiäîáðàæåíü âèùî¨ ðîçìiðíîñòi, ÿêi ìîäåëþþòü îëiãîïîëiñòè÷íèé ðèíîê.

Öi ìîäåëi áóëè çàïðîïîíîâàíi âiäîìèì åêîíîìiñòîì Òîíó Ïóó ÿê âiäïî-

âiäü íà òàê çâàíó ïðîáëåìó Òåîêàðiñà-Êóðíî, êîëè ðèíîê äåñòàáiëiçó¹òüñÿ

ïðè çáiëüøåííi êiëüêîñòi êîíêóðåíòiâ. Ó ïiäðîçäiëi 5.2 äîñëiäæóþòüñÿ

2n-âèìiðíi íåàâòîíîìíi âiäîáðàæåííÿ ç ìàëèì ïàðàìåòðîì. Îòðèìàíî

óìîâè iñíóâàííÿ äëÿ òðüîõ íåðóõîìèõ òî÷îê âiäîáðàæåííÿ. Ïîêàçàíî,

ùî ïî÷àòîê êîîðäèíàò çàâæäè ¹ íåñòiéêèìè, à íåðóõîìà òî÷êà, âèçíà-

÷åíà ìàëèì ïàðàìåòðîì, � ñóïåðñòiéêîþ. Äëÿ òðåòüî¨ íåðóõîìî¨ òî÷êè

äîñòàòíi óìîâè ¨¨ ñòiéêîñòi îòðèìàíî äëÿ äâîõ ðiçíèõ âèïàäêiâ. Ó ïiäðîç-

äiëàõ 5.3 i 5.4 âèâ÷àþòüñÿ ñiìåéñòâà 3n-âèìiðíèõ êóñêîâî-ãëàäêèõ íåî-

áîðîòíèõ âiäîáðàæåííü äâîõ òèïiâ. Äîâåäåíî, ùî òàêi âiäîáðàæåííÿ íå

ìîæóòü ìàòè íåðóõîìèõ òî÷îê, à ëèøå ïåðiîäè÷íi ðîçâ'ÿçêè. Êðiì òîãî,

ïåðiîäè öèõ ðîçâ'ÿçêiâ îáîâ'ÿçêîâî ¹ êðàòíèìè ïåâíîìó ïàðàìåòðó. Òà-

êîæ ðîçãëÿäà¹òüñÿ çâóæåííÿ âèõiäíîãî âiäîáðàæåííÿ íà ìíîãîâèä ïîâíî¨

ñèíõðîíiçàöi¨, äëÿ ÿêîãî îïèñàíî äåêiëüêà áiôóðêàöiéíèõ ñöåíàði¨â.

Êëþ÷îâi ñëîâà: êóñêîâî-ãëàäêi âiäîáðàæåííÿ, ðîçðèâíi âiäîáðàæåííÿ,

íåîáîðîòíi âiäîáðàæåííÿ, êðèòè÷íi ìíîæèíè, âiäîáðàæåííÿ çi çíèêîìèì

çíàìåííèêîì, ôîêàëüíi òî÷êè, ãëîáàëüíi áiôóðêàöi¨, áiôóðêàöi¨ çiòêíåí-

íÿ ç ìåæåþ, õàîòè÷íà äèíàìiêà, õàîòè÷íi àòðàêòîðè, ìóëüòèñòàáiëüíiñòü,

êîíòàêòíi áiôóðêàöi¨ äëÿ êðèòè÷íèõ òî÷îê, áiôóðêàöiéíi ñòðóêòóðè â

ïðîñòîði ïàðàìåòðiâ.
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Abstract

Panchuk A.A. Bifurcations of noninvertible smooth, piecewise

smooth, and discontinuous maps. � Qualifying scienti�c work on the
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The thesis is devoted to studying properties and bifurcations of asymp-

totic solutions for a wide range of piecewise smooth di�erence equations, or

maps, many of which represent actual models of real phenomena, having

been worked out by colleagues from applied sciences (electrical engineering,

secure signal transmission, economics, developmental psychology, etc.). In-

vestigation of piecewise smooth dynamical systems, in particular, within the

discrete time setting, gained popularity at the end of the last century, espe-

cially after discovery of border collision bifurcations and robustness of chaos

even in the one-dimensional case. Although thousands of works has been up

to now dedicated to this topic, the bifurcation theory of piecewise smooth

maps is still far from being complete and further studies in this direction are

important.

The main objects of the thesis are various noninvertible piecewise smooth,

in particular discontinuous, maps of di�erent dimensionality. By using the

combination of analytical, qualitative and numerical methods, we investigate

invariant sets of diverse nature for such maps. Studied are bifurcations of

stable �xed and periodic points, of chaotic attractors, as well as qualitative

transformations of attracting smooth and non-smooth invariant curves, of

mixed and non-mixed absorbing areas. The related bifurcation structures in

the parameter spaces are described.

The thesis consists of the introduction and �ve chapters. The �rst chapter
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contains the literature overview on the topic of the thesis and presents the

main de�nitions, some preliminary concepts, and the known results. The

Subsection 1.1 brie�y describes the history of the dynamical systems theory

and the bifurcation theory. The Subsection 1.2 presents the notations, the

de�nitions, and the previous results, used throughout the main part.

Chapter 2 is the �rst belonging to the main part of the thesis. It is

devoted to studying a one-dimensional piecewise linear continuous map with

two boundary points, referred to as a bimodal map. This map is important

by two reasons. On one hand, it appears naturally when solving di�erent

applied problems. For instance, it serves as a model for a time-delayed Chua's

circuit of a particular design; it represents an e�ective chaos generator in

telecommunications and image processing; it models particular t�atonnement

processes for price evolution in stabilisation of the economy. On the other

hand, the bimodal map is a generalisation of the skew tent map (the latter

being the simplest representative of the class of piecewise smooth maps) and

allows for deriving analytical expressions for the bifurcation conditions, due

to linearity of its branches.

In the Subsection 2.1, we provide a large-scale overview of the bifurca-

tion structures in the parameter space. Thus, we determine the domains of

bounded and unbounded orbits. We show that stable periodic orbits of any

period (including the �xed points) can exist depending on the parameter val-

ues and obtain necessary and su�cient conditions for their stability. We also

describe two di�erent bifurcation structures in the parameter space that are

generalisations of the bifurcation structures already known for the piecewise

linear maps with a single border point. The Subsection 2.1.3 describes the

novel bifurcation structure, which has not been earlier observed and involves

both periodic and chaotic attractors. For periodic solutions necessary and

su�cient conditions of their existence and stability have been obtained. For

chaotic attractors we have got su�cient conditions for their existence. In

the Subsection 2.2, a certain example of a bimodal map, which models an
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economic t�atonnement process, has been considered. The map has a particu-

larity such that the functions de�ning two outermost branches pass through

the origin. Due to this fact, in the parameter space the bifurcation struc-

tures related to periodic solutions are degenerate. We describe the nature of

this degeneracy and obtain the su�cient conditions for existence of chaotic

attractors.

In the third chapter of the thesis, the main object of studies is a fam-

ily of one-dimensional piecewise monotone maps with multiple discontinuity

points. Such maps appear, for instance, in economics as models for asset pric-

ing and trading involving heterogeneous interacting agents. Recently, these

models were proved to be highly relevant in understanding of the functioning

of excessively volatile �nancial markets. Additionally, in piecewise smooth

maps with multiple discontinuity points, chaotic attractors are allowed to

undergo border collision bifurcations, which is impossible in maps with a

single border point. In contrast to already known bifurcations of chaotic at-

tractors, the mentioned border collision bifurcations are not associated with

any homoclinic bifurcations of repelling cycles.

In Subsection 3.1, we recall some known facts about bifurcations of chaotic

attractors in piecewise smooth maps with a single discontinuity point, as

well as the related bifurcation structures in the respective parameter space.

Subsection 3.2 is dedicated to examining asymptotic solutions and their bi-

furcations for a family of one-dimensional piecewise increasing maps that are

symmetric about the origin. First, we provide a large-scale overview of the

bifurcation structures in the parameter space, determining the parameter

domains for (1) stable �xed points, (2) coexistence of two disjoint invariant

absorbing intervals, (3) existence of a single invariant absorbing interval, and

(4) divergent (unbounded) orbits. Then we describe in detail two distinct

bifurcation structures associated with chaotic attractors that spread over

all three map partitions. In particular, we obtain necessary and su�cient

conditions for the existence of chaotic attractors having di�erent number of
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connected elements (bands) and describe the principles according to that

these numbers change due to bifurcations. We also �nd parametric regions

of coexistence of di�erent chaotic attractors. In Subsection 3.3 a family of

one-dimensional piecewise increasing maps with two discontinuity points and

without symmetries is handled with. In the parameter space of such maps, a

new type of bifurcation structure, associated with chaotic attractors, is found

and exhaustively described. It is proved that the bifurcation surfaces forming

this structure are related to bifurcations of chaotic attractors, which are not

associated with any critical homoclinic orbits. It is shown that the con�gu-

rations of chaotic attractors can belong to two di�erent kinds, depending on

how many bands of the attractor are located to the right and to the left of

the origin. For attractors of both types, explicit estimates for the maximum

number of their bands are obtained.

Subsection 3.4 is devoted to detailed description of exterior and interior

border collision bifurcations for chaotic attractors. These two bifurcations,

having been observed for the �rst time, are not related to any homoclinic

bifurcations and cannot occur in piecewise smooth maps with a single border

point. For each type of two novel bifurcations, su�cient conditions for their

occurrence are obtained. In Subsection 3.5, we investigate a particular case

of the exterior border collision bifurcation, which implies further sudden ex-

pansion of the attractor. We show that this expansion occurs due to collision

of a chaotic attractor with a chaotic repeller, which is located at the imme-

diate basin boundary of the attractor before the bifurcation. We explore a

generic codimension one case, as well as a particular codimension two case.

In Chapter 4, we present results related to six particular low-dimensional

maps, which were suggested by colleagues from applied sciences and model

important problems from economics, ecology, and developmental psychology.

Subsection 4.2 concerns a family of two-dimensional noninvertible smooth

maps, modelling a Minskyan type closed economy with endogenous debt ad-

justment process. We show that the unique �xed point can lose stability
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due to either a �ip or a Neimark�Sacker bifurcation, for both of which we

construct normal forms. For the Neimark�Sacker bifurcation, two degener-

ate cases are also considered. The structure of the parameter space in the

neighbourhood of the respective codimension two points, is described in de-

tail. For the parameter values located far enough from the Neimark�Sacker

bifurcation surface, transformations of the attracting closed invariant curve

are also examined, which lead to appearance of a non-mixed absorbing area.

In Subsection 4.3, we study a family of two-dimensional noninvertible

smooth maps, modelling renewable resource exploitation process. We ob-

tain the analytical expression de�ning the set of merging preimages and the

analytical expression for the critical set. We describe in detail two di�erent

bifurcation scenarios, typical to considered maps. In particular, we show that

in the phase plane of the map there exists a mixed absorbing area, which is

con�ned by segments of critical curves of di�erent ranks and relevant parts

of unstable sets of two saddle cycles.

In Subsection 4.4, we consider a family of two-dimensional piecewise

smooth noninvertible continuous maps, modelling frauds in public procure-

ment. For such maps, stable periodic solutions are studied. It is shown that

in the phase space there can exist an attracting closed non-smooth invariant

curve Γ, which consists of the segments of critical sets of di�erent ranks.

Su�cient conditions for its existence are obtained. It is also shown that the

restriction of the original map to Γ is given by the one-dimensional nons-

mooth map ϕ, referred to as the �rst return map. It is proved that the map

ϕ has at least two border points, one of which is a kink point and the other

is a discontinuity point. Using the map ϕ, possible bifurcations of stable pe-

riodic solutions are determined and the related bifurcation structure in the

parameter space is described.

Subsection 4.5 is devoted to investigation of a family of three-dimensional

piecewise smooth continuous maps, which models a simpli�ed durable com-

modity market. The switching set of the map consists of three smooth sur-
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faces, and it is proved that the intersection of all these surfaces is a smooth

curve, each point of which is �xed. Conditions for the stability of these �xed

points are obtained. We also prove that for any initial point its orbit either

approaches asymptotically one of the �xed points, or sticks forever in the

so-called �disequilibrium point�, for which the �rst two coordinates remain

unchanged, while the third one changes according to the one-dimensional

Ricker map with �xed parameters.

In Subsection 4.6, we study a family of two-dimensional discontinuous

maps, modelling exchange rate dynamics with sentiment traders. We obtain

the conditions for a continuity breaking bifurcation. It is shown that in the

parameter plane, in the neighbourhood of the corresponding point of codi-

mension two, the original two-dimensional map can be approximated by a

one-dimensional piecewise linear map with a single discontinuity point. In

the parameter plane, three distinct bifurcation structures, associated with

periodic solutions, are described. In particular, we examine in detail organ-

ising principles for a novel bifurcation structure, related to stable cycles of

even periods.

In Subsection 4.7, considered is a family of two-dimensional noninvertible

piecewise smooth maps, characterised by fractional-rational terms in both

components. In the phase plane of such maps, there exist sets on which the

functions of the system are unde�ned. The mentioned map serves as a model

for the co-adaptive interaction process between a learner and a teacher. For

this map the conditions for the existence of �xed points were obtained, and

for some of them we have derived the conditions, under which they are stable,

saddle and unstable. All focal points and the corresponding prefocal sets were

also found. It was proved that one of these focal points (namely, the origin)

belongs to its prefocal set, which implies that for certain parameter values,

this focal point has a basin of attraction of positive measure.

The �nal Chapter 5 is devoted to studying families of piecewise smooth

maps of higher dimensionality that model an oligopoly market. These models
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were suggested by a famous economist T�onu Puu as an answer to the so-called

Theocaris�Cournot problem, when the market is destabilised with increasing

the number of competitors. In Subsection 5.2 we investigate 2n-dimensional

nonautonomous piecewise smooth noninvertible maps with a small parame-

ter. The existence conditions for three �xed points of such a map were de-

rived. The �xed point at the origin was shown to be always unstable, while

the �xed point de�ned by a small parameter was shown to be superstable

if existent. For the third �xed point, su�cient stability conditions were ob-

tained in two separate cases. In Subsections 5.3 and 5.4, we explore families

of 3n-dimensional piecewise smooth noninvertible maps of two types. It was

proved that such maps cannot have �xed points, but only periodic solutions.

Moreover, the periods of these solutions are necessarily multiples of a certain

parameter of the map. We also consider a restriction of the original map to

the full synchronisation manifold, for which we describe several bifurcation

scenarios depending on the parameter values.

Key words: piecewise smooth maps, discontinuous maps, noninvertible

maps, critical sets, maps with vanishing denominator, focal points, global bi-

furcations, border collision bifurcations, chaotic dynamics, chaotic attractors,

multistability, contact bifurcations for critical points, bifurcation structures

in the parameter space.
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Introduction

The thesis is devoted to studying properties of asymptotic solutions for a

wide range of noninvertible continuous and discontinuous piecewise smooth

maps. We investigate periodic and chaotic attractors for these maps and

analyse various local and global aspects of their dynamics. In particular,

we examine qualitative transformations of chaotic attractors, discover and

describe bifurcations of new types, and report bifurcation structures, which

have been unknown.

Relevance of the chosen research topic. Bifurcations of invariant

sets in noninvertible and piecewise smooth dynamical systems have been al-

ready drawing attention of researchers for almost half-century. Although

for centuries in many applied sciences classical investigation methods had

been using linear (or at least smooth) functions, our constantly increasing

knowledge about the real world suggests that linearity and smoothness is a

rare occurrence in Nature. Fast development of existing areas of research, as

well as appearance of novel research trends or even new branches of science,

demands comprehension of evolution principles of more and more complex

objects and studying dynamical systems involving functions with kinks and

discontinuities. Understanding asymptotic properties of solutions for such

kind systems allows to meet practical challenges springing up in numerous

spheres of human life from chemistry and physics to economics and sociol-

ogy. The major problem arising is that classical investigation methods, in

most cases, cannot be applied for nonsmooth systems and advancing com-

pletely new approaches becomes necessary, in particular those, which allow

to formally describe transformations of non-regular, strange, chaotic objects.

One of the �rst scientists who tried to describe rigorously complex chaotic

behaviour in a dynamical system, was the French mathematician H. Poincar�e.
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It is even widely thought that the modern dynamical systems theory has

stemmed from his famous work �Les m�ethodes nouvelles de la m�ecanique

c�eleste�. In this milestone, the strict analysis was complemented by qualita-

tive geometric techniques, in order to describe global properties of solutions.

This approach had become a real breakthrough in studying nonlinear di�er-

ential equations. The idea that global understanding of asymptotic behaviour

of all solutions was more important than analytically precise description of

particular local trajectories, was later supported by G.D. Birkho�, who also

accentuated importance of studying discrete time mappings as a mean to un-

derstand more complex phenomena arising from di�erential equations. In the

mid-20th century, dynamical systems theory was furthered due to other sig-

ni�cant studies having tackled the variety of momentous problems with using

distinct approaches. Among those to be mentioned are: works of A. A. An-

dronov and L. S. Pontryagin on structural stability and local bifurcations for

planar systems; generalisation of these results to two-dimensional manifolds

by M. Peixoto; works of A. N. Kolmogorov, V. I. Arnold, and J.K. Moser hav-

ing led to development of KAM theory; geometric construction by S. Smale

of his famous horseshoe as an example of structurally stable chaotic map.

Increasing interest to studying complex asymptotic solutions of nonlin-

ear dynamical systems arose due to results of the American meteorologist

E. Lorenz. During his numerical investigation of a three-dimensional model

for weather forecasting, Lorenz had discovered that for particular param-

eter values the system possessed an in�nite set of non-periodic solutions,

nowadays known as the Lorenz attractor. These solutions demonstrated ex-

tremely high sensitivity to initial conditions, namely, even a negligibly small

change of an initial point yielded completely di�erent trajectory, which made

almost impossible precise long-term prediction of the asymptotic behaviour

(the celebrated butter�y e�ect). Nowadays, sensitivity to initial conditions

is regarded as the key property of chaos.

Lorenz's results served as persuasion to many researchers that asymptotic
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dynamics includes plenty of solutions being distinct from equilibrium points

and limit cycles. The �rst usage of the word �chaos� with respect to dynam-

ical systems with discrete time (i. e., di�erence equations that are also called

maps) is attributed to T.-Y. Li and J.A. Yorke, who showed that existence

of a point of period three implies existence of an uncountable set, points of

which are not even asymptotically periodic. Since then there has been an

exponentially increasing interest to studying nonlinear dynamical systems

and irregular behaviour. During the next several decades di�erent powerful

analytical, qualitative and geometrical techniques were worked out and then

applied to a number of important real problems in biology, chemistry, physics,

economics, ecology, even psychology and sociology. Such complicated phe-

nomena as strange non-regular attractors, fractal sets, synchronisation of

chaotic systems, riddled basins of attraction, and many other intriguing fea-

tures of nonlinear systems have been enlightened, e. g., by B. Mandelbrot,

E. Ott, C. Grebogi, Y. Pomeau, P. Manneville, P. Ashwin, O. Yu. Shvets,

O.A. Burylko. Currently, the theory of smooth nonlinear dynamical sys-

tems of di�erent kinds (di�erence, di�erential, in particular, partial di�eren-

tial, functional di�erential, integro-di�erential equations) is well developed,

the possible bifurcations of related asymptotic solutions are deeply studied

and well described. Among scientists who had made a signi�cant contri-

bution to advancing this �eld, it is worth to mention O.M. Sharkovsky,

M. J. Feigenbaum, D. Ruelle, F. Takens, Y. Ueda, M. H�enon, J. Gucken-

heimer, P. Holmes, I. Gumowski, C. Mira, S. Wiggins, A.M. Samoilenko,

O.A. Boichuk, Yu.A. Kuznetsov, D.Ya. Khusainov, I.M. Cherevko, A. Mat-

sumoto, F. Szidarovszky.

At the end of the 20th century, in line with the theory of smooth nonlin-

ear dynamical systems, investigation of nonsmooth phenomena were gaining

speed in response to rising demands from various applied �elds in medicine,

mechanics, engineering, economics, social sciences, etc. For instance, due

to technological progress in electrical engineering, together with nonlinear
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components, switching semiconductors has gained currency for constructing

highly e�cient power converters. The models derived for examining dynam-

ics of the latter are nonsmooth and exhibit a wealth of new mathematical

phenomena. In economic sciences, exploration of the boom-bust behaviour

of �nancial and currency markets, which can have a drastic e�ect on the

real economy, has induced a number of works related to discontinuous dy-

namical systems involving heterogeneous agents. Essential intensi�cation of

interactions between countries and regions became one of the reasons for

increasing instabilities in economics and society, and this has engendered a

number of nonsmooth models that take into account complex interactions

between di�erent groups and objects. There exist other copious examples of

nonsmooth models concerning impact and friction oscillators, control systems

with switches, neuronal and cardiac activities, and so on.

However, mathematical analysis for processes involving friction, chat-

tering, grazing, sliding, collisions, intermittency fall outside the classical

methodology for smooth dynamical systems. Therefore facing new practical

challenges was also accompanied by numerous theoretical studies concerning

general nonsmooth dynamical systems. It has been discovered that piece-

wise smooth systems have much richer dynamics than smooth ones, mostly

because of the state space being separated by certain sets into several sub-

regions corresponding to di�erent de�nitions of the system function. These

sets, at which the system function is not di�erentiable or even discontinu-

ous, are called switching manifolds, while their union is called a border set.

When with varying parameters of the system an invariant set interacts in

some way with one of the switching sets, the structure of the phase space

can change abruptly. All transformations of such kind are referred to as

discontinuity-induced bifurcations. For continuous time dynamical systems,

such bifurcations were extensively studied in the widely known works of F. Pe-

terka, A. F. Filippov, V. I. Babitsky, M. I. Feigin, B. Brogliato, M. Kunze,

M. Di Bernardo.
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In piecewise smooth maps, a particular case of a discontinuity-induced

bifurcation is a border collision bifurcation, which can occur when an asymp-

totic solution has a contact with a switching manifold. This can lead to

transformations of a phase space that are not possible in the smooth case,

such as, for example, the transition from a stable �xed point to a cycle of any

period. Among the �rst to examine bifurcations of this kind were H.E. Nusse

and J.A. Yorke. Their seminal paper induced a series of studies devoted to

describing consequences of border collision bifurcations, among which famous

are the works of S. Banerjee, C. Grebogi, E. Mosekilde, Zh.T. Zhusubaliev,

M. Schanz, L. Gardini, G. I. Bischi, A. Agliari, V. Avrutin, I. Sushko. In this

respect we should also mention the earlier works of N.N. Leonov, which has

been though noticed only recently.

Another kind of bifurcations, which can occur in piecewise smooth maps,

are degenerate bifurcations. They are analogues of smooth bifurcations, re-

lated to an eigenvalue crossing the unit circle, but do not lead to standard

results of such a crossing due to certain degeneracy of the system functions

at the bifurcation value (for instance, if these functions are linear). Note

that among particular representatives of piecewise smooth maps, piecewise

linear ones play indeed a distinctive role. On one hand, they often appear

naturally as models of particular problems in di�erent applied �elds, such as,

power electronics, cellular neural networks, signal transmission, economics,

etc. On the other hand, the linearity of the functions simpli�es the inves-

tigation making it possible to obtain many results analytically. One of the

simplest examples of such kind maps is the famous one-dimensional skew

tent map having a single kink point (border point). Due to e�orts of S. Ito,

S. Tanaka, H. Nakada, F. Takens, Yu. L. Maistrenko, V. L. Maistrenko, the

dynamics of the skew tent map has been completely described, which allows

to use it as a border collision normal form for continuous maps.

However, for the one-dimensional maps with multiple border (both kink

and discontinuity) points, nonsmooth maps of more complex form with non-
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linearities, as well as piecewise smooth maps of higher dimensions, the bifur-

cation theory is far from being complete. Nonetheless, such maps can describe

complex behaviour immanent to real phenomena from many applied �elds.

For instance, dynamics of time-delayed Chua circuits of particular design

in electrical engineering, spectra of chaotic signals in secure transmission,

evolution of �nancial markets with alternating bull and bear trends, certain

t�atonnement processes for prices reaching economic equilibrium, even a for-

malised dynamical process of interaction between a teacher and a learner in

developmental psychology. Solving these and many other problems requires

deep investigation of asymptotic solutions and their bifurcations in piece-

wise smooth, continuous and discontinuous, maps. It should also be noted

that analytical studies of piecewise smooth dynamical systems are gener-

ally supplemented and con�rmed by numerical experiments and computer

simulations, and this cooperation leads to the emergence of new scienti�c

interdisciplinary �elds.

The relevance of analysing qualitative transformations of a phase space of

nonsmooth maps, associated with periodic and chaotic solutions, is con�rmed

by the presence of thousands of works concerning the subject, published in

highly rated mathematical, natural science, economic, and interdisciplinary

journals, in particular, Nonlinearity; Proceedings of the Royal Society A;

Journal of Economic Dynamics and Control; Chaos, Solitons and Fractals.

Most of these papers are written by mathematicians in co-authorship with sci-

entists of rather distinct applied specialities, which evidences the importance

of theoretical research in this topic for modelling complex real phenomena.

Relation with the academic programs, plans, themes, grants.

The thesis has been accomplished at the Department of Di�erential Equa-

tions and Oscillation Theory, Institute of Mathematics, NAS of Ukraine

in accordance with the scienti�c research topics �Qualitative and asymp-

totic analysis of di�erential, functional di�erential, and impulse equations

systems�, State registration number 0111U002035; �Constructive and qual-
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itative methods for analysing systems of di�erential, functional di�erential,

impulse, and di�erence equations�, State registration number 0116U003121;

�Constructive and qualitative methods for analysing functional di�erential,

impulse, and di�erence systems�, State registration number 0120U100191;

�Evolutionary and stochastic models in nonlinear systems of natural sciences�,

State registration number 0107U002027; �Studying of equilibrium, oscilla-

tory, and transient processes in mathematical models of natural sciences�,

State registration number 0111U010373; �Analytical and group methods for

studying mathematical models of modern natural sciences�, State registra-

tion number 0117U002119; �Numerical�analytical methods of the theory of

nonlinear oscillations, functional di�erential and impulse systems�, State reg-

istration number 0120U100180; �Innovative methods in the theory of di�eren-

tial equations, the computational mathematics and the mathematical mod-

elling�, State registration number 0122U000670; �Mathematical modelling of

complex dynamic systems and processes relevant to the State security�, State

registration number 0123U100853.

Purpose and objectives of the research. The main purpose of the

present research is to analyse novel local and global aspects of asymptotic

dynamics of noninvertible piecewise smooth maps. The main focus of the

thesis is on proving the existence and stability of asymptotic solutions of dif-

ferent form, examining the qualitative transformations of chaotic attractors,

describing distinct bifurcation structures, and determining regions of multi-

stability in a wide range of not only continuous or discontinuous nonsmooth

maps but also smooth noninvertible maps.

The object of the research are nonlinear noninvertible, as well as continu-

ous and discontinuous piecewise smooth maps, being of di�erent dimension-

ality and dependent on parameters, many of which represent actual models

of real phenomena that are of great importance in various applied �elds.

The subject of the research are existence, stability and qualitative trans-

formations of invariant sets of di�erent types, such as, �xed points, periodic
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points, closed invariant curves, chaotic attractors, invariant absorbing inter-

vals, absorbing areas of non-mixed and mixed types, basins of attraction.

The objectives of the research include:

� To consider a piecewise linear continuous map with two border points (a

bimodal map), which is a generalisation of the skew tent map (a piece-

wise linear continuous map with a single border point); to analyse its

asymptotic dynamics, identifying stable �xed points, stable periodic or-

bits, and chaotic attractors; to determine the corresponding bifurcation

conditions for them; to describe the related bifurcation structures in

the parameter space of the map and to compare them with the already

known structures; to apply the obtained theoretical results to particular

examples that model certain economic phenomena.

� To consider a one-dimensional piecewise monotone map with a symmet-

ric system function that has two discontinuities; to analyse the asymp-

totic behaviour of its orbits, identifying the parameter domains for reg-

ular and chaotic dynamics; to determine the bifurcation conditions for

di�erent solutions; to describe the bifurcation structures associated with

chaotic attractors in the parameter space of the map; to investigate the

possibility of coexistence of di�erent attractors.

� To consider a one-dimensional piecewise monotone map without sym-

metries having two discontinuity points; to analyse its asymptotic dy-

namics, in particular related to chaotic attractors; to determine for the

latter the corresponding bifurcation conditions; in the parameter space

of the map, to describe the bifurcation structures associated with chaotic

attractors; to compare the obtained results in the symmetric and the

asymmetric cases.

� To consider a one-dimensional piecewise monotone map with multiple

discontinuity points; to study possible bifurcations of chaotic attractors

and to determine su�cient conditions for their occurrence; to �nd out
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whether such a map with two border points can demonstrate any new

bifurcation phenomena in comparison with a piecewise monotone map

with a single discontinuity; to compare the obtained results with the

situation when a map has more than two discontinuity points.

� To investigate two- and three-dimensional nonlinear noninvertible

smooth, continuous piecewise smooth and discontinuous piecewise

smooth maps, which serve as models of various actual problems in eco-

nomics, ecology, sociology and developmental psychology; for such maps,

to study the asymptotic behaviour of their orbits of di�erent types; to

describe bifurcations of stable �xed points and cycles, and, if possible, of

chaotic attractors; to examine the possibility of existence of attracting

closed invariant curves (smooth and non-smooth) and to analyse their

possible transformations; to investigate the restriction of original maps

to certain invariant sets of lower dimension, if they exist; to study the

asymptotic properties of solutions in the case when the system function

is unde�ned on a certain subset of the phase space; in the related pa-

rameter spaces of the maps considered, to describe in detail bifurcation

structures of di�erent nature.

� For piecewise smooth noninvertible maps of higher dimensions, which

serve as models of an oligopolistic market, to analyse the possibility

of existence of �xed points and asymptotically periodic solutions, as

well as to study their stability properties; to investigate whether partial

or complete synchronisation can occur; to consider the restriction of

the original map to the manifold of complete synchronisation, if it is

invariant; to describe several typical bifurcation scenarios depending on

the varied parameter values.

Research methods. In the thesis there are used classical methods of

di�erence equations theory, stability theory, as well as modern methods of

dynamical system theory, bifurcation theory, chaos theory. Analytical re-
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search is consistently combined with numerical experiments and building

schematic and bifurcation diagrams. Mathematical models are worked out

and investigated with careful consideration of the speci�c features of actual

real phenomena, and the obtained theoretical results �nd, in their turn, an

applied interpretation that is consistent with experimental data.

Scienti�c novelty of the obtained results. The main results that

determine the scienti�c novelty of the thesis and are submitted for the defence

are new and consist in the following:

� For a family of one-dimensional piecewise linear continuous maps with

two border points, it has been shown that stable periodic orbits of any

period can exist depending on the parameter values. Necessary and

su�cient conditions for their stability have been obtained. In the pa-

rameter space of such maps, three distinct bifurcation structures have

been described. Two of them represent the generalisations of already

known bifurcation structures, while the third one, has not been ob-

served before and involves both periodic and chaotic attractors. For

the respective periodic solutions necessary and su�cient conditions for

their stability have been derived, while for chaotic attractors su�cient

conditions for their existence have been obtained.

� We have considered a bimodal map family for which their functions

de�ning two outermost branches pass through the origin. Such maps

model a certain t�atonnement process for a price reaching economic equi-

librium. It has been shown that the map cannot have stable periodic

points (except for the �xed point). In the parameter space, the bifurca-

tion structure associated with chaotic attractors have been exhaustively

described.

� For a family of one-dimensional piecewise monotone maps with two dis-

continuity points, having the symmetric system function, two distinct

bifurcation structures have been exhaustively described, which are as-
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sociated with chaotic attractors that spread over all three partitions. In

particular, we have obtained necessary and su�cient conditions for exis-

tence of chaotic attractors with di�erent number of connected elements

and speci�ed the principles according to that these numbers change due

to bifurcations. Parameter regions of coexistence of di�erent chaotic

attractors have been also found.

� In the parameter space of a family of one-dimensional piecewise increas-

ing maps with two discontinuity points and without symmetries, we have

discovered a new type of bifurcation structure associated with chaotic

attractors. It has been proved that the bifurcation surfaces forming this

structure were related to bifurcations, not being associated with any

homoclinic bifurcations of repelling periodic points. It has been shown

that the con�gurations of chaotic attractors can belong to two di�erent

kinds. For attractors of both kinds, explicit estimates for the maximum

number of their connected elements have been obtained.

� For a family of one-dimensional piecewise monotone maps with two dis-

continuity points, two novel bifurcations of chaotic attractors has been

discovered, namely, an interior and an exterior border collision bifurca-

tion. It has been shown that these bifurcations were not related to any

homoclinic bifurcations of repelling �xed or periodic points. For both

bifurcation types, su�cient conditions for their occurrence have been

obtained.

� For a family of one-dimensional piecewise monotone maps with more

than two discontinuity points, a particular case of the exterior border

collision bifurcation has been investigated. For certain parameter con-

stellations, this bifurcation implied a sudden expansion of the attractor,

due its collision with a chaotic repeller, located at the immediate basin

boundary of the attractor. It has been shown that in the codimension

two case, this sudden expansion of the attractor occurs immediately
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after the border collision.

� We have considered families of two-dimensional smooth noninvertible

maps that model certain important processes in economics and ecology.

For �xed points of such maps, the general and some degenerate cases

of the �ip bifurcation and the Neimark�Sacker bifurcation have been

investigated. Global bifurcations associated with critical sets of di�er-

ent ranks and transformations of attracting invariant curves have been

analysed. Certain bifurcation scenarios, characteristic for the maps con-

sidered, have been exhaustively described. For certain parameter values,

existence of chaotic absorbing areas has been shown.

� For a family of two-dimensional piecewise smooth continuous maps,

su�cient conditions have been obtained for existence of an attracting

closed invariant curve, consisting of the segments of critical sets of dif-

ferent ranks. It has been shown that the restriction of the original

two-dimensional map to this curve is given by the one-dimensional �rst

return map, which had at least one kink point and at least one discon-

tinuity point.

� A family of three-dimensional piecewise smooth continuous maps with

the border set, consisting of three smooth surfaces, has been studied.

It has been proved that the intersection of all three switching surfaces

was a smooth curve, each point of which was �xed. Su�cient conditions

for the stability of these �xed points have been obtained. It has been

proved that for any initial point its orbit either approached asymptot-

ically one of the �xed points, or stuck forever in the so-called �disequi-

librium point�, for which the �rst two coordinates remained unchanged,

while the third one changed according to a one-dimensional Ricker map

with the �xed parameters.

� For a family of two-dimensional discontinuous maps, the su�cient and

necessary conditions for a continuity breaking bifurcation have been
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obtained. In the parameter plane, in the neighbourhood of the corre-

sponding point of codimension two, it has been shown that the original

two-dimensional map can be approximated by a one-dimensional piece-

wise linear map with a single discontinuity point. In addition, three

distinct bifurcation structures, associated with periodic solutions, have

been described. In particular, we have provided an exhaustive descrip-

tion of a novel bifurcation structure, consisting of periodicity regions

related to even periods.

� For a family of two-dimensional noninvertible piecewise smooth maps,

characterised by fractional-rational terms in both components, all focal

points and the corresponding prefocal sets have been found. It has been

proved that one of these focal points�the origin�belongs to its prefocal

set. It implied that for certain parameter constellations this focal point

had a basin of attraction of positive measure.

� A family of 2n-dimensional nonautonomous piecewise smooth nonin-

vertible maps, modelling an oligopoly market, has been investigated.

The properties of their �xed points have been examined. In particular,

for the �xed point representing the economic Cournot equilibrium, the

su�cient stability conditions have been obtained.

� For a family of 3n-dimensional piecewise smooth noninvertible maps,

modelling an oligopoly market, it has been proved that they cannot have

�xed points, but only periodic solutions. Moreover, the periods of these

solutions were necessarily multiples of a certain parameter of the map.

It has been shown that the restriction of the original map to the full

synchronisation manifold was represented by a three-dimensional piece-

wise smooth map. For this three-dimensional map we have described

several typical bifurcation scenarios depending on the parameter values.

Practical signi�cance of the obtained results. The thesis contains

mathematical results, which are theoretical in nature. However, most of the
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dynamical systems studied in the present work represent actual models of real

problems important for di�erent applied sciences. The theoretical results ob-

tained in the course of research can be used for further development of the

analytical and the qualitative theory of di�erence equations, of the bifurca-

tion theory, of the general dynamical systems theory, of the chaos theory.

The results of the thesis can be and are already being applied for describ-

ing certain existing phenomena in electrical engineering, signal transmission,

economics, developmental psychology.

Personal contribution of the candidate for the degree of Doc-

tor of Sciences. Among the results published in the papers jointly with

co-authors, only those obtained by the candidate herself were included in

the main part of the thesis, with the exception of a few results where the

contribution of the co-authors is equal. In the works [2, 4, 14] (see the

list of publications of the candidate on pages 17�24) the contribution of all

co-authors to the formulation and proof of theoretical results is equal. In

works of an interdisciplinary nature, the author of the thesis is responsible

for the mathematical part of the research, and the co-authors are respon-

sible for describing the economical, ecological, or psychological motivation

for the emergence of models, the construction of models, and the applied

interpretation of the obtained mathematical results.

Approbation of the thesis results. The main results of the thesis have

been exhaustively reported and discussed at many international conferences

in Ukraine and abroad, as well as at seminars in leading European scienti�c

centres, where they received favourable feedback, in particular:

� The European Conference on Iteration Theory (ECIT 2008), September

7�13, 2008, Yalta, Crimea, Ukraine;

� The 6th International Conference on Nonlinear Economic Dynamics

(NED 2009), May 31-�June 2, 2009, J�onk�oping International Business

School, Sweden;
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� The 17th International Workshop on Nonlinear Dynamics of Electronic

Systems (NDES 2009), June 21�24, 2009, Rapperswil, Switzerland;

� The Ukrainian Mathematical Congress � 2009 (dedicated to the cen-

tennial of M.M. Bogolyubov), August 27�29, 2009, Institute of Mathe-

matics of NASU, Kyiv, Ukraine;

� The 2nd International Workshop on Nonlinear Maps and their Appli-

cations (NOMA 2009), September 10�11, 2009, University of Urbino,

Italy;

� The International Workshop on Delayed Complex Systems, October 5�

9, 2009, Max Planck Institute for the Physics of Complex Systems,

Dresden, Germany;

� The 18th International Workshop on Nonlinear Dynamics of Electronic

Systems (NDES 2010), May 26-�28, 2010, Technical University of Dres-

den, Germany;

� The International Workshop �Nonlinear Dynamics on Networks�, July

5�9, 2010, National Academy of Sciences of Ukraine, Kyiv, Ukraine;

� The European Conference on Iteration Theory (ECIT 2010), September

12�17, 2010, Nant, France;

� The 6th International Workshop on Dynamic Models in Economics and

Finance (MDEF 2010), September 23�25, 2010, University of Urbino,

Italy;

� The 7th International Conference on Nonlinear Economic Dynamics

(NED 2011), June 1�3, 2011, Technical University of Cartagena, Spain;

� The International Conference �Di�erential Equations and Their Appli-

cations�, June 8�10, 2011, Taras Shevchenko National University of

Kyiv, Ukraine;
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� The 3rd International Workshop on Nonlinear Maps and their Appli-

cations (NOMA 2011), September 15�16, 2011, University of �Evora,

Portugal;

� The International Conference on Structural Nonlinear Dynamics and

Diagnosis (CSNDD 2012), April 30�May 2, 2012, Marrakech, Morocco;

� The International Conference on Emergent Dynamics of Oscillatory Net-

works, May 20�27, 2012, Mellas, Crimea, Ukraine;

� The European Conference on Iteration Theory (ECIT 2012), September

9�15, 2012, Ponta Delgada, S�an Miguel, A�cores, Portugal;

� The 7th International Workshop on Dynamic Models in Economics and

Finance (MDEF 2012), September 20�22, 2012, University of Urbino,

Italy;

� The 8th International Conference on Nonlinear Economic Dynamics

(NED 2013), 4�6 July, 2013, Siena, Italy;

� The 8th SICC International Tutorial Workshop �Topics in Nonlinear

Dynamics. Bifurcations in Piecewise-Smooth Systems: Perspectives,

Methodologies and Open Problems�, September 11�13, 2013, University

of Urbino, Italy;

� The 9th International Conference on Nonlinear Economic Dynamics

(NED 2015), June 25�27, 2015, Chuo University, Tokyo, Japan;

� The Final GeComplexity Conference �The EU in the New Complex Ge-

ography of Economic Systems: Models, Tools and Policy Evaluation�,

May 26�27, 2016, Heraklion, Crete, Greece;

� The 9th International Workshop on Dynamic Models in Economics and

Finance (MDEF 2016), June 23�25, 2016, University of Urbino, Italy;
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� The 11th International Conference �Progress on Di�erence Equations�

(PODE 2017), May 29�31, 2017, University of Urbino, Italy;

� The 10th International Workshop on Dynamic Models in Economics

and Finance (MDEF 2018), September 6�8, 2018, University of Urbino,

Italy;

� The 11th International Conference on Nonlinear Economic Dynamics

(NED 2019), September 4�6, 2019, Kyiv School of Economics, Ukraine;

� The International Conference on Di�erence Equations and Applications

(ICDEA 2021 Virtual), July 26�30, 2021, Sarajevo, Bosnia and Herze-

govina;

� The 12th International Conference on Nonlinear Economic Dynamics

(NED 2021), September 13�15, 2021, Catholic University of the Sacred

Heart, Milan, Italy;

� The European Conference on Iteration Theory (ECIT 2022), June 13�

17, 2022, Reichenau an der Rax, Austria;

� The International Conference on Di�erence Equations and Applica-

tions (ICDEA 2022), July 18�22, 2022, Paris-Saclay University, Gif-

sur-Yvette, France;

� The 11th International Workshop on Dynamic Models in Economics and

Finance (MDEF 2022), September 8�10, 2022, University of Urbino,

Italy;

� The International Workshop �From Modeling and Analysis to Approx-

imation and Fast Algorithms�, December 2�6, 2022, Hasenwinkel, Ger-

many;

� The 13th International Conference �Progress on Di�erence Equations�

(PODE 2023), May 29�31, 2023, Catholic University of the Sacred

Heart, Milan, Italy;
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� The 13th International Conference on Nonlinear Economic Dynamics

(NED 2023), June 19�21, 2023, University of Agder (UiA), Kristiansand,

Norway;

� The International Conference on Di�erence Equations and Applications

(ICDEA 2023), July 17�21, 2023, Pibulsongkram Rajabhat University,

Phitsanulok, Thailand;

� The Workshop on Dynamic Macroeconomics in Honour of Ingrid Ku-

bin, September 19, 2023, Vienna University of Economics and Business,

Austria;

� The International Workshop �Complex Dynamical Systems: Theory,

Mathematical Modelling, Computing and Application� (CDS � 2023),

October 2�4, 2023, Institute of Mathematics of NASU, Kyiv, Ukraine;

� The International Conference on Di�erence Equations and Applications

(ICDEA 2024), June 24�28, 2024, Paris, France;

� The meetings of the Scienti�c Council of the Institute of Mathematics
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Chapter 1

Literature overview, main de�nitions, and

preliminaries

1.1. A brief history of dynamical systems and chaos

theory

Bifurcations of invariant sets in noninvertible and piecewise smooth dynam-

ical systems have been already drawing attention of researchers for almost

half-century. Although for centuries in many applied sciences classical inves-

tigation methods had been using linear (or at least smooth) functions, our

constantly increasing knowledge about the real world suggests that linearity

and smoothness is a rare occurrence in Nature. Fast development of exist-

ing areas of research, as well as appearance of novel research trends or even

new branches of science, demands comprehension of evolution principles of

more and more complex objects and studying dynamical systems involving

functions with kinks and discontinuities. Understanding asymptotic prop-

erties of solutions for such kind systems allows to meet practical challenges

springing up in numerous spheres of human life from chemistry and physics

to economics and sociology. The major problem arising is that classical inves-

tigation methods, in most cases, cannot be applied for nonsmooth systems

and advancing completely new approaches becomes necessary, in particu-

lar those, which allow to formally describe transformations of non-regular,

strange, chaotic objects.

Early studies on complex asymptotic dynamics of multiple interacting ob-

jects go back to the end of 19th century and are usually associated with works
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of the French mathematician H. Poincar�e. He was one of the �rst who tried

to describe rigorously complex chaotic behaviour in a dynamical system. It

is even widely thought that the modern dynamical systems theory stemmed

from his famous work �Les m�ethodes nouvelles de la m�ecanique c�eleste� [205�

207]. The novelty of Poincar�e's approach was in that he combined the strict

analysis with qualitative geometric techniques, in order to describe global

properties of solutions. This approach had become a real breakthrough in

studying nonlinear di�erential equations. The idea that global understanding

of asymptotic behaviour of all solutions is more important than analytically

precise description of particular local trajectories, was later supported by

G.D. Birkho�, who also accentuated importance of studying discrete time

mappings as a mean to understand more complex phenomena arising from

di�erential equations [41]. In the mid-20th century, dynamical systems the-

ory was furthered due to other signi�cant studies tackled the variety of mo-

mentous problems with using distinct approaches. It is worth to mention

the works of A.A. Andronov and L. S. Pontryagin, who were the �rst to in-

troduce the notion of structural stability and to study local bifurcations for

planar systems, as well as the works of other people from Andronov's group

[6�9]. Later the results of Andronov and Pontryagin were generalised to two-

dimensional manifolds by M. Peixoto [202]. Another in�uential contribution

to dynamical systems was the proof of the Kolmogorov-Arnold-Moser Theo-

rem, having led to development of the KAM theory [10�12, 127, 157, 158]. In

approximately the same time S. Smale suggested to study dynamical systems

by using methods from topology. In particular, he provided a geometrical

construction of a structurally stable chaotic map, nowadays widely known as

the Smale horseshoe [222�224].

Increasing interest to studying complex asymptotic solutions of nonlin-

ear dynamical system arose due to results of the American meteorologist

E. Lorenz. During his numerical investigation of a three-dimensional model

for weather forecasting, Lorenz discovered that for particular parameter val-
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ues the system possessed an in�nite set of non-periodic solutions, nowadays

known as the Lorenz attractor [139]. These solutions demonstrated extremely

high sensitivity to initial conditions, namely, even a negligibly small change

of an initial point yielded completely di�erent trajectory, which made al-

most impossible precise long-term prediction of the asymptotic behaviour

(the celebrated butter�y e�ect). Nowadays, sensitivity to initial conditions

is regarded as the key property of chaos.

Lorenz's results served as persuasion to many researchers that asymp-

totic dynamics includes plenty of solutions being distinct from equilibrium

points and limit cycles. The �rst usage of the word �chaos� with respect

to a dynamical system with discrete time (i. e., a system of di�erence equa-

tions also called a map) is attributed to T.-J. Li and J.A. Yorke [137], who

showed that existence of a point of period three implied existence of an un-

countable set, points of which were not even asymptotically periodic. Since

then there has been an exponentially increasing interest to studying non-

linear dynamical systems and irregular behaviour. During the next several

decades di�erent powerful analytical, qualitative and geometrical techniques

were worked out and then applied to a number of important real problems in

biology, chemistry, physics, economics, ecology, even psychology and sociol-

ogy. Such complicated phenomena as strange non-regular attractors, fractal

sets, synchronisation of chaotic systems, riddled basins of attraction, and

many other intriguing features of nonlinear systems have been enlightened,

e. g., in [13�15, 61, 62, 78, 84, 107, 108, 143�145, 162, 163, 208, 220, 221].

Currently, the theory of smooth nonlinear dynamical systems of di�erent

kinds (di�erence, di�erential, in particular, partial di�erential, functional dif-

ferential, integro-di�erential equations) is well developed, the possible asymp-

totic solutions, their stability properties and related bifurcations are deeply

studied and well described. In this regard we could also mention the con-

tributions [1, 54, 85, 109�111, 115�118, 133, 147, 156, 214, 243, 247, 248]

to cite a few. Special attention we would like to draw to results obtained
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by the representatives of Ukrainian mathematical school, related to di�erent

aspects of di�erential equations [53, 60, 146, 251], studies of approximation,

convergence and control in delay di�erential equations and integro-di�erential

equations [55, 72, 81, 138], and asymptotic dynamics in noninvertible maps

[128�130, 215�217]. Another collection of works by the members of French

school of C. Mira concerns certain dynamic phenomena, which occur in

nonlinear two-dimensional maps due to their noninvertibility. In particu-

lar, notions of chaotic areas of non-mixed and mixed types were introduced

[36, 44, 47, 68, 94, 112, 113, 125, 154�156].

Starting from the end of the 20th century till nowadays, in line with

the theory of smooth nonlinear dynamical systems, investigation of non-

smooth phenomena were gaining speed in response to rising demands from

various applied �elds. For instance, due to technological progress in electri-

cal engineering, together with nonlinear components, switching semiconduc-

tors has gained currency for constructing highly e�cient power converters

[34, 37, 90, 249]. The models derived for examining dynamics of the lat-

ter exhibit a wealth of nonsmooth phenomena. In economic sciences, ex-

ploration of the boom-bust behaviour of �nancial markets, which can have

a drastic e�ect on the real economy, has induced a number of works re-

lated to discontinuous dynamical systems involving heterogeneous agents

[80, 123, 230, 235]. There exist a vast amount of other papers studying

models of mechanical systems, biology, chemistry, economics and social sci-

ences, e. g., [38, 43, 71, 79, 92, 95, 99, 121, 134, 140, 142, 148, 229, 237, 246]

to cite a few.

Facing new practical challenges was also accompanied by numerous the-

oretical studies concerning general nonsmooth dynamical systems. It has

been discovered that piecewise smooth systems have much richer dynamics

than smooth ones, mostly because of the state space being separated into

several partitions by borders, at which the map is not di�erentiable. These

borders are called switching manifolds or border sets. When with varying
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parameters of the system an invariant set interacts in some way with one

of the switching manifolds, the structure of the phase space can change

abruptly. For denoting such transformations there is used a general term

discontinuity-induced bifurcations, because they occur due to some kind of

discontinuity in the system function itself or one of its derivatives (usually

the �rst derivative). For detailed investigation of copious related phenom-

ena occurring in dynamical systems with continuous time one can refer to

[31, 38, 39, 59, 77, 86�88, 132, 159, 203, 204].

As for the maps, a contact of an asymptotic solution with a border set

may lead, for example, to the transition from a stable �xed point to a cycle

of any period, or even directly to a chaotic attractor (which is absolutely

not possible in the smooth case). These transitions are referred to as border

collision bifurcations. Among the �rst to examine bifurcations of this type

(and those who introduced the term) were H.E. Nusse and J.A. Yorke. Their

seminal paper [160] induced a series of studies devoted to describing conse-

quences of border collision bifurcations [32, 225, 250]. We have to mention

also earlier works on these issues, [135, 136], results of which were elaborated

and presented in more recent papers [29, 101].

Another kind of particular bifurcations, called degenerate, can occur in

piecewise smooth maps when an eigenvalue of a cycle crosses the unit circle,

but standard results of such crossing are not observed due to certain degener-

acy of the system functions at the bifurcation value [227]. For example, if the

systems functions are linear. Among particular representatives of piecewise

smooth maps, piecewise linear ones play indeed a distinctive role. On one

hand, they often appear naturally in di�erent applied �elds, such as, power

electronics, cellular neural networks, signal transmission, economics, etc. On

the other hand, the linearity simpli�es the investigation essentially making

it possible to obtain many results analytically. One of the simplest examples

of such kind maps is the famous one-dimensional skew tent map having a

single border point, the dynamics of which has been exhaustively described
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(see, e. g., [124, 141, 231]). This fact allows to use the skew tent map as a

border collision normal form in one-dimensional case [32, 161, 225].

However, for the one-dimensional maps with multiple border (both kink

and discontinuity) points, nonsmooth maps of more complex form with non-

linearities, as well as piecewise smooth maps of higher dimensions, the bifur-

cation theory is far from being complete. Nonetheless, such maps can describe

complex behaviour immanent to real phenomena from many applied �elds.

For instance, dynamics of time-delayed Chua circuits of particular design

in electrical engineering, spectra of chaotic signals in secure transmission,

evolution of �nancial markets with alternating bull and bear trends, certain

t�atonnement processes for prices reaching economic equilibrium, even a for-

malised dynamical process of interaction between a teacher and a learner

in psychology. Solving these and many other problems requires deep inves-

tigation of asymptotic solutions and bifurcations in piecewise smooth, con-

tinuous and discontinuous, maps. It should also be noted that analytical

studies of piecewise smooth dynamical systems are generally supplemented

and con�rmed by numerical experiments and computer simulations, and this

cooperation leads to the emergence of new scienti�c interdisciplinary �elds.

1.2. Basic de�nitions and previous results

We start from recalling main de�nitions used throughout this work (for ref-

erence see, e. g., fundamental books [21, 38, 43, 82, 106, 114, 133, 156, 218,

219, 247, 250, 252, 253]). For a set X ⊂ Rm, m ∈ N, let F be a function

F : X → X. Consider a system of di�erence equations

xt+1 = F (xt), t = 0, 1, 2, . . . , (1.1)

where the initial condition x0 sweeps out X.

De�nition 1.1. The function F is referred to as a map and X is called a

state space or a phase space of F .
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De�nition 1.2. For any initial condition x̄ ∈ X, a set o(x̄) = ox̄ := {xt :

xt = F t(x̄)}∞t=0 is called an orbit of F or a solution of (1.1). The map F 0

is an identity map (i. e., F 0(x) = x for any x ∈ X) and F t is called a t-th

iterate of F . The point xt is called an image of rank t, or a t-th image, or a

t-th iterate of the point x̄.

Often the set ox̄ is also called a trajectory. However, by a silent convention,

this latter term is used for dynamical systems with continuous time, i. e.,

de�ned by di�erential equations.

De�nition 1.3. For any x ∈ X the point y ∈ X such that F (y) = x is

called a �rst rank preimage or simply a preimage of x and is often denoted

as x−1. The point y ∈ X such that F t(y) = x, t > 1, is called a preimage of

x of rank t.

Note that if the function F is noninvertible, i. e., having several inverses, a

point x can have multiple preimages or even none. Whenever necessary, we

indicate the respective inverse of F when dealing with preimages.

One of the main objects of study in dynamical systems theory are di�erent

invariant sets, such as �xed points, cycles, chaotic attractors, basins of attrac-

tion, etc. In several consecutive de�nitions we consider a map F : X → X.

De�nition 1.4. A set A ⊂ X is called invariant with respect to the map F

if F (A) = A.

The simplest representatives of invariant sets are �xed points and cycles.

De�nition 1.5. A point x∗ ∈ X such that F (x∗) = x∗ is called a �xed point

of the map F .

De�nition 1.6. A set of points O = {xt}n−1
t=0 ⊂ X, where xt = F (xt−1),

t = 1, n− 1, x0 = F (xn−1), is called a cycle of period n or simply an n-cycle.

Each point xt is called periodic of period n. Sometimes the set O is also

called a periodic solution of the dynamical system (1.1).

As for invariant sets of more complex form, such as chaotic (or strange)

attractors, one has to state clearly what is meant under the term �chaos�,
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since there exist many di�erent de�nitions of this notion, e. g., Li-Yorke

chaos [137], Block-Coppel chaos [52], Devaney chaos (also known as topological

chaos) [82], etc. In what follows we use the latter de�nition. Before recalling

it, let us �rst introduce a few useful terms.

De�nition 1.7. A map F is said to have sensitive dependence on initial

conditions if ∃ δ > 0 such that ∀x ∈ X and any neighbourhood U(x), there

exist y ∈ U(x) and t ∈ Z+ such that |F t(x)− F t(y)| > δ.

De�nition 1.8. A map F is called topologically transitive if for any pair of

open sets U, V ⊂ X there exists t ∈ Z+ such that F t(U) ∩ V ̸= ∅.

De�nition 1.9. Let A ⊆ X be a set invariant with respect to F . The map

F is said to be chaotic in sense of Devaney on A if

(1) F |A has sensitive dependence on initial conditions;

(2) F |A is topologically transitive;

(3) the set of periodic points of F is dense in A.

The set A is also often called chaotic.

When studying dynamical systems, of the main interest are usually so-

lutions (invariant sets) that can be called stable in some particular sense,

in other words, those that are attractors. There exist various de�nitions of

this notion, depending on particular needs. Below we will mostly use the

following one.

De�nition 1.10. An invariant set A is said to be attracting if there exists

U(A) such that ∀x ∈ U , except for the set of Lebesgue measure zero, there is

limt→∞ F t(x) ∈ A. If A contains a dense orbit, then it is called a topological

attractor or simply an attractor.

Remark 1.11. For the sake of shortness, often below we will say �almost

everywhere� or �almost all� meaning �except for the set of Lebesgue measure

zero�.
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For the �xed point x∗ at which the map F is di�erentiable, the Def-

inition 1.10 is equivalent to the occurrence when all the eigenvalues of

the Jacobian DF (x∗) are located inside the unit circle. For an n-cycle

O = {x0, x1, . . . , xn−1} the criterion is the same, but one has to consider

the Jacobian of the n-th iterate DF n(xt), 0 ≤ t < n, evaluated at one of the

cycle points. These eigenvalues are also sometimes called the multipliers of

the cycle (the �xed point).

De�nition 1.12. A �xed point or a cycle is called repelling if all its multi-

pliers are located outside the unit circle.

Clearly, for a one-dimensional map a �xed point or a cycle is either attracting

or repelling. In higher dimensions, a �xed point or a cycle can be neither

attracting, nor repelling.

De�nition 1.13. A �xed point or a cycle is called a saddle if its multipliers

are located both inside and outside the unit circle.

For a saddle there exist certain points having sequence of preimages tend-

ing towards the saddle, as well as certain points having sequence of images

tending towards it. We come to the following important de�nitions.

De�nition 1.14. Consider an arbitrary �xed point x∗ of F . Then

W s(x∗) =
{
y ∈ X : lim

t→∞
F t(y) = x∗

}
(1.2)

is called the stable set of x∗.

De�nition 1.15. Consider an arbitrary �xed point x∗ of F . The locus of

points having a sequence of preimages tending towards x∗, that is,

W u(x∗) = {y ∈ X : ∃ {zt}∞t=0, z0 = y,

F (zt+1) = zt such that lim
t→∞

zt = x∗
}
, (1.3)

is called the unstable set of x∗.



58

For an n-cycle, n > 1, one has to replace F by F n in the De�nitions 1.14

and 1.15.

For noninvertible maps another important term is the notion of a critical

set (see, e. g., [156]).

De�nition 1.16. A critical set CS is de�ned as a geometric locus of points

in the phase space of a map having at least two coincident preimages. These

coincident preimages are located on the set CS−1, also referred to as the set

of merging preimages. The k-th image F k(CS) of the set CS, k ∈ N, is
called a critical set of the rank k and is often denoted as CSk.

Remark 1.17. In the case of dimensionm = 2, the critical set is a curve or a

union of curves and is often denoted as LC (from the French �ligne critique�).

In the case m = 1, the critical set is a �nite set of (critical) points.

As one can see, the critical set appeared as the generalisation of the no-

tion of local maxima and minima of a scalar function for the case of higher-

dimensional maps. For F being a di�eomorphism, its set of merging preim-

ages is included in (or coincides with) the set of points, at which the deter-

minant of the Jacobi matrix of F vanishes. For F being piecewise smooth,

the situation is more complicated, as will be described below. Critical sets

are known to play signi�cant role in determining global dynamic phenomena,

being responsible for qualitative changes of certain invariant sets and their

basins of attraction, for instance, they may cause occurrence of multiply con-

nected or non-connected basins of attraction. In particular, critical sets of

di�erent ranks can be used to obtain the boundaries of trapping regions or

absorbing areas.

De�nition 1.18. A set ∆ ⊂ X is called an absorbing area of non-mixed

type, if

(1) F (∆) ⊆ ∆;

(2) there exists a neighbourhood U(∆) such that F (U(∆)) ⊂ U(∆) and

any point x ∈ U(∆) \∆ has a �nite rank image in the interior Int∆;
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(3) the border ∂∆ consists of subsets of critical sets CSk, k = 0, K with

K ∈ N being �nite.

De�nition 1.19. A set ∆ ⊂ X is called an absorbing area of mixed type, if

(1) F (∆) ⊆ ∆;

(2) there exists a neighbourhood U(∆) such that F (U(∆)) ⊂ U(∆) and

almost all points x ∈ U(∆) \∆ have �nite rank images in the interior

Int∆;

(3) the border ∂∆ consists of subsets of critical sets CSk, k = 0, K with

K ∈ N being �nite and subsets of the unstable set of some saddle �xed

(or periodic) point, or even subsets of several unstable sets of multiple

saddle �xed (or periodic) points.

In the one-dimensional case an absorbing area is an absorbing interval and

it can be only of non-mixed type.

In applications, especially, when there are multiple stable solutions, be-

sides the fact that some invariant set is attracting, it is also important to

understand how large is the part of the orbits which are attracted to it. The

following notion is important then.

De�nition 1.20. Let A be an attractor of F and consider the set

B(A) =
{
x ∈ X : lim

t→∞
F t(x) ∈ A

}
. (1.4)

The set B(A) is called the basin of attraction of A. If B(A) = X, up to a

set of Lebesgue measure zero, A is called the global attractor. The subset of

B(A) that is the largest neighbourhood of A is called the immediate basin

of A.
For an attracting �xed point or a cycle, its basin of attraction coincides with

its stable set.

When dealing with multistability, and in nonlinear maps it is not a rare

case, one may encounter invariant sets that are attractors in weaker sense,

e. g., Milnor attractors [153].
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De�nition 1.21. A set A ⊂ X is called a Milnor attractor if its basin

of attraction B(A) has strictly positive Lebesgue measure and there is no

strictly smaller closed subset A′ ⊂ A such that B(A′) = B(A) up to a set of

Lebesgue measure zero.

As it has been already mentioned, piecewise smooth maps are able to

re�ect complex behaviour of real objects studied by applied scientists. More-

over, asymptotic dynamics of piecewise smooth maps is much richer in com-

parison with the smooth ones. Let us consider a set X = ∪M
i=1Xi ⊂ Rm with

M ∈ N, such that the following conditions hold:

(1.2.A.i) the interior IntXi ̸= ∅, i = 1,M ;

(1.2.A.ii) each set Γij := Xi ∩Xj, i ̸= j, is either a manifold of dimension

less than m or an empty set.

Here A denotes the closure of the set A. Whenever necessary, we will also

use the notation

Γ :=
M⋃
i=1

M⋃
j=1,j ̸=i

Γij. (1.5)

Note that Γ is not necessarily a manifold.

Let F be a map F : X → X, de�ned by M di�erent functions Fi ∈
C1(Xi), i = 1,M , Fi ̸= Fj, i ̸= j, such that F (x) = Fi(x) for x ∈ IntXi.

De�nition 1.22. The map F is called piecewise smooth and each Γij is called

a switching manifold and Γ is called a border set. Each set Xi is sometimes

called a partition, while Fi is called a branch.

Remark 1.23. For the one-dimensional case, switching manifolds become

simply border points, i. e., Γ = {d1, . . . , dM−1}, di ∈ R, i = 1,M − 1.

Clearly, if Fi(Γij) = Fj(Γij) for all i and j, the map F is continuous. In

general, on the union of switching manifolds Γ, the map F can be de�ned

in various ways, depending on the particular tasks and applications. This

de�nition though does not in�uence typically asymptotic dynamics of F .
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We should make a brief remark concerning critical sets for piecewise

smooth maps. Since in the state space of the map there are sets at which F

is not di�erentiable, the set CS−1 contains not only the points, at which the

determinant of the Jacobian of F vanishes, but also the points belonging to

the border set Γ, if they are associated with at least two coincident preimages

or are the points of discontinuity. In case if F is continuous, the critical set

CS is de�ned as before, i. e., as an image of CS−1. For a discontinuous map

F , the critical set CS includes the images of discontinuity points that are

obtained by using two respective determinations of the map. Namely, if F is

discontinuous at a switching manifold Γij for some i and j, then the �rst rank

images Fi(Γij) and Fj(Γij) belong to the critical set CS. The main di�erence

from the continuous case is that a point of discontinuity corresponds not to

two coincident preimages but to a single preimage which appears/disappears.

Due to the presence of border sets, at which F is not di�erentiable, sym-

bolic dynamics (being developed and initially used for nonlinear smoothmaps

[114]) becomes a handy tool for studying properties of piecewsie smooth maps

as well. Each partition Xi and all points x ∈ Xi are associated with a par-

ticular symbol from the set of symbols S = {S1, S2, . . . , SM}. Consequently,
every orbit of F is associated with a symbolic sequence constructed from the

symbols of S, namely, given an orbit o(x0) = {xt}∞t=0 we de�ne a correspond-

ing in�nite symbolic sequence σ = s0s1 . . . st . . . with st = Si for xt ∈ Xi,

t ∈ Z+. A �xed point x∗ ∈ Xi obviously corresponds to a single symbol Si

and is then denoted as x∗Si
. An n-cycle O can be represented by the �nite

symbolic sequence σ = s0 . . . sj . . . sn−1 with sj ∈ S, j = 0, n− 1 and is

denoted as Oσ.

De�nition 1.24. The region Pσ in the parameter space for that a cycle Oσ

exists is called a periodicity region.

Often, the term periodicity region is used in case when the respective cycle

not only exists but is also stable. However, sometimes it is important to

distinguish the parts of this region related to stability and instability of the
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cycle. This is stated explicitly, if necessary.

De�nition 1.25. A symbolic sequence σ, �nite or in�nite, associated with

an orbit o(x0) or its part, is sometimes called the itinerary of x0.

Note that for nonsmooth maps a �xed point de�ned by the particular branch

can be located outside the respective region of de�nition.

De�nition 1.26. A �xed point x∗Si
de�ned by the branch Fi such that x

∗
Si
̸∈

Xi is called virtual.

Similar notion exists for a cycle.

De�nition 1.27. An n-cycle Oσ = {x0, x1, . . . , xn−1}, σ = Si0Si1 . . . Sin−1
,

with xj, j = 0, n− 1 de�ned by the respective branches Fij is called virtual

if there exists j0 such that xj0 ̸∈ Xij0
.

The symbolic sequence related to the cycle is clearly shift invariant. And

each cyclic shift σj = sj . . . sn−1s0 . . . sj−1 of σ can be associated with the

point of the cycle xj. Whenever necessary, we will also use the alternative

notation xσj
for xj. In a similar way, we will often use the notation FSi

:= Fi

for the function acting on the partition Xi and accordingly the notation

Fσ with σ = s0s1 . . . sj . . . st, t ∈ Z+, sj ∈ S for the composite function

F t+1 = Fσ := Fst ◦ . . . ◦ Fsj ◦ . . . ◦ Fs1 ◦ Fs0.

In applications one usually encounters families of maps Fp : X → X

depending on a set of parameters p ∈ Rk, k ∈ N. Bifurcation structures

appearing in the parameter space Rk of Fp are related to bifurcations of dif-

ferent invariant sets, such as �xed points, cycles, chaotic attractors, basins

of attraction, etc. In this respect, one of the main distinctions of piecewise

smooth maps in comparison with smooth maps is a border collision bifur-

cation. Such bifurcations occur due to presence of border sets in the state

space, namely, when under varying a bifurcation parameter an invariant set

collides with a border set (see [21] and references therein).

De�nition 1.28. Consider a map family Fp : X → X depending smoothly

on the set of parameters p ∈ Rk and with X satisfying the conditions
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(1.2.A.i), (1.2.A.ii). Let Ap be an invariant set of Fp, which is persistent

under variation of p and, in general, is Ap ⊂ ∪M
i=1IntXi. If at some p0 there

is Ap0 ∩ Γ ̸= ∅, then it is said that Ap0 undergoes a border collision. If

such a collision leads, with varying p through p0, to a qualitative change of

the asymptotic dynamics of Fp, it is said that a border collision bifurcation

occurs.

For a cycle Oσ, the condition for a border collision is xσl
∈ Γij, where xσl

is the colliding point. In the parameter space of Fp, the related bifurcation

boundary of Pσ is denoted ξ
Γij
σl . The upper index

Γij can be dropped in case

if its value is obvious (for instance, if there is only one switching manifold).

Besides border collision bifurcations, in piecewise smooth maps with non-

linear branches one can encounter also standard smooth bifurcations, related

to eigenvalues of a �xed point or a cycle crossing the unit circle. Recall that

if an eigenvalue of a �xed point x∗ crosses +1, there can occur a fold bifurca-

tion (corresponding to appearance of a pair of �xed points having di�erent

stability properties); a pitchfork bifurcation (related to transition from a sin-

gle �xed point to three �xed points); a transcritical bifurcation (associated

with a collision of two �xed points that exchange their stability properties).

If an eigenvalue crosses −1, a �ip bifurcation occurs (related to transition

from a single �xed point to a �xed point and a 2-cycle). A Neimark�Sacker

bifurcation occurs in maps with m ≥ 2 and is related to two complex conju-

gate eigenvalues crossing the unit circle. As a result, a closed invariant curve

typically appears around x∗. Everything stated above can be generalised to

an arbitrary n-cycle with considering the n-th iterate F n
p .

Up to now, the most intensively studied classes of piecewise smooth maps

are one-dimensional piecewise monotone maps with a single border point

(continuous as well as discontinuous). The simplest representative is a family

of one-dimensional piecewise linear maps f̃ : R → R, de�ned on two intervals
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(partitions) X1 = IL = (−∞, d) and X2 = IR = (d,∞):

f̃ : x 7→ f̃(x) =

 f̃L(x) = aLx+ µL, x < d,

f̃R(x) = aRx+ µR, x > d,
(1.6)

with the parameters aL, aR, µL, µR, d ∈ R and the naturally de�ned related

symbolic set S = {L,R}. The value f̃(d) may be de�ned as f̃(d) = f̃L(d) or

f̃(d) = f̃R(d), or in any other way, depending on the particular application.

In theoretical studies, f̃(d) is often not speci�ed intentionally, since it has no

in�uence on the bifurcations of solutions and the related bifurcation struc-

tures. On the other hand, the limit values limx→d− f̃(x) and limx→d+ f̃(x)

play in this respect an important role.

De�nition 1.29. The values of f̃ at the border points, cL := f̃L(d) and

cR := f̃R(d), are called critical points. Successive images of cL and cR are

denoted as ciL := f̃ i(cL) and c
i
R := f̃ i(cR), i ≥ 1 and are referred to as critical

points of the rank i. The border point d is sometimes considered as a critical

point of the rank −1, i. e., d = f̃−1
L (cL) = c−1

L and d = f̃−1
R (cR) = c−1

R .

Without loss of generality, the border point d can be translated to the

origin and it is often assumed that d = 0. However, for generality of an-

alytic expressions we prefer to use d as a parameter. In general, the map

f̃ is discontinuous. In case where f̃L(d) = f̃R(d) (in particular, if d = 0 it

implies µL = µR := µ) the map f̃ is continuous and is called the skew tent

map. These two maps, the discontinuous map de�ned on two partitions and

the skew tent map, serve as normal forms for border collision bifurcations

in one-dimensional maps. Beyond that, they are used to describe the ba-

sic bifurcation structures appearing in the parameter space of an arbitrary

piecewise smooth map.

Since both branches f̃L and f̃R of f̃ are linear, the standard theorems

concerning smooth bifurcations (fold, �ip, etc.) are not applicable. When an

eigenvalue of a �xed point or a cycle crosses +1 or −1, a so-called degenerate

bifurcation can occur. Such bifurcations can also occur in maps, functions
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of which are not linear but have a certain kind of degeneracy. Three kinds

of degenerate bifurcations are usually distinguished for a �xed point x∗ of f̃ ,

which does not undergo a border collision bifurcation:

(1) A degenerate +1 bifurcation, related to the eigenvalue ν = ν(x∗) = +1,

when at the bifurcation value there exists an interval I such that ∀x ∈ I

there is f̃(x) = x. The respective boundary in the parameter space is

denoted as θσ.

(2) A degenerate transcritical bifurcation, related to the eigenvalue ν =

+1, when limν→1 x
∗ = ±∞. The symbol τσ denotes the corresponding

boundary in the parameter space.

(3) A degenerate �ip bifurcation, related to the eigenvalue ν = −1, when

at the bifurcation value there exists an interval I such that ∀x ∈ I the

Schwarzian derivative Sf̃(x) = 0. The respective boundary is ησ.

Recall that the Schwarzian derivative of an arbitrary function f(x) is de�ned

as (see, e. g., [217])

Sf =
f ′′′xxx
f ′x

− 3

2

(
f ′′xx
f ′x

)2

, (1.7)

where f ′x, f
′′
xx, and f

′′′
xxx denote the �rst, the second, and the third derivative

of the function f with respect to x.

In contrast to the one-dimensional smooth maps, for nonsmooth ones it is

known that chaotic attractors can also be robust (i. e., persistent under a pa-

rameter variation). Therefore, one can speak about bifurcations of a chaotic

attractor, under which one means qualitative transformations that preserve

a chaotic nature of the attractor but change the number of its connected

elements and/or sharply change their size. Let us present several important

de�nitions.

De�nition 1.30. An interval J ⊂ R con�ned by two critical points or by

a critical point and its image is called the invariant absorbing interval if (a)
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f̃(J) = J and (b) there exist a neighbourhood U ⊃ J such that for almost

any x ∈ U there exists t ∈ Z+ such that f̃ i(x) ∈ J , i ≥ t.

The absorbing interval is obviously con�ned by either a critical point and its

image or two di�erent critical points.

De�nition 1.31. A topological attractor Q = ∪n
i=1Bi, Bi = [ai, bi], a1 <

b1 < a2 < b2 < . . . < an < bn, is called an n-piece or n-band chaotic attractor

of f̃ if the restriction f̃ |Q is chaotic. The intervals Bi are called bands of Q,

and the intervals Gi = (bi, ai+1), i = 1, n− 1 are called gaps. For the sake

of brevity, we denote G = ∪n−1
i=1Gi. A region in the parameter space, related

to parameter values for which Q exists, is called the chaoticity region.

Note that a chaotic attractor necessarily includes the border point, and hence,

its boundaries (the points ai and bi, i = 1, n) are the critical points of di�erent

ranks.

It is known that for maps with a single border point, the boundaries of

chaoticity regions are mostly de�ned by homoclinic bifurcations related to

repelling cycles/�xed points, which change their state between being nonho-

moclinic, one-side homoclinic and double-side homoclinic.

De�nition 1.32. Consider an arbitrary repelling �xed point x∗ of the map

f̃ having a non-empty stable set. A point

q ∈ W s(x∗) ∩W u(x∗) (1.8)

is called homoclinic. The union of images and preimages of q

H(x∗) = {. . . , q−2, q−1, q0, q1, q2, . . . , qt}, (1.9)

where

q0 = q, qi+1 = f̃(qi), i ≤ m− 1, qt = x∗, lim
i→−∞

qi = x∗,

is called a homoclinic orbit of x∗ or an orbit homoclinic to x∗.
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De�nition 1.33. Let us consider a �xed point x∗ of f̃ and an arbitrary

small neighbourhood U = U(x∗). If all homoclinic points q ∈ U belonging

to the same homoclinic orbit of x∗ are located on one side with respect to x∗,

then we say that x∗ has a one-side homoclinic orbit or is one-side homoclinic.

Otherwise, x∗ has a double-side homoclinic orbit or is double-side homoclinic.

If x∗ has no homoclinic orbits it is called nonhomoclinic.

The main bifurcations responsible for transformations of chaotic attractors

for the map f̃ de�ned in (1.6) (i. e., with a single border point) are as follows.

De�nition 1.34. Consider an n-band chaotic attractor Q, n ≥ 2, and sup-

pose there is a repelling m-cycle O, 1 ≤ m < n, with a negative eigenvalue,

located at the boundary of the immediate basin of Q. A merging bifurcation

occurs if Q collides with O and the bands of Q contacting O merge pairwise.

Being nonhomoclinic before the bifurcation, the cycle necessarily becomes

double-side homoclinic after.

De�nition 1.35. Consider an n-band chaotic attractor Q, n ≥ 1, and sup-

pose there is a repelling m-cycle O, m ∈ N, with a positive eigenvalue,

located at the boundary of the immediate basin of Q. An expansion bifur-

cation occurs if Q collides with O and abruptly increases in size.

Before the bifurcation, the cycle O can be either one-side homoclinic or

nonhomoclinic. After the bifurcation, it becomes double-side homoclinic.

De�nition 1.36. Consider an n-band chaotic attractor Q, n ≥ 1, and sup-

pose there is a repelling m-cycle O, m ∈ N, with a positive eigenvalue,

located at the boundary of the immediate basin of Q. A �nal bifurcation

occurs if Q collides with O and becomes a chaotic repeller.

The cycle O can be nonhomoclinic before the bifurcation and one-side ho-

moclinic after, or one-side homoclinic before the bifurcation and double-side

homoclinic after.

The repelling cycle, mentioned in the De�nitions 1.34, 1.35, and 1.36,

is located at the immediate basin boundary of the attractor Q, i. e., for a



68

multiband attractor each gap of it contains at least one point of O. Since the

boundaries of a chaotic attractor are given by the critical points of di�erent

ranks, the analytic condition for a homoclinic bifurcation of O is cj = xσi
,

where xσi
is the appropriate point of the cycle and cj = f̃ j(c), c ∈ {cL, cR},

is the critical point of the proper rank j ≥ 0. Therefore, we will use the

notations γ
cj
σi , ζ

cj
σi , and χ

cj
σi for the merging, the expansion and the �nal bifur-

cations, respectively.

In the parameter space, a chaoticity region related to a chaotic attrac-

tor having at least n bands is denoted by Cn
σ1,...,σk

, k ∈ N, where σi are the
symbolic sequences of the cycles that are nonhomoclinic or one-side homo-

clinic for the parameter values located inside the region (i. e., the symbolic

sequences of those cycles, points of which occupy gaps of the chaotic at-

tractor). Similar notation Qn
σ1,...,σk

is used to refer to a particular chaotic

attractor, in order to distinguish di�erent attractors whenever necessary.

Remark 1.37. Note that in piecewise smooth maps, a chaotic attractor may

also appear/disappear due to a reverse degenerate �ip bifurcation or, in case

of continuous maps, due to a fold border collision bifurcation.

One of the basic bifurcation structures typical for one-dimensional piece-

wise smooth maps is the one appearing in a skew tent map, which is de�ned

as g : R → R of the form

g(x) =

 gA(x) = ax+ µ, x ≤ 0,

gB(x) = bx+ µ, x > 0,
(1.10)

with a, b, µ ∈ R and the symbolic set S = {A,B}. Such a map family has

been extensively studied in the literature [124, 141, 226, 231]. Without losing

generality, it is considered that a > 0, b < 0, and µ = 1 (for other cases,

either the respective map is topologically conjugate to the mentioned one or

the asymptotic dynamics is trivial). Then the bifurcation structure of g in

the parameter plane (a, b) can be described as follows.

[ST1] If −1 < b < 0, then g has a stable �xed point x∗B.
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[ST2] If ab < −1, Hm(a, b) < 0, and Hm+1(a, b) > 0, m ≥ 0, then g has a

2m+1-piece chaotic attractor Q2m+1, where

Hm(a, b) = a2δmb2δm+1 +
(a
b

)(−1)m+1

−1, δm =
2m − (−1)m

3
. (1.11)

[ST3] If −1 < an−1b < −aφ(a, n− 1), n ≥ 2, where

φ(a, n) =
1− an

1− a
, (1.12)

then g has a stable n-cycle OBAn−1.

[ST4] If an−1b < −1, an−1b < −aφ(a, n − 1), and a2(n−1)b3 − b + a > 0,

n ≥ 3, then g has a 2n-piece chaotic attractor Q2n.

[ST5] If an−1b < −1, an−1b < −aφ(a, n − 1), a2(n−1)b3 − b + a < 0, and

an−1b2 + b− a < 0, n ≥ 3 then g has an n-piece chaotic attractor Qn.

[ST6] Otherwise, if b(1− a) < a, then g has a 1-piece chaotic attractor Q1.

[ST7] Finally, if b(1− a) > a, then a typical orbit of g is unbounded.

Again, bifurcations leading to transitions between chaotic attractors with

di�erent number of pieces (bands) are associated with homoclinic bifurca-

tions (merging and expansion) of certain repelling cycles. These cycles have

symbolic sequences based on the notion of harmonics, which are closely re-

lated to period-doubling cascades [152].

De�nition 1.38. Consider a symbolic sequence consisting of the symbols A
and B. The k-th harmonic ρA,B

k of B is obtained by the following rule:

ρA,B
0 := B,

(
ρA,B
0

)′
:= A, ρA,B

k = ρA,B
k−1

(
ρA,B
k−1

)′
, k ≥ 1, (1.13)

where
(
ρA,B
k−1

)′
di�ers from ρA,B

k−1 only by the last symbol.
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Clearly, the length of the symbolic sequence ρA,B
k is 2k. In a similar way

one can de�ne the harmonics for an arbitrary symbolic sequence σ = σ0. If

the length of σ is n, its k-th harmonics σk has clearly 2kn symbols.

With using harmonics, one can write down in analytic form the condi-

tions for bifurcations leading to transitions Q2n ⇒ Qn ⇒ Q1, n ≥ 3 and

Q2m+1 ⇒ Q2m, m ∈ Z+. Thus, the merging bifurcation leading to Q2n ⇒ Qn

corresponds to the homoclinic bifurcation of the basic cycle OBAn−1 and is

given by the condition:

xBAn−1 = c2n = gBAn−1BAn−2B(c). (1.14)

The related bifurcation boundary in the parameter space is denoted as γc
2n

BAn−1.

The expansion bifurcation leading to Qn ⇒ Q1 corresponds to the homo-

clinic bifurcation of the complementary cycle OBAn−2B and is given by:

xBAn−2B = cn = gBAn−1(c). (1.15)

The related bifurcation boundary in the parameter space is denoted as ζc
n

BAn−2B
.

The merging bifurcation leading to Q2m+1 ⇒ Q2m corresponds to the

homoclinic bifurcation of the cycle OρA,B
m

and is given by:

xρA,B
m

= c2
m+1

= gρA,B
m+1

(c). (1.16)

The related bifurcation boundary in the parameter space is denoted as γc
2m+1

ρA,B
m

.

Another well-known bifurcation structure is typical for discontinuous one-

dimensional piecewise linear maps de�ned in two partitions. Namely, it is a

period adding structure, which is often referred to as mode-locking or Arnold

tongues. Consider the map f̃ given by (1.6) with aL, aR ∈ (0, 1), and f̃L(d) ̸=
f̃R(d). Such a map has been investigated by many researchers [29, 86, 101,

135, 235]. In particular, it is known that if f̃R(d) < d < f̃L(d) and f̃ is

invertible on the absorbing interval J = [f̃R(d), f̃L(d)], i. e., when

µR(1− aL) > µL(1− aR), (1.17)
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the periodicity regions in the parameter space of f̃ are organised according

to a speci�c order based on Farey summation rule, which is applied to the

rotation numbers of the related cycles. For the sake of distinctness, below we

use the term period adding regions to denote regions belonging to the period

adding structure, while the respective cycles are called period adding cycles.

In detail, consider two disjoint periodicity regions Pσ1
and Pσ2

, associated

with the cyclesOσ1
andOσ2

of periods n1 and n2, respectively, and σi, i = 1, 2

having li symbols L. Let the related rotation numbers l1
n1

and l2
n2

be Farey

neighbours (i. e., |l1n2 − l2n1| = 1). The regions Pσ1
and Pσ2

are then called

neighbour regions. It follows that between the regions Pσ1
and Pσ2

there exists

a region Pσ disjoint from both of them, associated with the cycle Oσ having

the rotation number l1+l2
n1+n2

. The symbolic sequence σ is the concatenation

of the appropriate cyclic shifts of σ1 and σ2. This process can be continued

ad in�nitum. Thus, the complete PA structure (which is observed in case of

both aL, aR ∈ (0, 1)) consists of in�nite number of periodicity regions, �lling

densely the respective part of the parameter space (see, e. g., [21]).

Following [135] symbolic sequences of all period adding cycles are grouped

into families according to their complexity levels. The �rst complexity level

consists of two families, related to the so-called basic cycles:

Σ1,1 = {LRn1}∞n1=1 , Σ2,1 = {RLn1}∞n1=1 . (1.18)

To obtain the families of the second complexity level, one applies to the

families Σ1,1 and Σ2,1 the following symbolic replacements:

κL
m :=

{
L → LRm

R → RLRm
, κR

m :=

{
L → LRLm

R → RLm
. (1.19)

Application of such a replacement means the direct substitution, in a sym-

bolic sequence, of each symbol L by LRm and each symbol R by RLRm

(replacement κL
m) or each symbol L by LRLm and each symbol R by RLm

(replacement κR
m). In this way from Σ1,1 and Σ2,1 by using (1.19) andm = n2,
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we obtain:

Σ1,2 = κL
n2
(Σ1,1) = {LRn2 (RLRn2)n1}∞n1,n2=1 ,

Σ2,2 = κR
n2
(Σ1,1) = {LRLn2 (RLn2)n1}∞n1,n2=1 ,

Σ3,2 = κL
n2
(Σ2,1) = {RLRn2 (LRn2)n1}∞n1,n2=1 ,

Σ4,2 = κR
n2
(Σ2,1) = {RLn2 (LRLn2)n1}∞n1,n2=1 .

(1.20)

Further, applying the replacements (1.19) with m = n3 to four families of

the second complexity level, we obtain 23 families Σj,3, j = 1, 23, of the third

complexity level, and so on. In this recursive way all symbolic sequences of

period adding cycles are obtained. In general, one gets 2K families Σj,K ,

j = 1, 2K , of the K-th complexity level, K ∈ N. Therewith, there holds

Σ2q+1,K = κL
nK
(Σq,K−1) and Σ2q+2,K = κR

nK
(Σq,K−1), q = 1, K.

The procedure described above helps one also to obtain in a recursive

way all analytic expressions for the border collision bifurcation boundaries

of period adding regions in the parameter space of f̃ . The mechanism for

�nding these expressions is called the map replacement technique (see, e. g.,

[29]). As the �rst step, border collision bifurcation boundaries related to basic

cycles OLRn1 and ORLn1 , n1 ≥ 1 are obtained directly from the corresponding

border collision conditions. For OLRn1 they are

f̃n1
R ◦ f̃L(d) = d and f̃n1−1

R ◦ f̃L ◦ f̃R(d) = d, (1.21)

leading to

Φ1,1(aL, aR, µL, µR, d, n1) = 0 and Ψ1,1(aL, aR, µL, µR, d, n1) = 0, (1.22)

where

Φ1,1(aL, aR, µL, µR, d, n1) = (aLa
n1
R − 1)d+ ψ(aR, µL, µR, n1), (1.23)

Ψ1,1(aL, aR, µL, µR, d, n1) =

(aLa
n1
R − 1)d + an1−1

R aLµR + ψ(aR, µL, µR, n1 − 1), (1.24)
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and

ψ(a, µ1, µ2, n) = anµ1 + φ(a, n)µ2 (1.25)

with φ de�ned in (1.12). The respective periodicity region is then

PLRn1 = {(aL, aR, µL, µR, d) : Φ1,1(aL, aR, µL, µR, d, n1) < 0,

Ψ1,1(aL, aR, µL, µR, d, n1) > 0, aLa
n1
R < 1}. (1.26)

For the cycles ORLn1 the border collision bifurcation conditions are ob-

tained from (1.21) by replacing the symbol L with R and vice versa. Conse-

quently, the related border collision bifurcation boundaries can be obtained

from (1.22) by exchanging the indices L and R, i. e.,

Φ2,1(aL, aR, µL, µR, d, n1) = Ψ1,1(aR, aL, µR, µL, d, n1) = 0 and

Ψ2,1(aL, aR, µL, µR, d, n1) = Φ1,1(aR, aL, µR, µL, d, n1) = 0.

The periodicity region PRLn1 is similar to (1.26) but with the third condition

aRa
n1
L < 1.

Let us now demonstrate how the map replacement technique is used in

order to �nd border collision bifurcation boundaries for a periodicity region

of the second complexity level related to some n-cycle Oσ, σ ∈ Σ1,2. Then

σ = Lσ1(Rσ2)n1 with σ1 = Rn2, σ2 = LRn2 for some n1, n2 ∈ N. The points
xLσ1(Rσ2)n1 and xRσ2Lσ1(Rσ2)n1−1 are the points of the cycle that are the closest

to d from the left and from the right, respectively. We de�ne two auxiliary

composite functions

gL(x) := f̃Lσ1
(x) = aLσ1

x+µLσ1
and gR := f̃Rσ2

(x) = aRσ2
x+µRσ2

, (1.27)

where aLσ1
, aRσ2

, µLσ1
, and µRσ2

are clearly expressions dependent on aL, aR,

µL, µR, and n2. The points xLσ1(Rσ2)n1 and xRσ2Lσ1(Rσ2)n1−1 will then belong to

the (n1+1)-cycle ÕLRn1 of the �rst complexity level for the discontinuous map

of the form (1.6) de�ned on two partitions by gL and gR. The border collision

bifurcation conditions for ÕLRn1 coincide with the border collision bifurcation
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conditions for Oσ. Hence, the border collision bifurcation boundaries for Pσ

can be obtained from (1.22) by replacing in Φ1,1 and Ψ1,1 the coe�cients aL,

aR, µL, µR with aLσ1
, aRσ2

, µLσ1
, µRσ2

, respectively. In such a way, one gets

border collision bifurcation boundaries for Pσ as

Φ1,2(aL, aR, µL, µR, d, n1, n2) = Φ1,1(aLσ1
, aRσ2

, µLσ1
, µRσ2

, d, n1)=0, (1.28a)

Ψ1,2(aL, aR, µL, µR, d, n1, n2) = Ψ1,1(aLσ1
, aRσ2

, µLσ1
, µRσ2

, d, n1)=0. (1.28b)

Similarly, for Oσ with σ ∈ Σ2,2, one constructs the auxiliary functions gL

and gR of the form (1.27) but with σ1 = RLn2, σ2 = Ln2, which leads to the

border collision bifurcation boundaries Φ2,2(aL, aR, µL, µR, d, n1, n2) = 0 and

Ψ2,2(aL, aR, µL, µR, d, n1, n2) = 0 of the form similar to (1.28). The border

collision bifurcation boundaries for the periodicity regions related to cycles

with symbolic sequences belonging to σ ∈ Σ3,2 ∪ Σ4,2 can be obtained by

swapping the indices L and R in Φi,2, Ψi,2, i = 1, 2. By continuing this

recursive procedure, one can get analytic expressions

Φi,K(aL, aR, µL, µR, dL, n1, . . . , nK) = 0, (1.29a)

Ψi,K(aL, aR, µL, µR, dR, n1, . . . , nK) = 0, (1.29b)

for border collision bifurcation boundaries of all period adding regions, where

K ∈ N, 1 ≤ i ≤ 2K , nj ∈ N, j = 1, K. In such a way, for σ ∈ Σi,K there is

Pσ = {(aL, aR, µL, µR, d) : Φi,K(aL, aR, µL, µR, dL, n1, . . . , nK) < 0,

Ψi,K(aL, aR, µL, µR, dR, n1, . . . , nK) > 0, alLa
n−l
R < 1},

with the appropriate nj, j = 1, K, n = |σ|, and l being the number of

symbols L in σ. The third boundary of Pσ is associated with a degenerate

+1 bifurcation given by alLa
n−l
R = 1. Consequently, only those period adding

cycles are attracting for which n < l(1− logaR
aL). In case of both aL, aR ∈

(0, 1), the latter inequality holds for all n and l.
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Chapter 2

Piecewise linear continuous one-dimensional

maps: Bifurcations and related bifurcation

structures

This Chapter is devoted to investigation of a family of one-dimensional piece-

wise linear continuous maps with two boundary points, also referred to as

bimodal piecewise linear maps. Maps of this kind are among the simplest rep-

resentatives of the class of piecewise smooth maps, namely, piecewise linear

maps. The latter ones have been gaining popularity for several last decades,

since they appear naturally in di�erent applied problems in power electron-

ics [140, 142], cellular neural networks [71], signal transmission [91, 92], eco-

nomics and social sciences [229, 237]. Moreover, linearity of the branches of

the map function simpli�es the investigation essentially making it possible

to obtain many results analytically.

Previous research works concerned mainly a one-dimensional continuous

piecewise linear map with a single border point (or kink point), known as the

skew tent map. Its dynamics has been studied intensively and is now com-

pletely described (see, e. g., [124, 141, 160, 227, 231]). In particular, the ana-

lytical expressions have been obtained for all the bifurcation curves con�ning

the regions related to qualitatively similar asymptotic dynamics. This fact

allows to use the skew tent map as a border collision normal form by means of

which all border collision bifurcations occurring in one-dimensional piecewise

smooth maps can be classi�ed, as explained, for instance, in [32, 161, 225].

In some works [91, 92, 142] the authors have also studied asymptotic solu-
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tions of a bimodal piecewise linear map, but as the natural consequence from

particular applications, the slopes of the considered map were restricted by

certain relations.

The aim of the current research is to focus on a more generic case, that

is, when all three slopes of the map can be arbitrary. We study properties

and bifurcations of stable periodic solutions, as well as consider evolution

of chaotic attractors. It is worth recalling that in one-dimensional piece-

wise smooth maps, not only attracting cycles but also chaotic attractors can

be robust i. e., persistent under parameter perturbations [35]. Thus, one

can discuss bifurcations of a chaotic attractor, meaning its qualitative trans-

formation under parameter variation that preserves a chaotic nature of the

attractor but changes the number of its bands and/or sharply changes their

size. Below in the parameter space of a one-dimensional piecewise linear con-

tinuous map, we describe bifurcations and the related structures associated

with both regular and chaotic asymptotic dynamics.

2.1. A one-dimensional bimodal piecewise linear map:

An overview of the parameter space

With respect to the previously known results for one-dimensional piecewise

linear maps de�ned on two intervals, we consider more general situation [166,

167, 171, 192, 193, 196]. Namely, we consider a family of one-dimensional

continuous piecewise linear maps f : R → R, de�ned by three linear functions
fL, fM, and fR as follows:

f : x 7→ f(x) =


fL(x) = aLx+ µL, x < dL,

fM(x) = aMx+ µM, dL < x < dR,

fR(x) = aRx+ µR, x > dR,

(2.1)

with fL(dL) = fM(dL), fM(dR) = fR(dR). (2.2)
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with a naturally de�ned symbolic set S = {L,M,R} and partitions being

IL = (−∞, dL), IM = (dL, dR), and IR = (dR,∞). There are two critical

points cL := fL(dL) and cR := fR(dR) and their successive images are denoted

as ciL := f i(cL) and c
i
R := f i(cR), i ∈ N.

The map f depends on eight parameters: the slopes aL, aM, aR ∈ R,
the o�sets µL, µM, µR ∈ R, and the border points dL, dR ∈ R, dL < dR.

However, the number of independent parameters is six. Indeed, continuity

conditions (2.2) imply that only six of the parameters are independent. For

instance, aM, µM can be expressed as

aM =
µR − µL + aRdR − aLdL

dR − dL

, µM =
(aL − aR) dLdR + µLdR − µRdL

dR − dL

. (2.3)

Moreover, by an appropriate change of the state variable, one can also �x

two further parameters, e. g., dL and dR, reducing their number to four. Nev-

ertheless, in case of the particular application, another dependencies for the

parameters instead of (2.3) can be used. Therefore, in most analytic expres-

sions obtained below, we prefer to keep all eight parameters, for the sake of

generality.

Note, that if dL = dR = d, the conditions (2.2) imply that fL(d) = fR(d),

so that the map (2.1) is reduced to the skew tent map. While if dL = dR = d

and the conditions (2.2) are relaxed, that is, if fL(d) ̸= fR(d), then the map

(2.1) degenerates to the discontinuous map de�ned on two partitions.

We also impose a certain condition on the slope signs. In cases aL <

0, aR < 0, aM < 0 and aL > 0, aR > 0, aM > 0, the map f has either trivial

asymptotic dynamics (�xed points or cycles of period two) or divergent orbits.

If aLaR < 0, the dynamics of f is similar to the dynamics of a skew tent map

(described in Section 1.2). The case aL < 0, aR < 0, aM > 0, has not been

considered. However, due to the form of the related map, one can expect

either trivial or skew-tent-like asymptotic dynamics. The richest in sense

of possible bifurcation phenomena and also the most demanding from the

application viewpoint is the case aL > 0, aR > 0, aM < 0. In what follows,
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we typically �x the outermost slopes as

0 < aL < 1, aR > 1. (2.4)

The case aL > 1, 0 < aR < 1 can be obtained by using the appropriate change

of coordinate. For the cases aL > 1, aR > 1 and 0 < aL < 1, 0 < aR < 1 the

conclusions can be made from analysis performed for (2.4).

We denote by p a point in the parameter space of the map f (2.1) satis-

fying the conditions (2.2), (2.4), and with aM < 0, that is, belonging to the

region

Dfeas = {p : 0 < aL < 1, aR > 1, dL < dR, cR < cL}. (2.5)

In what follows, we focus on the section (µL, µR) in the parameter space

of f to have possibility to draw parallels with the previously known results.

Concerning trivial dynamics, the map f has at most three �xed points:

x∗L =
µL

1− aL

, x∗M =
µM

1− aM

, x∗R =
µR

1− aR

.

Taking into account (2.4), the �xed point x∗L is always stable when existent,

while x∗R is unstable. We formulate the following

Lemma 2.1. Consider the map f de�ned in (2.1) with the parameters be-

longing to Dfeas (2.5). The �xed points x
∗
s, s ∈ {L,R} appear/disappear due

to the border collision bifurcation de�ned by the condition x∗s = ds, which

holds for

ξs = {p : µs = (1− as) ds}.

The boundary ξL is related to the persistence border collision bifurcation,

at which x∗L bifurcates to/from x∗M. The boundary ξR corresponds to the

fold border collision bifurcation, at which both �xed points x∗R and x∗M ap-

pear/disappear simultaneously.

Proof. The expressions for ξL and ξR follow immediately from the related

border collision conditions

µL

1− aL

= dL and
µR

1− aR

= dR.
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The �xed point x∗L exists for µL < dL(1 − aL). The �xed point x∗M does not

exist then, since fM(x) < x for x ∈ IM. At ξL, there is x
∗
L = x∗M = dL, while

for µL > dL(1− aL) there is fM(dL) > dL. If additionally fM(dR) < dR, which

corresponds to the existence of x∗R, x
∗
M exists as well. This implies that ξL

corresponds to the persistence border collision bifurcation, while ξR to the

fold border collision bifurcation.

When both x∗R and x∗M disappear due to the respective border collision

bifurcation, all orbits of f diverge. However, when x∗R and x∗M exist and are

both unstable, i. e., in the region

D = {p : µL > (1− aL) dL, µR < (1− aR) dR,

µR < µL + (1 + aL) dL − (1 + aR) dR},

f can have an attracting invariant absorbing interval J . Summarising, the

following can be stated about the global structure of the parameter space of

the map f .

Theorem 2.2. Consider the map f de�ned in (2.1) with the parameters

belonging to Dfeas (2.5). The parameter space of f consists of the following

regions, related to asymptotic dynamics of di�erent types:

1. The periodicity region

PL = {p : µL < (1− aL) dL}, (2.6)

associated with the stable x∗L.

2. The periodicity region

PM = {p : µR < (1− aR)dR, µL > (1− aL)dL,

(aR + 1)dR + µR > (aL + 1)dL + µL}. (2.7)

associated with the stable x∗M.
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3. In the regions

S1 = {p : µL > (1− aL)dL, µR > (1− aR)dR}, (2.8)

S2 =

{
p : dL − aRdR < µR < (1− aR)dR, µR < ϕ} , (2.9)

S3 = {p : (1− aR)(aLdL + µL) < µR < dL − aRdR} (2.10)

almost all orbits are divergent (unbounded). Here

ϕ = µL + aLdL − aRdR − aR(dR − dL)

aR − 1
. (2.11)

4. In the region

D1 = {p : (1− aL)dL < µL < dR − dLaL,

(aR + 1)dR + µR < (aL + 1)dL + µL}, (2.12)

there exists an invariant absorbing interval J = [fM(cL), cL] ⊂ IL ∪ IM.

5. In the region

D2 = {p : dL − dRaR < µR < (1− aR)dR,

(aR + 1)dR + µR < (aL + 1)dL + µL, µR > ϕ}, (2.13)

there exists an invariant absorbing interval J = [cR, fM(cR)] ⊂ IM ∪ IR.

6. In the region

D0 = {p : µR < dL − aRdR, µL > dR − aLdL,

µR < (1 − aR)(aLdL + µL)}, (2.14)

there exists an invariant absorbing interval J = [cR, cL] ⊂ IL ∪ IM ∪ IR.
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Proof. Due to (2.4), the �xed point x∗L is stable when existent, which implies

(2.6). On the contrary, the �xed point x∗R is always unstable, and hence, there

is no respective periodicity region. The point x∗M is stable until aM > −1,

that is,

µR − µL + aRdR − aLdL

dR − dL

> −1 ⇔ µR − µL + aRdR − aLdL + dR − dL > 0

⇔ cR − cL + dR − dL > 0.

Combining the inequality above with the facts that x∗M exists together with

x∗R, while x
∗
L does not exist any more, one gets (2.7).

In the region S1 de�ned in (2.8), there is cL > dL and cR > dR, which

means that the function f is located above the main diagonal. For any x ∈ R,
there exists t0 ≥ 0 such that f t0(x) ∈ IR. And ∀x ∈ IR, there holds

lim
t→∞

f t(x) = lim
t→∞

f tR(x) = lim
t→∞

(
atRx+

atR − 1

aR − 1
µR

)
= ∞. (2.15)

In the region S2 de�ned in (2.9), there is dL < cR < dR, which mean that

x∗M and x∗R exist. Until c1R = fM(cR) < x∗R, there exists an absorbing interval

J = [cR, fM(cR)] ⊂ IM ∪ IR. The condition fM(cR) = x∗R corresponds to the

�nal bifurcation. And if fM(cR) > x∗R (solved for µR it implies µR < ϕ with

ϕ as in (2.11)), for almost any x ∈ R, there exists t0 such that f t0(x) > x∗R.

And for almost all x > x∗R, there holds (2.15). The only points orbits of that

do not diverge are the �xed points x∗M and x∗R together with their preimages.

Similar arguments are applied to the region S3 de�ned in (2.10), where

cR < dL and cL > dR. The �nal bifurcation occurs at cL = x∗R. And for

cL > x∗R, which corresponds to µR > (1 − aR)(aLdL + µL), almost all orbits

diverge.

The remaining parameter region can be divided in di�erent sub-regions

depending on the form of the invariant absorbing interval J . Namely, it can

involve two adjacent branches (IL ∪ IM or IM ∪ IR) or all three branches.

The con�guration J = [fM(cL), cL] ⊂ IL ∪ IM holds when cL > dL (i. e., x∗L
does not exist), aM < −1 (i. e., x∗M is unstable), and cL < dR, which directly
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implies (2.12). The fact that J is invariant follows from f([c1L, dL]) = [c2L, cL],

f([dL, x
∗
M]) = [x∗M, cL], and f([x∗M, cL]) = [c1L, x

∗
M]. It is absorbing because

∀x < c1L there is t0 > 0 such that f t0(x) ∈ J , while for x ∈ (cL, x
∗
R) there is

t1 > 0 such that f t1(x) < c1L.

Similarly, J = [cR, fM(cR)] ⊂ IM ∪ IR holds when cR < dR (i. e., x∗M and

x∗R exist), aM < −1 (i. e., x∗M is unstable), cR > dL, and c
1
R > x∗R implying

(2.13). By similar arguments it is shown that J is invariant and absorbing.

Finally, for cL > dR, cL < x∗R, and cR < dL, that is, inside D0 de�ned

in (2.14), the absorbing interval is J = [cR, cL] ⊂ IL ∪ IM ∪ IR.

Remark 2.3. The equality (aR + 1)dR + µR = (aL + 1)dL + µL de�nes the

degenerate �ip bifurcation boundary ηM in the parameter space. The equality

µL = dR−dLaL corresponds to the border collision of the absorbing interval J

with dR and the respective boundary is denoted as b1. The equality µR = dL−
dRaR corresponds to the border collision of the absorbing interval J with dL

and the respective boundary is denoted as b2.

Remark 2.4. If the condition (2.4) is weakened so that aL > 0, then the

�xed point x∗L loses stability due to the degenerate transcritical bifurcation,

when aL = 1, and the respective periodicity region is modi�ed accordingly.

Figure 2.1 shows a typical view of the (µL, µR) section of the parameter

space for the bimodal map f given in (2.1). The panel (a) discovers peri-

odicity regions, where di�erent colours are associated with stable periodic

solutions of distinct periods (see the horizontal colour-bar for the reference)

with white being related to chaos. In the panel (b) periodicity regions are

�lled by white, while coloured regions correspond to chaotic attractors hav-

ing di�erent number of bands. Hatched regions �lled by grey correspond to

divergent orbits.

2.1.1. Skew tent map structure. The Theorem 2.2 implies the following
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Figure 2.1: Bifurcation structure of the (µL, µR)-parameter plane of f . (a) Regular dynam-

ics: di�erent colours correspond to periods of related cycles, regions related to chaotic dy-

namics are shown white. (b) Chaotic dynamics: di�erent colours correspond to the num-

ber of bands of chaotic attractors, periodicity regions are shown white. Grey hatched areas

are associated with divergent orbits. Parameters are aL = 0.5, aR = 1.3, dL = 0, dR = 0.3.

Corollary 2.5. For the parameter point p ∈ D1/p ∈ D2 the map f is

topologically conjugate to a skew tent map g : R → R of the form (1.10)

with a = aL/a = aR and b = aM.

The previous corollary means that in the respective part of the parameter

spaceD1∪D2, all bifurcation boundaries can be obtained in the analytic form

directly from the respective expressions known for the skew tent map (see

cases [ST1]�[ST7]. That is, for p ∈ D1 (0 < aL < 1, aM < −1) in order to

obtain bifurcation boundaries, in all expressions given in [ST2]�[ST6], one

should replace a and b with aL and aM, respectively. Similarly, for p ∈ D2

(aR > 1, aM < −1) in all expressions given in [ST2] and [ST6], one should

replace a and b with aR and aM, respectively.

In case when the absorbing interval J involves only two adjacent parti-

tions, the boundaries of a chaotic attractor are given by only one critical point
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(and a number of its images). Consequently, the conditions of the related ho-

moclinic bifurcations are also related to only one critical point (cL for p ∈ D1

and cR for p ∈ D2). When the parameter point p crosses the bifurcation

boundary b1 or b2, the absorbing interval, as well as the chaotic attractor,

spreads over the third partition, capturing the second border point. Right

after this crossing, due to the form of the map f , most of the boundaries of

the chaotic attractor are de�ned by this second border point.

For instance, consider a 2n-piece chaotic attractor Q2n ⊂ IL∪IM. Bound-

aries of its bands are given by ciL, i = 0, 4n− 1 with cL being the rightmost

boundary of Q2n and c
1
L being the leftmost one. The attractor bands are the

intervals con�ned by ciL and c2n+i
L , i = 0, 2n− 1, with B1 = [c1L, c

2n+1
L ] and

B2n = [c2nL , cL]. Recall that for p ∈ D1 the attractor Q2n bifurcates to Qn

due to a merging bifurcation γ
c2nL
MLn−1, analytic expression for which is obtained

from (1.14) by replacing A with L, B with M, and c with cL.

When p ∈ b1, there is cL = dR, and hence, ciL = ci−1
R , i = 1, 4n− 1. The

condition (1.14) becomes

xMLn−1 = c2n−1
R = fLn−1MLn−2M(cR). (2.16)

Right after the border collision bifurcation for the absorbing interval J , i. e.,

for p ∈ D0 being close enough to b1, there clearly holds

cR < c1L < c2nR ⇒ c2n−1
R < c2n+1

L < cL. (2.17)

The attractor Q2n spreads over IR, and its bands Bi+1 become the intervals

con�ned by ciR and c2n+i
R , i = 0, 2n− 2, and B2n = [c2n−1

R , cL]. It means

that for p ∈ D0 close enough to b1, the merging bifurcation condition leading

to the transition Q2n ⇒ Qn is given by (2.16) and the related bifurcation

boundary changes accordingly. Due to linearity of the functions fL, fM, and

fR the corresponding expression can be obtained in analytic form in terms of

the parameters of f .

The conditions (1.15) and (1.16) are changed in a similar way when p

crosses b1. Namely, for p ∈ D0 su�ciently close to b1 the new conditions,
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respectively, are

xMLn−2M = cn−1
R = fLn−1(cR) (2.18)

and

xρL,M
m

= c2
m+1−1

R = fωL,M
m+1

(cR), (2.19)

where ωL,M
m+1 is obtained from ρL,M

m+1 by dropping the �rst symbol M. The

expression associated with (2.18) can be obtained in analytic form in terms

of the parameters of f .

The bifurcation boundaries corresponding to the conditions (2.16), (2.18),

and (2.19) are denoted as γc
2n−1
R

MLn−1, ζ
cn−1
R

MLn−2M
, and γc

2m+1−1
R

ρL,M
m

, respectively, and are

referred to as D0-prolongations. In such a way we have proved the following

Theorem 2.6. Consider a merging bifurcation boundary γ
c2nL
σ ⊂ D1 related

to the transition Q2n ⇒ Qn, where |σ| = n, n ≥ 1, xσ ∈ IM is the rightmost

point of the cycle Oσ. Then the D0-prolongation γ
c2n−1
R

σ of γ
c2nL
σ is given by

the homoclinic bifurcation condition fω(cR) = xσ, where ω is obtained from

the �rst harmonic of σ by dropping the �rst symbol M.

Consider an expansion bifurcation boundary ζ
cnL
MLn−2M

⊂ D1 related to the

transition Qn ⇒ Q1, n ≥ 3. Then its D0-prolongation ζ
cn−1
R

MLn−2M
is given by

the homoclinic bifurcation condition fLn−1(cR) = xMLn−2M.

For p ∈ D2, the bifurcation boundaries γ
c2

m+1

R

ρR,M
m

, m ∈ Z+ also have D0-

prolongations γc
2m+1−1
L

ρR,M
m

, conditions for which are obtained from (2.19) by swap-

ping L and R.

Several D0-prolongations of bifurcation boundaries in D1 are shown in

Fig. 2.2(a).

2.1.2. Period adding structure. In the region D0 the absorbing interval

is located on all three partitions; however, certain orbits can still be located

in only two of them. Namely, under particular conditions asymptotic dynam-

ics of f involves only two outermost branches fL and fR. Recall that in the
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limiting case dL = dR = d and fL(d) ̸= fR(d) the map (2.1) degenerates to a

discontinuous map de�ned in two partitions. Recall that for aL > 0, aR > 0

in the parameter space of this map the period adding structure is typically

observed (as described in the Sec. 1.2). Namely, the periodicity regions are

ordered according to the Farey summation rule, which is applied to the ro-

tation numbers of the related cycles. This structure, often called Arnold

tongues or mode-locking tongues, is known to be a distinctive feature for a

certain class of circle maps, discontinuous maps de�ned by two increasing

functions, and others [119, 126, 135]. In the parameter region D0 of the bi-

modal map f a similar bifurcation structure is also observed, and principles

of its formation are the same as described above. Similar to [29, 100, 101],

to obtain periodicity region boundaries forming the period adding structure

we use the so-called map replacement technique, which simpli�es calculation

of analytical expressions of the bifurcation curves.

Lemma 2.7. Consider a map f with p0 ∈ D0 and a discontinuous map f̃

de�ned on two partitions of the form (1.6) with the same aL, aR, µL, µR and

some d ∈ (dL, dR). If f̃ has an n-cycle Õσ ⊂ (f̃R(d), dL)∪ (dR, f̃L(d)), n ≥ 2,

with σ ∈ ∪∞
i=1 ∪2i

j=1 Σj,i, then the set Õσ represents also the n-cycle of f .

Proof. For the point xσ ∈ Õσ, where σ = s0 . . . si . . . sn−1, si ∈ {L,R},
i = 0, n− 1, there holds

xσ = f̃n(xσ) = f̃sn−1
◦ · · · ◦ f̃si ◦ · · · ◦ f̃s0 =

fsn−1
◦ · · · ◦ fsi ◦ · · · ◦ fs0 = fn(xσ).

The main implication from the previous lemma is that for any period

adding region P̃σ for the discontinuous map f̃ , there exists a corresponding

period adding region Pσ for f . Moreover, to obtain the analytic expres-

sions for the border collision bifurcation boundaries of Pσ, one can use the

respective expressions for P̃σ with substituting dL or dR instead of d.
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Theorem 2.8. Consider a period adding cycle Oσ of the map f with σ ∈
Σi0,K for some K ∈ N and 1 ≤ i0 ≤ 2K. The respective periodicity region

Pσ is given as

Pσ = {p ∈ D0 : Φi0,K(aL, aR, µL, µR, dL, n1, . . . , nK) < 0,

Ψi0,K(aL, aR, µL, µR, dR, n1, . . . , nK) > 0, alLa
n−l
R < 1},

where p denotes a point in the parameter space of f , l is the number of

symbols L in σ, and the functions Φi0,K and Ψi0,K are de�ned in (1.29).

For the parameter values in Pσ, the cycle Oσ is a global attractor on the

absorbing interval J = [cR, cL].

Proof. Let us consider the point xLσ1
of the cycle Õσ of f̃ (1.6), which is

the closest to the border point x = d from the left. Due to the Lemma 2.7,

if xLσ1
< dL, then it is the point of the respective cycle Oσ for f . Let us

change the parameters so that xLσ1
moves towards d (towards dL for f).

Since dL < d, at some parameter constellation there is xLσ1
= dL, which is

exactly the border collision bifurcation condition fσ(dL) = dL for the cycle

Oσ. It clearly coincides with the same border collision bifurcation condition

for Õσ but with using dL instead of d. Hence, the related border collision

bifurcation boundary of Pσ can be obtained by using the respective function

Φi0,K(aL, aR, µL, µR, dL, n1, . . . , nK), where K is the complexity level of σ.

Similarly, the other border collision bifurcation boundary of Pσ is computed

as Ψi0,K(aL, aR, µL, µR, dR, n1, . . . , nK).

Let us show that Oσ is the global attractor for f on J . Recall that

Õσ ≡ Oσ is the global attractor for the discontinuous map f̃ on the interval

[fR(d), fL(d)]. Clearly, cL < fL(d) and cR > fR(d), so J ⊂ [fR(d), fL(d)].

Then for almost any point x ∈ [cR, dL] ∪ [dR, cL] (except for the preimages of

x∗M) the limit set of its orbit is ω(o(x)) = Oσ. Since aM < −1, for almost

any point x ∈ IM (except for x∗M and its preimages), there exists t0 > 0 such

that f t0(x) ∈ [cR, dL] ∪ [dR, cL].
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The �nal remark related to the period adding structure for the map f

concerns certain sub-regions of D0, which contain particular subgroups of

period adding regions of higher complexity levels. Recall that two boundaries

of D0 are always b1 and b2, that is, there necessarily holds

µR < dL − dRaR and µL > dR − dLaL. (2.20)

Now, consider for a particular n2 ∈ N the family of regions Pσ,

σ ∈ {LRn2(RLRn2)n1}∞n1=1 ∪ {RLRn2(LRn2)n1}∞n1=1, located between two

neighbour regions PLRn2 and PLRn2+1. Substituting into the expressions (2.20)

instead of aL, µL, aR, µR the coe�cients of the respective composite func-

tions fLRn2 and fRLRn2 , we obtain the region DLRn2 ,LRn2+1 ⊂ D0, which

completely contains all the regions from the mentioned family. In fact,

DLRn2 ,LRn2+1 represents a region such that for the composite functions there

holds fLRn2(dL) > dR and fRLRn2(dR) < dL.

In a similar way, we get the region DRLn2 ,RLn2+1 containing the family of

period adding regions of the second complexity level, located between PRLn2

and PRLn2+1. By a recursive procedure for an arbitrary K ∈ N, we can

describe any region Dσ1,σ2
containing a family of regions of the complexity

level K +1, which are located between the neighbour regions Pσ1
and Pσ2

of

the K-th complexity level.

Figure 2.2(b) shows several period adding regions in the (µL, µR) section

of the parameter space of f de�ned in (2.1). They are �lled by dark-pink (for

the �rst complexity level) and by green (for the second complexity level).

2.1.3. Fin structure adjacent to period adding regions. For the dis-

continuous map f̃ , the periodicity regions belonging to the period adding

structure occupy densely the respective part of the parameter space. For

the continuous bimodal map f , it is not the case, since in the region D0

asymptotic orbits can involve all three partitions. In particular, when a pe-

riod adding cycle Oσ of period n disappears due to one of its border collision

bifurcations, there may appear a new cycle Oτ , having one point in IM, of the
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Figure 2.2: (a) D0-prolongations of several bifurcation boundaries for the case when the

absorbing interval J expands from the partitions IL ∪ IM to IL ∪ IM ∪ IR. (b) Period

adding structure: several regions of the �rst and the second complexity levels are �lled

by dark-pink and green, respectively.

same period n or of the multiple of this period k · n, k > 1. The respective

periodicity regions are adjacent to period adding regions.

De�nition 2.9. We refer to the region Pτ as a k · n-�n region, and to the

region Pσ as a trunk-region. Being attached to the boundary of Pσ, at which

the cycle Oσ collides with the left/right border point dL/dR, the region Pτ is

also called the left/right k · n-�n.

Similar to period adding regions, we group also �n regions into complexity

levels. The complexity level of the trunk region de�nes the complexity level

of its �ns.

To describe conditions under which �n regions occur, we will use the

following known result[32, 161]:

Theorem 2.10 (Nusse, Yorke, 1995; Banerjee et al., 2000). Consider a

family of one-dimensional piecewise smooth continuous maps g̃p : I → I,

I ⊆ R, depending smoothly on a parameter p ∈ Rk, k ≥ 1. Let x = d be a
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border point of g̃p. Suppose that for some p0 there is

g̃p0(d) = d

and denote

a∗L = lim
x→d−

d

dx
g̃p0(x), a∗R = lim

x→d+

d

dx
g̃p0(x).

Then in a generic case, the border collision occurring in the map g̃p as p

varies through p0 is of the same kind as the one occurring in the skew tent

map (1.10) as µ varies through 0 at (a, b) = (a∗L, a
∗
R).

Generic case in this statement means that neither the parameter point

(a, b) = (a∗L, a
∗
R), nor the one symmetric to it (a, b) = (a∗R, a

∗
L) belongs to

any of the bifurcation curves separating the regions of qualitatively di�erent

dynamics of the skew tent map (1.10) (that is, the curves obtained from

expressions in [ST1]�[ST6] with using the equality instead of inequality signs).

Consider a trunk n-cycle Oσ, n ≥ 2. The shift invariance σ ≡ Lσ1Rσ2 ≡
Rσ2Lσ1 holds for certain σ1,2, where the sequences Lσ1Rσ2 and Rσ2Lσ1
correspond to the periodic points which are the closest to the borders x = dL

and x = dR from the left and from the right, respectively. Let us consider

the region in the parameter space of f of the form

DL,σ
st = {p ∈ D0 : xLσ1Rσ2

> dL, fσ1Rσ2Mσ1
(cL) < dR} , (2.21)

that is, the region con�ned by ξLσ1Rσ2
, associated with the border collision

bifurcation with dL, and the bifurcation boundary denoted as b
L,σ
st , related to

the condition fσ1Rσ2Mσ1
(cL) = dR.

Theorem 2.11. Let p ∈ DL,σ
st and let a = alLa

n−l
R and b = al−1

L aMa
n−l
R , where

l is the number of symbols L in σ. The continuous bimodal map f has:

[LF1] a stable n-cycle OMσ1Rσ2
if −1 < b < 0;

[LF2] a 2m+1n-piece chaotic attractor Q2m+1n, if ab < −1, Hm(a, b) < 0,

and Hm+1(a, b) > 0, m ≥ 0, Hm de�ned in (1.11);
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[LF3] a stable kn-cycle OMσ1Rσ2(Lσ1Rσ2)k−1, if −1 < ak−1b < −aφ(a, k − 1),

k ≥ 2, φ de�ned in (1.12);

[LF4] a 2kn-piece chaotic attractor Q2kn, if ak−1b < −1, ak−1b <

−aφ(a, k − 1), and a2(k−1)b3 − b+ a > 0, k ≥ 3;

[LF5] a kn-piece chaotic attractor Qkn, if a
k−1b < −aφ(a, k−1), a2(k−1)b3−

b+ a < 0, and ak−1b2 + b− a < 0, k ≥ 3;

[LF6] an n-piece chaotic attractor Qn otherwise.

Proof. Let U = U(dL) be a small neighbourhood of the border point x = dL

and consider the restriction fn|U of the n-th iterate of f , for which x = dL

is also a border point. If p ∈ Pσ, the map f
n|U has a �xed point xLσ1Rσ2

that approaches dL as p approaches the border collision border ξLσ1Rσ2
. For

p ∈ ξLσ1Rσ2
, the border point dL is a �xed point of fn|U . The result of the

respective border collision bifurcation is discovered by applying the Theo-

rem 2.10. One only needs to compute the slopes of fn|U on the left and on

the right of dL. Since fL(dL) = fM(dL), there is

fn(dL) = fLσ1Rσ2
(dL) = fMσ1Rσ2

(dL),

and hence, a∗L = aLaσ1
aRaσ2

= alLa
n−l
R , a∗R = aMaσ1

aRaσ2
= al−1

L aMa
n−l
R , where

l is the number of L's in σ. The statements [LF1]�[LF6] are obtained from

[ST1]�[ST6] with using a = a∗L and b = a∗R.

Now we show that the conjugacy of fn|U to the respective skew tent map

is preserved while p ∈ DL,σ
st . For p ∈ ξLσ1Rσ2

, the point fMσ1
(dL) = xRσ2Lσ1

is the point of the trunk cycle Oσ closest to dR from the right. Due to

the bimodal form of the map f , there exists an interval I0 = [dL, d̄] such

that for x ∈ I0 there holds fMσ1
(x) < xRσ2Lσ1

. Clearly, the inequality holds

until fMσ1
(x) = fMσ1

(d̄) = dR, so that d̄ is the particular preimage of dR

and is another border point for fn. For p being outside Pσ close enough

to ξLσ1Rσ2
, there is dL < fn(dL) < d̄. Hence, fn has an absorbing interval
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J = [f 2Mσ1Rσ2
(dL), fMσ1Rσ2

(dL)] on which f
n|J is topologically conjugate to the

skew tent map (1.10). The conjugacy is destroyed when

fMσ1Rσ2
(dL) = d̄⇔ fMσ1

(fMσ1Rσ2
(dL)) = fMσ1

(d̄) ⇔

fMσ1Rσ2Mσ1
(dL) = dR ⇔ fσ1Rσ2Mσ1

(cL) = dR.

Similar statement can be formulated for the neighbourhood of the second

border collision bifurcation boundary ξRσ2Lσ1
of Oσ. One has to consider the

region

DR,σ
st = {p ∈ D0 : xRσ2Lσ1

< dR, fσ2Lσ1Mσ2
(cR) > dL} , (2.22)

that is, the region con�ned by ξRσ2Lσ1
and bR,σst (related to fσ2Lσ1Mσ2

(cR) = dL).

Theorem 2.12. Let p ∈ DR,σ
st and let a = alLa

n−l
R and b = alLaMa

n−l−1
R , where

l is the number of symbols L in σ. The continuous bimodal map f has:

[RF1] a stable n-cycle OMσ2Lσ1
if −1 < b < 0;

[RF2] a 2m+1n-piece chaotic attractor Q2m+1n, if ab < −1, Hm(a, b) < 0,

and Hm+1(a, b) > 0, m ≥ 0;

[RF3] a stable kn-cycle OMσ2Lσ1(Rσ2Lσ1)k−1, if −1 < ak−1b < −aφ(a, k − 1),

k ≥ 2;

[RF4] a 2kn-piece chaotic attractor Q2kn, if ak−1b < −1, ak−1b <

−aφ(a, k − 1), and a2(k−1)b3 − b+ a > 0, k ≥ 3;

[RF5] a kn-piece chaotic attractor Qkn, if a
k−1b < −aφ(a, k−1), a2(k−1)b3−

b+ a < 0, and ak−1b2 + b− a < 0, k ≥ 3;

[RF6] an n-piece chaotic attractor Qn otherwise.

A particular example of the part of the structure described above is shown

in Fig. 2.3(a) for the interior of the region DL,LR

st .
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As it was shown, the boundary bL,σst (and the same can be stated for bR,σst ) is

related to the border collision bifurcation of the absorbing interval J (in fact,

multiple intervals) for fn. As the outermost boundaries of a chaotic attractor

are given by the boundaries of J , this occurrence also means the immediate

transformation of this chaotic attractor. However, for a �n cycle its outermost

points belong to the interior of J and even if J is transformed, the cycle with

the same symbolic sequence can still exist. Therefore, �n regions spread

beyond the domains DL,σ
st /D

R,σ
st . For a left/right k · n-�n region, some of its

boundaries are already given by the Theorem 2.11. Obviously, one boundary

for all left/right �ns is ξLσ1Rσ2
/ξRσ2Lσ1

. Then, if k ≥ 2, other two boundaries

are given as b = −a1−k and b = −(1−ak−1)(1−a)−1a2−k, where a and b are

the slopes of the respective composite functions. For the 1 · n-�n its second

boundary is b = −1. To obtain all bifurcation boundaries of a �n region in

general form, we will again use the map replacement technique. For this we

�rst consider �n regions of the �rst complexity level, that is, those adjacent

to Pσ, σ ∈ Σ1,1 ∪ Σ2,1.

Theorem 2.13. Let p ∈ D0 and consider a trunk region PLRn, n ∈ N and

its left k · (n + 1)-�n region P(LRn)k−1MRn, k ∈ N. If k ≥ 2, it is con�ned

by the border collision bifurcation boundary ξLRn de�ned by the �rst equality

in (1.22), the border collision bifurcation boundary ξLRnMRn(LRn)k−2 de�ned by

the condition

(aLa
n
R)

k−2 aMa
n
R = −φ(aLa

n
R, k − 1) (2.23)

with φ de�ned in (1.12), the border collision bifurcation boundary

ξ(RLRn−1)k−1RMRn−1 given by

anRaMφ(aLa
n
R, k − 1)

(
aLa

n−1
R µR + ψ(aR, µL, µR, n− 1)

)
+ ak−1

L aMa
kn
R dR + aMa

n−1
R µR + ψ(aR, µM, µR, n− 1) = dR (2.24)

with ψ de�ned in (1.25) and the degenerate �ip bifurcation boundary

η(LRn)k−1MRn given by

ak−1
L aMa

kn
R = −1. (2.25)
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The 1 · (n+ 1)-�n region PMRn is con�ned by ξLRn, the degenerate �ip bifur-

cation boundary ηMRn given by (2.25) with k = 1, and the boundary b2 of D0

(de�ned in the Remark 2.3).

Proof. Consider �rst k ≥ 2. Expressions (2.23) and (2.25) are obtained from

[LF3] by using equalities instead of inequalities. Let us obtain (2.24). Recall

that for p being outside PLRn but close enough to the bifurcation boundary

ξLRn the map fn+1 in the neighbourhood of the border point x = dL has an

absorbing interval J = [f 2MRn(dL), fMRn(dL)]. Note that in terms of notations

used in (2.21), there is σ1 = Rn−1 and σ2 = ∅.
On J the map fn+1 has an attracting k-cycle with k−1 points to the left of

dL and one point to the right of it. There is another border point d̄ > dL, such

that fMRn−1(d̄) = dR, and the mentioned k-cycle (more precisely, its leftmost

point) can collide with d̄ as well. The corresponding condition de�nes the

fourth bifurcation boundary of the respective �n region. This condition reads

as follows

fMRn(LRn)k−1(d̄) = d̄⇔ fMRn(LRn)k−1MRn−1(d̄) = fMRn−1(d̄) = dR

⇔ f(RLRn−1)k−1RMRn−1(dR) = dR. (2.26)

The direct substitution of linear functions fL, fM, fR into (2.26) implies (2.24).

For k = 1, the condition (2.26) becomes fRMRn−1(dR) = dR, which is the

same as for the respective cycleOMRn for p ∈ D2. Recall that the trunk region

PLRn issues from the boundary b2 and it can be shown that the bifurcation

boundary ξRMRn−1 issues from b2 as well. This implies that ξRMRn−1 ⊂ D2,

and hence, the third boundary for the 1 · (n + 1)-�n region PMRn is exactly

b2.

Theorem 2.14. Consider a trunk region PLRn, n ∈ N and its right k·(n+1)-

�n region P(LRn)k−1LRn−1M, k ∈ N. If k ≥ 2, it is con�ned by the border

collision bifurcation boundary ξRLRn−1 de�ned by the second equality in (1.22),

the border collision bifurcation boundary ξRLRn−1MLRn−1(RLRn−1)k−2 de�ned by
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the condition

(aLa
n
R)

k−2 aLaMa
n−1
R = −φ(aLa

n
R, k − 1), (2.27)

the border collision bifurcation boundary ξ(LRn)k−1LRn−1M given by

aLaMa
n−1
R φ(aLa

n
R, k − 1) (anRµL + φ(aR, n)µR)

+ akLaMa
(n)k−1
R dL + aMψ(aR, µL, µR, n− 1) + µM = dL, (2.28)

and the degenerate �ip bifurcation boundary η(LRn)k−1LRn−1M given by

akLaMa
kn−1
R = −1. (2.29)

The 1 · (n + 1)-�n region PLRn−1M, n ≥ 2, is con�ned by ξRLRn−1, the border

collision bifurcation boundary ξLRn−1M given by (2.28) with k = 1, and the

degenerate �ip bifurcation boundary ηLRn−1M given by (2.29) with k = 1.

Proof. As in the proof of the Theorem 2.13, the expressions (2.27) and (2.29)

are obtained from [LF3].

To derive (2.28), one should consider fn+1 in the neighbourhood of

the border point x = dR, and its absorbing interval J = [fMLRn−1(dR),

f 2
MLRn−1(dR)], on which the map has an attracting k-cycle with k − 1 points

to the right of dR and one point to the left of it. There exists another border

point x = d̂ < dR such that fM(d̂) = dL. And the condition for the second

border collision bifurcation of the mentioned k-cycle is given by

fMLRn−1(RLRn−1)k−1(d̂) = d̂⇔ fMLRn−1(RLRn−1)k−1M(d̂) = fM(d̂) = dL

⇔ f(LRn)k−1LRn−1M(dL) = dL. (2.30)

Bifurcation conditions for �n regions adjacent to PRLn, n ∈ N, can be

obtained from the expressions presented in the Theorems 2.13 and 2.14.

Therewith, for the left �ns of PRLn one has to use (2.27)�(2.29), while for

the right �ns (2.23)�(2.25) and the boundary b1 of D0 for PMLn.
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Figure 2.3: (a) A part of the �n structure inside the region DL,LR
st . (b) A schematic

representation of a trunk periodicity region PLRn and its several left and right �n regions.

To sum up, the boundaries of �n regions of the �rst complexity level

can all be obtained in the analytic form. In Fig. 2.3(b), we show a schematic

representation of a trunk periodicity region PLRn and its several left and right

�n regions with all bifurcation boundaries marked.

To obtain bifurcation boundaries for �n regions of the second complexity

level, we use the map replacement technique, similar to how it was done for

the respective trunk regions (see Sec. 1.2). As follows from Theorems 2.13

and 2.14, there exist four symbolic families, associated with the �ns of the

�rst complexity level, namely,

Σlf
1,1 =

{
(LRn1)k−1MRn1

}∞
n1,k=1

,

Σrf
1,1 =

{
(LRn1)k−1LRn1−1M

}∞
n1,k=1

,

Σrf
2,1 =

{
(RLn1)k−1MLn1

}∞
n1,k=1

,

Σlf
2,1 =

{
(RLn1)k−1RLn1−1M

}∞
n1,k=1

,

(2.31)

where the superscripts lf and rf stand for the left and the right �ns, respec-

tively. As for the replacements to get symbolic sequence families of the sec-

ond complexity level, for the symbols L and R they are the same, i. e., given
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in (1.19), while the substitution for the third symbol M has to be de�ned.

Recall that for a discontinuous map de�ned on two partitions, the proce-

dure of map replacement means, in fact, �replacing� the left and the right

branches of the map with the respective composite functions obtaining again

a discontinuous map of the same form. In case of �n cycles, constructing the

respective composite functions becomes a more complicated task, since the

initial map f is continuous. However, the continuity is required only in the

neighbourhood of the border point with which the collision occurs. Let us

consider as an example trunk regions of the second complexity level related to

symbolic sequences belonging to Σ1,2. For a particular n2 ∈ N, these are the
regions Pσ, σ = LRn2 (RLRn2)n1 located between the trunk regions PLRn2

and PLRn2+1 of the �rst complexity level. For the symbolic sequence σ, the

shift invariance holds σ ≡ Lσ1 ≡ Rσ2, where xLσ1
and xRσ2

are the points of

the cycle being the closest to the borders x = dL and x = dR from the left

and from the right, respectively. Left �ns of Pσ are adjacent to the border

collision bifurcation boundary related to the collision with dL. At p ∈ ξLσ1
,

the point dL is a �xed point of the iterate f r, r = (n1 + 1)n2 + 2n1 + 1.

The branch of f r to the left of dL is fLσ1
, while the branch to the right of

it is fMσ1
. Similar to the �ns of the �rst complexity level, a �n region of

Pσ appears if the result of the border collision bifurcation is a stable k-cycle

for f r, k ∈ N, having k − 1 points to the left of dL and one point to the

right of it (a �xed point located to the right of dL for k = 1). Namely, it is

the cycle Oτ , τ = (Lσ1)k−1Mσ1, for f . Since Lσ1 is obtained from LRn1

by using κL
n2
, i. e., by substituting LRn2 instead of L and RLRn2 instead

of R, the sequence τ can be obtained by using the same replacements for

L and R, while for the third symbol it should be M → MRn2. To obtain

the bifurcation conditions for Oτ , one can use (2.23)�(2.25) with substituting

instead of aL, µL, aM, µM, aR, µR the coe�cients of the respective composite

functions, that is,

fLRn2(x) = aLRn2x+ µLRn2 = aLa
n2
R x+ an2

R µL + φ(aR, n2)µR (2.32)
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for aL, µL,

fMRn2(x) = aMRn2x+ µMRn2 = aMa
n2
R x+ an2

R µM + φ(aR, n2)µR (2.33)

for aM, µM, and

fRLRn2(x) = aRLRn2x+ µRLRn2 =

aLa
n2+1
R x + an2

R aLµR + an2
R µL + φ(aR, n2)µR (2.34)

for aR, µR. Note that for the 1 · r-�n region one should use the expressions

(2.25) and (cf. [ST3])

an2−1
R aM = −φ(aR, n2). (2.35)

Similar arguments can be used in order to compute bifurcation boundaries

for the right �n regions of Pσ, namely, for the regions P(Rσ2)
k−1

Mσ2
. However,

one has to consider the function f r in the neighbourhood of the border point

dR. At p ∈ ξRσ2
, there is f r(dR) = dR and the branch to the right of dR is

fRσ2
, while to the left of it there is fMσ2

. Again Rσ2 is obtained from RLRn1

by using κL
n2
. Then the sequence (Rσ2)k−1Mσ2, corresponding to the right

k · r-�n region, can be obtained by still using the same replacements for L
and R, while for the third symbol it should be M → MLRn2. To obtain

the associated bifurcation conditions one can use (2.27)�(2.29) substituting

the coe�cients of the composite functions fLRn2 for aL, µL, fRLRn2 , for aR, µR,

while for aM, µM one will use

fMLRn2(x) = aMLRn2x+ µMLRn2 =

aLaMa
n2
R x + aLa

n2
R µM + an2

R µL + φ(aR, n2)µR. (2.36)

In the same way we treat �n regions of trunk cycles associated with sym-

bolic sequences from the families Σi,2, i = 2, 3, 4. Namely, the replacements

for L and R are as in κL
n2

and κR
n2
, while the replacement for M should be

similar to that of L for a left �n and to that of R for a right �n.

In such a way we can formulate the following
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Theorem 2.15. Consider a trunk region Pσ of the map f with σ ∈ Σ1,2

related to a cycle of period r. The bifurcation boundaries of its left k · r-�n
regions are obtained from (2.23)�(2.25) with for k ≥ 2 or (2.25) and (2.35)

for k = 1 by setting n = n1 and replacing aL, µL with the coe�cients of fLRn2

(2.32), aM, µM with the coe�cients of fMRn2 (2.33), and aR, µR with fRLRn2

(2.34).

The bifurcation boundaries of the right k · r-�n regions are obtained from

(2.27)�(2.29) with n = n1 by using the same replacements for aL, µL, aR,

µR, while aM, µM are replaced by the coe�cients of fMLRn2 (2.36).

Proof. The proof follows directly from the arguments above.

Recall that the boundaries of �n regions adjacent to the region PRLn1 are

obtained from the expressions known for �n regions adjacent to PLRn1 by

swapping the indices L and R. The following statement holds:

Theorem 2.16. Consider a trunk region Pσ of the map f with σ ∈ Σ3,2

related to a cycle of period r. The bifurcation boundaries of its right k · r-�n
regions are obtained from (2.23)�(2.25) for k ≥ 2 or (2.25) and (2.35) for

k = 1 by setting n = n1 and replacing aL, µL with the coe�cients of fRLRn2

(2.34), aM, µM with the coe�cients of fMLRn2 (2.33), and aR, µR with fLRn2

(2.32), as well as changing dR to dL.

The bifurcation boundaries of the left k · r-�n regions are obtained from

(2.27)�(2.29) by using the same replacements for aL, µL, aR, µR, while aM,

µM are replaced by the coe�cients of fMRn2 (2.36), and dL is changed to dR.

The expressions for the bifurcation boundaries of left and right k · n �n

regions for the trunk regions Pσ with σ ∈ Σ2,2∪Σ4,2 can be obtained from the

expressions obtained according to the Theorems 2.15 and 2.16 by swapping

the indices L and R.
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In such a way, four symbolic replacements can be introduced:

κlf,Lm :=


L → LRm

M → MRm

R → RLRm

and κlf,Rm :=


L → LRLm

M → MRLm

R → RLm

, (2.37)

for the left �ns and

κrf,Lm :=


L → LRm

M → MLRm

R → RLRm

and κrf,Rm :=


L → LRLm

M → MLm

R → RLm

(2.38)

for the right �ns. By using these replacements, bifurcation boundaries for �n

regions of all complexity levels can be obtained recursively, similarly to the

map replacement technique described in Sec. 1.2 for period adding regions.

2.2. Degenerate period adding structures: An eco-

nomic example

T�atonnement processes are usually interpreted as auctions, where a �ctitious

agent sets the prices until an equilibrium is reached and the trades are made.

The main purpose of such processes is to explain how an economy comes to

its equilibrium. It is well known that discrete time price adjustment processes

may fail to converge and may exhibit periodic or even chaotic behaviour. To

avoid large price changes, a version of the discrete time t�atonnement process

for reaching an equilibrium in a pure exchange economy based on a cautious

updating of the prices has been proposed in [245].

Following [245], we consider in [89] a pure exchange economy with two

commodities and two individuals, whose utility functions are of Cobb-

Douglas type having exponents α ∈ (0, 1) and β = 1 − α, respectively.

It is assumed that the �rst individual is endowed with a quantity A of the

�rst good, while the second individual is endowed with a quantity B of the

second good. The commodity prices are supposed to be normalised, i. e., the
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price of the second commodity q is set to a constant and only the �rst price

p is adjusted with a certain velocity λ. As proposed by [245], the amount

of the relative price change is bounded inside the interval [1− r, 1 + r] with

some maximal rate r ∈ (0, 1). This implies a one-dimensional continuous

piecewise linear map g : [0,∞) → [0,∞) de�ned by three linear functions:

g : p 7→ g(p) =


gL(p) = (1 + r)p for 0 ≤ p ≤ εγ

A(r+ε) ,

gM(p) =
εγ
A + (1− ε)p for εγ

A(r+ε) < p ≤ εγ
A(ε−r) ,

gR(p) = (1− r)p for p > εγ
A(ε−r) ,

(2.39)

where ε = λAβ > r, A > 0, and γ = qB > 0. This map is topologically

conjugate to the map of the form (2.1), (2.2) with

aL = 1 + r, aM = 1− ε, aR = 1− r, µL = µR = 0, µM = ε,

dL =
ε

ε+ r
, dR =

ε

ε− r
.

(2.40)

through the homeomorphism x = h(p) = γ
Ap. This reduced map will be

denoted below as f̄ .

We consider the domain D of feasible (from economic viewpoint) param-

eter values for f̄ :

D = {(r, ε) : ε > r, 0 < r < 1} . (2.41)

As one can see, the region D is con�ned by three boundaries:

δND = {(r, ε) : ε = r}, δr1 = {(r, ε) : r = 1},

δr0 = {(r, ε) : r = 0}. (2.42)

As the �rst observation we notice that the map f̄ has a �xed point x∗L
in the origin which is always repelling. Due to this reason we restrict the

left partition to IL = (0, dL). For parameter values belonging to the feasible

domainD given in (2.41) the map f̄ also has a �xed point x∗M ∈ IM. Moreover,

f̄ always admits an absorbing interval J which is globally attracting. In case

where x∗M is repelling, the interval J is invariant. Similar to the general case
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of the map f of the form (2.1), (2.2), the absorbing interval J can involve two

adjacent branches or all three branches. The Theorem 2.2 has the following

Corollary 2.17. The domain D of feasible parameter values of the map f̄

can be divided into three parts:

1. The region

DM = {(r, ε) : 0 < r < 1, r < ε < 2}, (2.43)

where the �xed point x∗M is asymptotically stable.

2. The region

DLM = {(r, ε) : 0 < r < 1, 2 < ε < r + 2}, (2.44)

where J = JLM =
[
c1L, cL

]
⊂ IL ∪ IM.

3. The region

DLMR = {(r, ε) : 0 < r < 1, ε > r + 2}, (2.45)

where J = JLMR = [cL, cR].

Using the Corollaries 2.5 and 2.17, we can describe the bifurcation struc-

ture for (r, ε) ∈ DLM (the skew tent map structure, see [ST1]� [ST7]).

Namely,

� if H0(1 + r, 1− ε) > 0, then f has a 1-piece chaotic attractor Q1;

� if Hm(1 + r, 1− ε) < 0 and Hm+1(1 + r, 1− ε) > 0, m ≥ 0, then f has

a 2m+1-piece chaotic attractor Q2m+1.

The regions Q2m+1 ∩ DLM and Q2m ∩ DLM are separated by the bifurcation

boundary γ
c2

m+1

L

ρL,M
m

related to the merging bifurcation associated with the har-

monic ρL,M
m .

Inside the region DLMR the following statement holds:

Theorem 2.18. For (r, ε) ∈ DLMR there is:
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1) In the neighbourhood of the line ε = r+2, there exist D0-prolongations

γ
c2

m+1−1
R

ρL,M
m

of merging curves γ
c2

m+1

L

ρL,M
m

.

2) In the region ε > r + 2 and rε > 1 there exist a degenerate period

adding structure. Namely, each period adding region related to a cycle

of period n with l points in IL degenerates to a half-line

Ln,l = {(r, ε) : r = r̄n,l, ε ≥ ε̄n,l} , (2.46)

where r̄n,l is obtained from the equation

(1 + r)l(1− r)n−l = 1, (2.47)

while ε̄n,l can be obtained recursively.

Proof. The statement 1) follows directly from the Theorem 2.6.

Let us prove the statement 2). For f̄ the expressions for border collision

bifurcation boundaries of period adding regions of the �rst complexity level

become

(1− anRaL)dL

anR
= 0 and

(1− anRaL)dR

an−1
R

= 0 for OLRn,

(1− anLaR)dR

anL
= 0 and

(1− anLaR)dL

an−1
L

= 0 for ORLn

(2.48)

Obviously, both border collision bifurcations, with dL and dR, occur at the

same time, when anRaL = 1 for OLRn or anLaR = 1 for ORLn. Recall that the ex-

pressions for border collision bifurcation boundaries of period adding regions

of higher complexity levels are obtained recursively by substituting instead

of aL, aR, µL, µR the coe�cients of the respective composite functions into

derived border collision bifurcation expressions of the previous complexity

level. This implies that a period adding cycle of period n with l points in IL

exists only when its multiplier is equal to 1, that is, for (2.47), from which

one can derive the value r̄n,l.

Moreover, for (r, ε) ∈ DLMR only a part of the period adding structure is

observed related to the period adding cycles ORLn and the respective cycles
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of higher complexity levels, while the cycles OLRn cannot occur for r ∈ (0, 1).

Let us de�ne a function F(r) = aLa
n
R − 1 = (1+ r)(1− r)n− 1. There holds

F(0) = 0, F(1) = −1, and the derivative is F ′(r) < 0 for r ∈ (0, 1). It

means that F is monotonically decreasing in (0, 1), and hence, there are no

values r ∈ (0, 1) at which F vanishes.

To derive ε̄n,l, recall that, in general, a family of period adding regions of

the complexity level K + 1, K ∈ N, located between two neighbour period

adding regions Pσ1
and Pσ2

of the K-th complexity level, are completely

contained inside Dσ1,σ2
(see the end of Sec. 2.1.2), boundaries of which are

derived recursively from the expressions for b1 and b2 (see the Remark 2.3).

For the map f̄ , the expressions for b1 and b2 read as

aL = 1 + r =
dR

dL

=
ε+ r

ε− r
and aR = 1− r =

dL

dR

=
ε− r

ε+ r
. (2.49)

Consider two neighbour regions Ln1,l1 and Ln2,l2 of the K-th complexity level

with r̄n1,l1 < r̄n2,l2. Recursively it is shown that (2.49) become

al2L a
n2−l2
R = (1 + r)l2(1− r)n2−l2 =

ε+ r

ε− r
,

al1L a
n1−l1
R = (1 + r)l1(1− r)n1−l1 =

ε− r

ε+ r
.

(2.50)

From (2.50), we obtain ε̄n3,l3 for any Ln3,l3 with either n3 = mn1 + n2,

l3 = ml1 + l2 or n3 = n1 +mn2, l3 = l1 +ml2, m ∈ N.

Remark 2.19. Note that ε̄n,n−1 = r̄n,n−1+2, i. e., the half-lines Ln,n−1 issue

from the line ε = r + 2.

As for the �n structure adjacent to period adding regions (half-lines), the

following two Corollaries of the Theorems 2.11 and 2.12 hold.

Corollary 2.20. Consider the line Ln,l related to the period adding cycle

Oσ, σ = Lσ1Rσ2, where xLσ1Rσ2
= ε/(ε + r), xRσ2Lσ1

= ε/(ε − r), and σi

having li/qi symbols L/R, i = 1, 2. And denote a = (1 + r)l(1 − r)n−l,

b = (1 + r)l−1(1− r)n−l(1− ε).

Between Ln,l and the curve bL,σst de�ned by
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(1− ε)(1 + r)2l1+l2(1− r)2q1+q2+1 ε

ε+ r

+ ε(1 + r)l1(1 − r)q1 =
ε

ε− r
, (2.51)

there can exist the following attractors:

� a 2m+1n-piece chaotic attractor Q2m+1n, if b < −1/a, Hm(a, b) < 0, and

Hm+1(a, b) > 0, m ≥ 0;

� a 2kn-piece chaotic attractor Q2kn, if b < −a1−k, b < −(1− ak−1)(1−
a)−1a2−k

L , and a2(k−1)b3 − b+ a > 0, k ≥ 3;

� a kn-piece chaotic attractor Qkn, if b < −(1 − ak−1)(1 − a)−1a2−k,

a2(k−1)b3 − b+ a < 0, and ak−1b2 + b− a < 0, k ≥ 3;

� an n-piece chaotic attractor Qn otherwise.

Proof. Proof follows immediately from [LF2], [LF4]�[LF6].

Corollary 2.21. Consider the line Ln,l related to the period adding cycle

Oσ, σ = Lσ1Rσ2, where xLσ1Rσ2
= ε/(ε + r), xRσ2Lσ1

= ε/(ε − r), and σi

having li/qi symbols L/R, i = 1, 2. And denote a = (1 + r)l(1 − r)n−l,

b = (1 + r)l(1− r)n−l−1(1− ε).

Between Ln,l and the curve bR,σst de�ned by

(1− ε)(1 + r)l1+2l2+1(1− r)q1+2q2
ε

ε− r

+ ε(1 + r)l2(1 − r)q2 =
ε

ε+ r
, (2.52)

there can exist the following attractors:

� a 2m+1n-piece chaotic attractor Q2m+1n, if b < −1/a, Hm(a, b) < 0, and

Hm+1(a, b) > 0, m ≥ 0;

� a 2kn-piece chaotic attractor Q2kn, if b < −a1−k, b < −(1− ak−1)(1−
a)−1a2−k

L , and a2(k−1)b3 − b+ a > 0, k ≥ 3;
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� a kn-piece chaotic attractor Qkn, if b < −(1 − ak−1)(1 − a)−1a2−k,

a2(k−1)b3 − b+ a < 0, and ak−1b2 + b− a < 0, k ≥ 3;

� an n-piece chaotic attractor Qn otherwise.

Proof. Proof follows immediately from [RF2], [RF4]�[RF6].
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Chapter 3

Piecewise linear discontinuous one-dimensional

maps: Bifurcations of chaotic attractors

In the current Chapter, the main object of studies is a family of one-

dimensional piecewise monotone discontinuous maps with multiple discon-

tinuity points. First of all, being the representatives of a class of piecewise

smooth maps, discontinuous maps demonstrate the same range of phenom-

ena, such as border collision bifurcations [32, 160], degenerate bifurcations

[227], and so on. However, in contrast to continuous piecewise smooth maps,

where border collisions are local in nature, in discontinuous maps the related

e�ects are global (due to the di�erence of function limits at both sides of the

discontinuity points). Thus, the skew tent map can no longer be used as a

border collision normal form.

The most well-studied discontinuous maps are one-dimensional piecewise

monotone maps with a single discontinuity, sometimes referred to as Lorenz

maps, since they are associated with Poincar�e sections of Lorenz-like �ows.

Interest to Lorenz maps is related, in particular, to the fact that border col-

lision bifurcations in these maps correspond to homoclinic bifurcations in

the associated �ows (see, e. g., [40, 74, 104, 105, 119, 209, 242]). Bifurca-

tions of asymptotic solutions and related structures in the parameter space

of piecewise monotone maps with a single discontinuity were quite exten-

sively studied and nowadays are well described. These structures are formed

by periodicity regions related to attracting cycles of various periods (period

adding and period incrementing structures [21, 27, 30, 126]), and by param-

eter regions corresponding to chaotic attractors with di�erent numbers of
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connected elements�bands (bandcount adding and bandcount incrementing

structures [16�19, 26]).

Since border collision bifurcations are typical for piecewise monotone

maps with a single discontinuity, the corresponding bifurcation curves are

involved in the formation of the bifurcation structures, and they bound peri-

odicity regions related to attracting cycles of di�erent periods. As for chaotic

attractors with di�erent numbers of bands, it can easily be shown that a

chaotic attractor necessarily includes the border point. As a matter of fact,

the boundaries of the related parameter regions cannot be associated with

border collision bifurcations. Instead, these regions are con�ned by curves re-

lated to homoclinic bifurcations of the respective repelling cycles, leading to

merging, expansion or �nal bifurcations [20, 21]. By contrast, in a map with

multiple discontinuities a border collision for a chaotic attractor is possible.

3.1. Known bifurcation structures for chaotic attrac-

tors related to critical homoclinic orbits

Results known up to now concern bifurcation structures in the parameter

space of a discontinuous map de�ned in two partitions of the form (1.6).

In the Section 1.2 we recalled the formation principles of the period adding

bifurcation structure that appears in the parameter space of a piecewise

increasing map f̃ provided that it is invertible on the absorbing interval

J . In the other part of the parameter space, where J still exists but f̃

is noninvertible on it, asymptotic dynamics can be only chaotic. However,

the regions related to, now repelling, period adding cycles still exist. These

cycles play an important role in formation of a so-called bandcount adding

bifurcation structure.

For the map f̃ with both aL, aR > 0, the invariant absorbing interval

J = [fR(d), fL(d)] exists if the parameter values belong to
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Dabsr =

{
p : µL > d(1− aL), µR < d(1− aR),

µL

1− aL

< aRd+ µR,
µR

1− aR

> aLd+ µL

}
. (3.1)

If additionally

µL(1− aR) < µR(1− aL), (3.2)

the restriction f̃ |J is noninvertible, and in the respective part of the parameter
space one observes the bandcount adding structure, which is embedded in the

region C1 corresponding to a 1-band chaotic attractor1. Let us recall brie�y

the main principles of how the bandcount adding structure is organised (the

detailed description can be found, e. g., in [21]).

The �rst tier of the bandcount adding structure consists of chaoticity

regions Cn
σ , n > 2, which are induced by (n − 1)-cycles Oσ related to the

period adding structure, that is, σ ∈ ∪∞
K=1 ∪2K

j=1 Σj,K (see (1.18), (1.20) and

the respective explanation). In the considered part of the parameter space

Dabsr these cycles are repelling, if existent. And if an n-band chaotic attractor

Qn
σ exists, each point of Oσ occupies a separate gap of it. Each region Cn

σ is

con�ned by two boundaries associated with expansion bifurcations, related

to homoclinic bifurcations of Oσ. The bifurcation conditions related to the

�rst complexity level cycles OLRn1 and ORLn1 are

f̃LR(d) = xRn1L and f̃RL(d) = xRn1−1LR (3.3a)

for chaoticity regions Cn1+2
LRn1 , n1 ∈ N, and

f̃RL(d) = xLn1R and f̃LR(d) = xLn1−1RL (3.3b)

for Cn1+2
RLn1 . The expressions for bifurcation conditions related to the cycles

of higher complexity levels can be obtained in analytic form iteratively from

1The region C1 is con�ned by three bifurcation boundaries, one de�ned by using the equality sign in

(3.2), and the other two related to �nal bifurcations of the �xed points x∗
L and x∗

R (the equalities in the

last two expressions of (3.1)).
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(3.3a) and (3.3b) by means of the symbolic replacements κL
m and κR

m (1.19)

(that is, by using the map replacement technique similar to how it was done

for obtaining the boundaries of period adding regions). In the parameter

space the regions Cn
σ are ordered in a way similar to the period adding regions.

Namely, between Cn1
σ1

and Cn2
σ2
, where σ1 and σ2 are related to the neighbour

period adding regions, there exists the region Cn1+n2−1
σ1σ2

.

Before turning to the bandcount adding chaoticity regions of higher tiers,

let us make a generalising remark concerning period adding symbolic families,

obtained iteratively by using the replacements κL
m and κR

m (1.19). Similar

adding scheme can be de�ned for any two basic symbolic sequences τ1 and

τ2, used instead of L and R. Namely, the �rst complexity level is made up

of

Σ1,1(τ1, τ2) = {τ1τn1
2 }∞n1=1, Σ2,1(τ1, τ2) = {τ2τn1

1 }∞n1=1. (3.4)

The symbolic replacements become

κ̄τ1m :=

{
τ1 → τ1τ

m
2

τ2 → τ2τ1τ
m
2

, κ̄τ2m :=

{
τ1 → τ1τ2τ

m
1

τ2 → τ2τ
m
1

. (3.5)

By using (3.4) and (3.5), one obtains the sequence families of the second

complexity level as

Σ1,2(τ1, τ2) = κ̄τ1n2
(Σ1,1(τ1, τ2)) = {τ1τn2

2 (τ2τ1τ
n2
2 )n1}∞n1,n2=1,

Σ2,2(τ1, τ2) = κ̄τ2n2
(Σ1,1(τ1, τ2)) = {τ1τ2τn2

1 (τ2τ
n2
1 )n1}∞n1=1,

Σ3,2(τ1, τ2) = κ̄τ1n2
(Σ2,1(τ1, τ2)) = {τ2τ1τn2

2 (τ1τ
n2
2 )n1}∞n1,n2=1,

Σ4,2(τ1, τ2) = κ̄τ2n2
(Σ2,1(τ1, τ2)) = {τ2τn2

1 (τ1τ2τ
n2
1 )n1}∞n1=1.

(3.6)

The symbolic sequences of the level K, K > 2, are obtained from the sym-

bolic sequences of the level (K − 1) by applying the replacements κ̄τ1nK
and

κ̄τ2nK
. For the sake of brevity, in what follows we will use the notation

F(τ1, τ2) :=
∞⋃

K=1

2K⋃
j=1

Σj,K(τ1, τ2). (3.7)
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Now, consider a bandcount adding region Cn
σ of the �rst tier with σ ≡

Lσ1 ≡ Rσ2 where Lσ1 (Rσ2) is associated with the point of the cycle xLσ1

(xRσ2
), being the closest to the border point x = dL from the left (x = dR

from the right). We will use the following results from [21]:

Theorem 3.1 (Avrutin et al.). For p ∈ Cn
σ , the bifurcation structure of the

map

f̃aux : x 7→ f̃aux(x) =

 f̃Lσ1
(x), x < d,

f̃Rσ2
(x), x > d,

(3.8)

is in a one-to-one correspondence with the bifurcation structure of the map

f̃ in the parameter region Dabsr restricted by (3.2).

Corollary 3.2 (Avrutin et al.). Inside the region Cn
σ , the map f̃ has a band-

count adding structure associated with homoclinic bifurcations of cycles Oρ

with ρ ∈ F(Lσ1,Rσ2).

In a similar way, one concludes that each bandcount adding chaoticity re-

gion of the second tier again contains an in�nite family of sub-regions of the

third tier, which form a bandcount adding structure, associated with homo-

clinic bifurcations of the cycles with symbolic sequences from the respective

adding scheme. And so on ad in�nitum.

The other two known important bifurcation structures for the discontin-

uous map f̃ de�ned in (1.6) exist in the part of the parameter space where

aLaR < 0. Without loss of generality it is enough to consider the case aL > 0,

aR < 0. Nontrivial asymptotic dynamics of f̃ occurs then for µL > 0, while

µR ∈ R.
The structure related to regular dynamics is the period incrementing

structure. It is formed by periodicity regions PRLn (period incrementing

regions), n ∈ Z+, overlapping pairwise with PRLn ∩ PRLn+1 corresponding to

coexisting basic cycles ORLn and ORLn+1. Each PRLn is con�ned by two border

collision bifurcation boundaries, ξLRLn−1 and ξRLn, and a degenerate �ip bifur-

cation boundary ηRLn. If 0 < aL < 1, −1 < aR < 0, the sequence of period
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incrementing regions is complete and in�nite. In case if 0 < aL < 1, aR < −1,

the sequence is in�nite but not complete with n > − ln |aR|/ ln aL := N . If

aL > 1, −1 < aR < 0, the sequence is �nite with n < N .

The structure related to chaotic dynamics is the bandcount incrementing

structure. Similarly to the connection between the period adding and the

bandcount adding structures, period incrementing cycles serve as skeletons

for bandcount incrementing chaotic attractors. By analogy to the regular

domain, inside the chaotic domain the regions of existence for the two un-

stable cycles ORLn and ORLn+1 also overlap. This implies that the �rst tier of

the bandcount incrementing structure includes regions of two types, namely,

Cn+2
RLn and C2n+4

RLn,RLn+1, n ∈ Z+. As indicated by the subscripts and superscripts,

a region of the �rst type is induced by a single periodic orbit ORLn and related

to a chaotic attractor having at least n+2 bands, each gap of which contains

one point of the related nonhomoclinic cycle. By contrast, each region of

the second type is induced by two unstable (nonhomoclinic) cycles ORLn and

ORLn+1 with every point of both cycles inducing a gap of the attractor. So

that the chaotic attractor has at least 2n+4 bands. The boundaries of Cn+2
RLn ,

n ∈ N, are obtained from conditions related to merging bifurcations

f̃RL(cL) = xLnR and cR = xLn−1RL. (3.9)

For n = 0 they become

f̃RL(cL) = x∗R and f̃RL(cR) = x∗R. (3.10)

The neighbour regions Cn+2
RLn and Cn+3

RLn+1 overlap inducing the region C2n+4
RLn,RLn+1.

The second tier of the bandcount incrementing structure consists of

chaoticity regions also referred to as �rst additional regions. The bifurcation

boundaries of these regions are related to another four homoclinic (merging)

bifurcations of the cycle ORLn, n ∈ N. Namely, the conditions

f̃RLn+2RL(cL) = xLnR and f̃LnRLn+1RL(cR) = xLnR (3.11)

de�ne the boundaries of the region Ca1, 2n+4
RLn,RLn+1 ⊂ Cn+3

RLn+1. And the conditions

f̃RLnRLn−1R(cL) = xLn−1RL and f̃Ln−2R(cR) = xLn−1RL (3.12)
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de�ne the boundaries of the region Ca2, 2n+2
RLn−1,RLn ⊂ Cn+1

RLn−1. For each n ∈ N,
the �rst additional regions Ca2, 2(n+1)+2

RLn,RLn+1 and Ca1, 2(n−1)+4
RLn−1,RLn overlap inducing the

region C3n+4
RLn−1,RLn,RLn+1, inside which three cycles ORLn−1, ORLn, and ORLn+1 are

nonhomoclinic.

There may exist further substructures inside some of the bandcount

incrementing regions described so far. Thus, inside the region C2n+4
RLn,RLn+1

there may be observed the bandcount adding structure based on the sym-

bolic sequence adding scheme F((RLn)2, (RLn+1)2). Another bandcount

adding structure may exist inside C3n+4
RLn−1,RLn,RLn+1 based on the adding scheme

F((RLn−1)2, (RLn+1)2). First additional regions may also contain further

substructures consisting of in�nite sequences of chaoticity regions. Due to

linearity of the branches of the map f̃ , bifurcation boundaries of all these

regions can be obtained in analytic form, although it is a rather laborious

task. For further details see [21].

3.2. A discontinuous map de�ned on three partitions:

An overview of the parameter space

Let us consider the family of maps f : R → R again de�ned by three linear

functions fL, fM, and fR:

f : x 7→ f(x) =


fL(x) = aLx+ µL, x < dL,

fM(x) = aMx+ µM, dL < x < dR,

fR(x) = aRx+ µR, x > dR,

(3.13)

with a symbolic set S = {L,M,R} and partitions IL = (−∞, dL), IM =

(dL, dR), and IR = (dR,∞). We assume that fL(dL) ̸= fM(dL) and fR(dR) ̸=
fM(dR), that is the border points are the points of discontinuity.

Maps of such kind serve as rather popular models for asset price evolution

in a �nancial market with heterogeneous agents. Originally proposed in

[80, 122], these models have been studied by many economists in collaboration
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with applied mathematicians, e. g., in [230, 233, 238]. The theoretical results

obtained with their help are also empirically con�rmed on the basis of real

data, for example, in the works [93, 120, 149].

At �rst we impose additional restrictions on other parameters [198, 199],

so that f becomes odd (geometrically symmetric with respect to the origin),

namely,

aL = aR = aM + b, µR = −µL = µ, µM = 0, dR = −dL = z (3.14)

with b, µ ∈ R, aM, z ∈ R+, aM > 1. Through the homeomorphism h(x) = zx,

the map f with the parameters as in (3.14) is topologically conjugate to the

map of the same form but with z = 1.

The map f as in (3.13), (3.14) always has a �xed point on the middle

partition x∗M = 0, which is always unstable, and there can exist two more

�xed points, symmetric with respect to the origin,

x∗L = − µ

1− aM − b
and x∗R =

µ

1− aM − b
= −x∗L. (3.15)

In general, geometric symmetry of f implies a particular property for all

its invariant sets (see [239]):

Lemma 3.3 (Tramontana et al.). Any invariant set A of f is either sym-

metric with respect to the origin, or there exists another invariant set A′ that

is symmetric to A.

There is an immediate consequence from the Lemma 3.3. An n-cycle (or

an n-band chaotic attractor) with odd n > 1 necessarily coexists with a sym-

metric cycle (or, respectively, chaotic attractor), while for even n the related

set, if it is symmetric with respect to the origin, may be unique. To describe

below the asymptotic dynamics of f depending on the parameter values and

the related bifurcation structures, it is useful to distinguish between the left

and the right parts of the middle partition IM = (−1, 1). Hence, we de�ne

the intervals IM−
= (−1, x∗M) and IM+

= (x∗M, 1), for which the corresponding

symbols are M− and M+, respectively.
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As before we de�ne the critical points as the limiting values of f at the

points of discontinuity, but in contrast to the continuous bimodal map (2.1),

(2.2), they are now four:

cL = fL(−1), cM−
= fM(−1), cM+

= fM(1), cR = fR(1). (3.16)

Recall that the critical points may serve as the boundaries of an absorbing in-

terval J . For simplicity, we use the notation J−/J+ for the absorbing interval

containing only x = −1/x = 1 and J± for the one containing both border

points. The Lemma 3.3 implies that the map f has either two coexisting

absorbing intervals, J− and J+, symmetric to each other, or a single absorb-

ing interval, J±, boundaries of which are symmetric. Moreover, the critical

points cL and cR are always symmetric with respect to the origin, and so

are cM−
and cM+

. Consequently, the bifurcations for appearing/disappearing

of J− and J+ occur at the same parameter values. Similarly, for J±, any

bifurcation involving the lower boundary of the interval immediately implies

a symmetric bifurcation related to its upper boundary.

Denoting the parameter point for f as p = (aM, µ, b), we distinguish four

domains Ri, i = 1, 4, in the parameter space (1,∞)×R2 that are related to

di�erent bifurcation structures:

R1 = {p : b > −aM, b > −µ− aM} , (3.17)

R2 =

{
p : b < −aM, b > −aM − µ

aM

}
, (3.18)

R3 = {p : b > −aM, b < −µ− aM} , (3.19)

R4 =

{
p : b < −aM, b < −aM − µ

aM

}
. (3.20)

Theorem 3.4. For p ∈ R1, there holds:

� Two attracting �xed points x∗L and x
∗
R exist, if 1−µ−aM < b < 1−aM.

� Two disjoint invariant absorbing intervals J− = [cM−
, cL] and J+ =

[cR, cM+
] exist, if b < min {1− aM − µ/aM, 1− µ− aM}. Moreover, if
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µ > 0, then f has only attracting cycles, while for µ < 0, the asymptotic

dynamics is only chaotic.

� A typical orbit diverges otherwise.

For p ∈ R2, there holds:

� Two attracting �xed points x∗L and x∗R exist, if b > 1 − µ − aM and

b > −1− aM.

� Two disjoint invariant absorbing intervals J− = [s, f(s)] and J+ =

[f(q), q] with s = min {cL, cM−
} and q = max {cR, cM+

} exist, if b <

max{1− µ− aM,−1− aM} and µ < −(aM + b)2/(aM + b+ 1).

� A single invariant absorbing interval J± = [cL, cR] exists if µ > −(aM+

b)2/(aM + b+ 1) and b < −2− aM.

� A typical orbit diverges otherwise.

For p ∈ R3, there holds:

� An attracting 2-cycle OLR exists, if b < −1− µ− aM and b < 1− aM.

� A single invariant absorbing interval J± = [s, q] with s = min {cM−
, cR}

and q = max {cL, cM+
} exists, if b > −1− µ− aM, b > 1− aM, b < 1−

aM − µ/aM, and µ > (aM + b)(aM + b− 1)/(2− aM − b).

� A typical orbit diverges otherwise.

For p ∈ R4, there holds:

� An attracting 2-cycle OLR exists, if b < −1− µ− aM and b > −1− aM.

� A single invariant absorbing interval J± = [s, q] with s = min {cL, cM−
}

and q = max {cM+
, cR} exists, if b > −1−µ−aM, b > −1−aM−µ/aM,

and µ < −(aM + b)(aM + b+ 1)/(2 + aM + b).

� A typical orbit diverges otherwise.
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Proof. Let us consider the region R1. Since b > −aM, the map f is piecewise

increasing. The line b = −µ − aM, separating R1 and R3, is related to the

�nal bifurcation χcL
M ≡ χcR

M , at which both critical points cL and cR collide

with the �xed point x∗M. If b > −µ − aM, there is cL < 0 and cR > 0.

From the Lemma 3.3, it follows for any x ∈ IL ∪ IM−
there is −x ∈ IM+

∪ IR

and their orbits are o(x) ⊂ IL ∪ IM−
, o(−x) ⊂ IM+

∪ IR, with o(x) being

symmetric to o(−x) with respect to the origin. Hence, asymptotic dynamics
is restricted to the two adjacent partitions and the results known for the

discontinuous map f de�ned by two linear branches can be applied. From

this we get that the �xed points x∗L < −1 and x∗R > 1 exist and are stable if

1− µ− aM < b < 1− aM. Further, if b > 1− aM and cM−
< x∗L (equivalently

cM+
> x∗R) that means b > 1 − aM − µ/aM, a typical orbit o(x) ⊂ IL ∪ IM−

(o(−x) ⊂ IM+
∪ IR) diverges. In such a way, nontrivial asymptotic dynamics

occurs for b < min {1− aM − µ/aM, 1− µ− aM}. In this case the map f has
two coexisting invariant absorbing intervals J− = [cM−

, cL] ⊂ IL ∪ IM−
and

J+ = [cR, cM+
] ⊂ IM+

∪ IR, symmetric with respect to the origin. Recall that

under the invertibility condition (1.17) the discontinuous map f has only

periodic solutions. For the map f with (3.14) it means µ > 0. Clearly, for

µ < 0 only chaotic attractors appear.

Let us consider the regionR2. Since b < −aM, the two outermost branches

of f are decreasing. The line b = −aM − µ/aM, separating R2 and R4, is

related to the �nal bifurcation χ
c1M−
M ≡ χ

c1M+

M , at which both critical points c1M−

and c1M+
collide with the �xed point x∗M. If b > −aM−µ/aM, there is c

1
M−

< 0

and c1M+
> 0, and by the Lemma 3.3, asymptotic dynamics is restricted to

either IL ∪ IM−
or to IM+

∪ IR. The �xed points x∗L < −1 and x∗R > 1

exist and are stable if b > max{1 − µ − aM,−1 − aM}. Outside PL ≡ PR,

provided that max{c1L, c1M−
} < 0 (min{c1M+

, c1R} > 0), which is equivalent to

µ < −(aM + b)2/(aM + b + 1), there exist two disjoint invariant absorbing

intervals J− = [s, f(s)] and J+ = [f(q), q] with s = min {cL, cM−
} and

q = max {cR, cM+
}. When µ > −(aM+ b)2/(aM+ b+1), i. e., c1M+

< 0 < c1M−
,
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and c1L < cR (equivalent to c1R > cL), corresponding to µ < −(aM + b)(aM +

b+ 1)/(aM + b+ 2), a single absorbing interval J± = [cL, cR] exists. Finally,

for µ > −(aM + b)(aM + b + 1)/(aM + b + 2) (when c1L > cR and c1R < cL),

a typical orbit diverges. Indeed, consider some x > cR. Clearly, x ∈ IR

and cL > f(x) ∈ IL. Let us show that f(x) < −x, which is the same as

−f(x) > x. This is equivalent to x(1− aM − b) > µ. Note that for x > cR,

x(1− aM − b) > (aM + b+ µ)(1− aM − b) > µ,

since aM + b < −1 and aM + b+µ > 1. Hence, if c1L < cR, the interval [cL, cR]

is absorbing. Otherwise, the absorbing interval does not exist.

Inside the region R3, in the region con�ned by b = −1−µ−aM (related to

the border collision with x = ±1) and b = 1− aM (related to the degenerate

transcritical bifurcation), an attracting 2-cycle OLR exists, as can be shown

by the straightforward computation. Further, for b > −2aM − µ (which

corresponds to cL < cM+
and cR > cM−

), the absorbing interval (if it exists) is

J± = [cM−
, cM+

], while it is J± = [cR, cL] if the opposite inequality holds. It

means that for parameters above the line b = −2aM −µ, the existence of J±

is guaranteed by the inequality cM−
> x∗L (cM+

< x∗R), and for b < −2aM − µ

there must be cR > x∗L (cL < x∗R). These two conditions imply two boundaries

of the domain associated with divergent orbits, namely, the region de�ned as

b > 1− aM − µ/aM and µ < (aM + b)(aM + b− 1)/(2− aM − b). Otherwise,

nontrivial asymptotic dynamics is observed inside J±.

Finally, in R4 the attracting 2-cycle OLR exists, if b < −1 − µ − aM

and b > −1 − aM (with the equality being related to the degenerate +1

bifurcation). The existence of the invariant absorbing interval, which is either

J± = [cL, cR] or J
± = [cM−

, cM+
], is shown by similar arguments, as it is done

for the region R2. Hence, in the region con�ned by µ = −(aM + b)(aM +

b + 1)/(aM + b + 2) (associated with c1L = cR) and b = −1 − aM − µ/aM

(associated with c1M−
= cM+

), the interval J± exists, while in the remaining

part of R4, a typical orbit diverges.
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3.2.1. Bifurcation structures related to two partitions. Our goal is

to describe main bifurcation structures related to chaotic dynamics in the

parameter space of a symmetric map f given by (3.13), (3.14). For this

we also use the results concerning regular dynamics, previously obtained in

[230, 239, 241]. At �rst, we consider the case when f has two coexistent

absorbing intervals J− and J+. There hold the following corollaries from the

Theorem 3.4.

Corollary 3.5. Consider p ∈ R1 with b < min{1−aM−µ/aM, 1−µ−aM}. If
µ > 0, in the parameter space of f one observes periodicity regions organised

in the period adding structure. Each periodicity region Pσ ≡ Pσ̃ is related

to coexistence of two cycles Oσ ⊂ J− and Oσ̃ ⊂ J+ symmetric with respect

to the origin, where σ consists of the symbols M− and L, while σ̃ of the

symbols M+ and R.

Corollary 3.6. Consider p ∈ R1 with b < min{1−aM−µ/aM, 1−µ−aM}. If
µ < 0, in the parameter space of f one observes chaoticity regions organised

in the bandcount adding structure. Each chaoticity region Cn
σ1,...,σk

≡ Cn
σ̃1,...,σ̃k

,

k ∈ N, is related to coexistence of two chaotic attractors Qn
σ1,...,σk

⊂ J− and

On
σ̃1,...,σ̃k

⊂ J+ symmetric with respect to the origin, where σi, i = 1, k,

consist of the symbols M− and L, while σ̃i of the symbols M+ and R.

Corollary 3.7. Consider p ∈ R2 with b < min{max{1 − µ − aM,−1 −
aM},−µ}. In the parameter space of f one observes periodicity regions or-

ganised in the period incrementing structure, as well as chaoticity regions

organised in the bandcount incrementing structure. Each periodicity region

PLMn
−
≡ PRMn

+
, n ∈ N, is related to coexistence of two cycles, symmetric with

respect to the origin, belonging to J− and J+, respectively. Each chaoticity

region Cn
σ1,...,σk

≡ Cn
σ̃1,...,σ̃k

, k ∈ N, is related to coexistence of two chaotic

attractors Qn
σ1,...,σk

⊂ J− and Qn
σ̃1,...,σ̃k

⊂ J+ symmetric with respect to the

origin, where σi, i = 1, k, consist of the symbols M− and L, while σ̃i of the
symbols M+ and R.
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Proofs of the Corollaries 3.5, 3.6, and 3.7 follow directly from the The-

orem 3.4 and the results known for a discontinuous piecewise linear map

de�ned in two partitions.

3.2.2. Bifurcation structures related to three partitions. Before

turning to chaotic dynamics, let us recall the results corresponding to regular

dynamics associated with four symbols, namely, the even-period increment-

ing and the related period adding structures (see, e. g., [230, 239�241]).

In the domain R3 one observes an even-period incrementing structure

formed by regions PLMn
+RMn

−
, n ≥ 0, related to the cycles of even periods

2(n + 1). Each such region is con�ned by two border collision bifurcation

boundaries and one degenerate +1 bifurcation boundary. A pair of neigh-

bouring regions PLMn
+RMn

−
and PLMn+1

+ RMn+1
−

have an overlapping part corre-

sponding to coexisting cycles OLMn
+RMn

−
and OLMn+1

+ RMn+1
−
.

Remark 3.8. The regions constituting the period incrementing structures

in the domains R2 and R3 are symmetric with respect to the line in the

parameter space de�ned as

S = {(aM, µ, b) : µ = 0, b = −aM)}, (3.21)

associated with fL(x) = fR(x) ≡ 0. However, the symmetric parameter

regions are related to cycles of di�erent periods and having distinct symbolic

sequences.

In the domain R4 for µ < 0 and b > −µ/aM − aM − 1, there is c1M−
< cM+

and c1M+
> cM−

. Then the map f has an invariant absorbing set consisting

of two symmetric intervals J = [cM−
, cR] ∪ [cL, cM+

]. Moreover, µ(aM − 1) <

0, and hence, f |J is invertible and cannot have chaotic attractors. In the

respective part of the parameter space one observes a particular period adding

structure. Any periodicity region related to an odd period cycle Ok, k = 2s−
1, s ∈ N, coincides with the periodicity region related to the cycle Õk, being

symmetric to Ok with respect to x = 0. Any periodicity region related to
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an even period cycle Ok, k = 2s is a unique attractor, being symmetric with

respect to x = 0 itself.

The �rst complexity level of these regions is related to periodic orbits

with symbolic sequences that have one point in IL and one in IR:

{LMn
+RMn

−} , n ≥ 0, (3.22)

as well as sequences with one point in IM−
and one in IM+

:{
M− (LR)n/2 , M+ (RL)n/2

}
, for even n ≥ 2, (3.23a){

M− (LR)(n−1)/2LM+ (RL)(n−1)/2R
}
, for odd n ≥ 1. (3.23b)

Symbolic sequences of the second complexity level are certain combinations

of (3.22) or (3.23). For instance, regions related to coexistence of two cycles

associated with the sequences{
LMn

+RMn+1
− , RMn

−LMn+1
+

}
, n ≥ 0,

belong to the second complexity level. The generic procedure for obtaining

symbolic sequences related to all periodicity regions in R4 is similar to the

one described in the Section 1.2 but is more complicated than in the case of

the period adding structure based on two symbols.

Similarly to the symmetry of the period incrementing structures in R2 and

R3 with respect to parameter point S given in (3.21), there is a symmetry

of the period adding structure in domain R1 with that in R4. The regions

constituting these two structures are related to cycles with distinct symbolic

sequences, while periods may coincide or may di�er.

Similarly to the bandcount incrementing structure in R2, chaoticity re-

gions observed in domain R3 are related to cycles OLMk
+RMk

−
, k ∈ Z+, peri-

odicity regions of which form the even-period incrementing structure. Each

chaoticity region in R3 is symmetric to a certain region in R2 with respect

to the point S, but the related bandcounts can be di�erent.
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Lemma 3.9. For

b < −aM − µ

aM

(3.24)

and

µ >
(aM + b)2

1− aM − b
(3.25)

the �xed point x∗M = 0 is non-homoclinic.

Proof. If (3.24) holds, there is c1M−
= fL(cM−

) > 0. It also means

that f−1
R (0) > cM+

and f−1
L (0) < cM−

. If (3.25) holds, there is

c1L = fR(cL) < 0, which also means that f−1
R (0) > cL and f−1

L (0) < cR.

Hence, when both (3.24) and (3.25) hold, there is f−1
R (0) > max{cL, cM+

}
and f−1

L (0) < min{cR, cM−
}. Then the �xed point x∗M does not have any

preimages except itself and cannot have any homoclinic orbits.

Remark 3.10. Note that the bandcount incrementing structure in R3 is

located in the part of the parameter space where both (3.24) and (3.25) hold.

That is, this structure is embedded into the chaoticity region C2
M related to

chaotic attractors having at least two bands.

Lemma 3.11. Consider two parameter points p = (aM, µ, b) and p
′ = (aM,

−µ, −2aM − b). The following statements hold:

� for any x ∈ IL there is fL|p′(x) = fR|p(−x);

� for any x ∈ IM there is fM|p′(x) = fM|p(x);

� for any x ∈ IR there is fR|p′(x) = fL|p(−x);

� c′L = cR, c
′
R = cL, c

′
M−

= cM−
, c′M+

= cM+
, where c′L, c

′
R, c

′
M−
, c′M+

are the

critical points of f |p′.

Proof. The proof of the �rst statement follows from the direct substitution:

fL|p′(x) = (aM − 2aM − b)x+ µ = −(aM + b)x+ µ = fR|p(−x).

Similarly for the other two statements. And from the �rst three statements

the last one follows.
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Theorem 3.12. The �rst tier of the bandcount incrementing structure in

R3 consists of chaoticity regions C2n+4
M, LMn

+RMn
−
, n ∈ Z+, related to a single

attractor and C2n+4, 2n+4
M, LMn

+RMn
−, LMn+1

+ RMn+1
−

related to two coexisting attractors being

symmetric with respect to the origin. The bifurcation conditions for obtaining

the boundaries of these regions are

fRM(cM+
) = xMn

−LMn
+R ⇔ fLM(cM−

) = xMn
+RMn

−L (3.26a)

and

cR = xMn−1
− LMn

+RM−
⇔ cL = xMn−1

+ RMn
−LM+

(3.26b)

for n ∈ N. For n = 0 the conditions become

fRM(cM+
) = xLR ⇔ fLM(cM−

) = xRL (3.27a)

and

fLM(cR) = xRL ⇔ fRM(cL) = xLR (3.27b)

The second tier of this structure consists of the �rst additional regions

Ca1, 4n+8
M, LMn

+RMn
−, LMn+1

+ RMn+1
−

and Ca2, 4n+4
M, LMn−1

+ RMn−1
− , LMn

+RMn
−
, related to a single attractor,

as well as to the regions C3n+4, 3n+4
M, LMn−1

+ RMn−1
− , LMn

+RMn
−, LMn+1

+ RMn+1
−

related to two coexist-

ing attractors being symmetric with respect to the origin. The corresponding

bifurcation conditions are

fRMn+2LM(cM+
) = xMn

+RMn
−L ⇔ fLMn+2RM(cM−

) = xMn
−LMn

+R , (3.28a)

fMnLMn+1RM(cR) = xMn
−LMn

+R ⇔ fMnRMn+1LM(cL) = xMn
+RMn

−L , (3.28b)

fRMnLMn−1R(cM+
) = xM−

n−1LM+
nRM−

⇔

fLMnRMn−1L(cM−
) = xM+

n−1RM−
nLM+

, (3.28c)

and

fMn−2L(cR) = xM+
n−1RM−

nLM+
⇔ fMn−2R(cL) = xM−

n−1LM+
nRM−

. (3.28d)
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Proof. To prove the statement of the Theorem, we use the bifurcation con-

ditions known for the bandcount incrementing structure in R2 and the

Lemma 3.11. Let us demonstrate this for (3.26a). Consider the region

Cn+2
LMn

−
≡ Cn+2

RMn
+
⊂ R2. One of its boundaries (as follows from (3.9) and the

Corollary 3.7) is given by

fRM(cM+
) = xMn

+R ⇔ fLM(cM−
) = xMn

−L. (3.29)

Let us demonstrate that the symmetric boundary in the region R3 is given

by (3.26a). Suppose p ∈ R2 such that (3.29) holds, while p
′ ∈ R3 is symmetric

to p with respect to the point S (3.21). For the sake of brevity, below we

refer to f |p simply as f and to f |p′ as f ′. Denote x̂ = xMn
−L ∈ OLMn

−
, then

−x̂ = xMn
+R ∈ ORMn

+
for f . By the Lemma 3.11, there is

f ′MnL(x̂) = fMnR(−x̂) = fMnR(xMn
+R) = −x̂ (3.30)

and

f ′MnR(−x̂) = fMnL(x̂) = fMnL(xMn
−L) = x̂. (3.31)

In such a way, for f ′ there is

x̂ = xMn
−LMn

+R ∈ OLMn
+RMn

−
. (3.32)

Similarly,

fLM(cM−
) = fMLM(−1) = f ′MRM(1) = f ′RM(cM+

). (3.33)

Combining (3.29), (3.32), and (3.33), we obtain (3.26a).

Using similar arguments we get all the other equalities in the statement

of the Theorem.

Figure 3.1 illustrates Theorem 3.12. There is shown a scaled parallelogram

area of the (ε, µ) parameter plane of the discontinuous map f de�ned in

(3.13), (3.14). Di�erent colours correspond to chaoticity regions related to

distinct number of bands (upper row of the colour bar) and various periodicity
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regions (lower row of the colour bar). In the panel (b) a one-dimensional

bifurcation diagram along the parameter path marked by the red arrow in

the panel (a) is plotted. Blue and red correspond to di�erent attractors. One

can clearly notice the regions of coexistence of two chaotic attractors, which

are symmetric with respect to the origin.

Figure 3.1: (a) A scaled parallelogram area of the (ε, µ) parameter plane of the discontin-

uous map f . Di�erent colours correspond to di�erent chaoticity and periodicity regions.

(b) A one-dimensional bifurcation diagram along the parameter path marked by the red

arrow in (a). Blue and red correspond to di�erent attractors.

The bandcount adding structure located in the region R4 is symmetric

to the bandcount adding structure located in R1, while cycles related to the

period adding structure based on four symbols serve here as skeletons. Since

the �xed point x∗M = 0 is non-homoclinic, a chaoticity region linked with a

periodicity region related to an k-cycle of an even period is associated with

an (k + 2)-band attractor whose k gaps are engaged by the respective cycle

and one gap by a �xed point x∗M. In contrast, a chaoticity region linked with

a periodicity region related to two coexisting k-cycles of an odd period is

associated with two coexisting (k + 1)-band attractors. For instance, unsta-

ble cycles OLMn
+RMn

−
and OM−(LR)nLM+(RL)nR, n ≥ 1, engender chaoticity regions
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C2n+4
M, LMn

+RMn
−
and C4n+6

M,M−(LR)nLM+(RL)nR
, respectively. On the other hand, coexist-

ing cycles OM−(LR)n and OM+(RL)n, n ≥ 1, induce a region C2n+2, 2n+2
M,M−(LR)n,M+(RL)n

related to two coexisting (2n+ 2)-band chaotic attractors.

Theorem 3.13. Expansion bifurcation conditions de�ning the boundaries of

a bandcount adding chaoticity region in R4 are

f̃LM(−1) = xMn
+RMn

−L and f̃ML(−1) = xMn−1
+ RMn

−LM+
(3.34a)

for chaoticity regions C2n+4
M, LMn

+RMn
−
, n ∈ N,

f̃LM(−1) = xR(LR)s−1M−L and f̃ML(−1) = x(RL)sM+
(3.34b)

for Cn+2, n+2
M,M+(RL)s,M−(LR)s, n = 2s, s ∈ N, and

f̃LM(−1) = x(RL)sM+(RL)sRM−L and f̃ML(−1) = x(RL)sRM−L(RL)sM+
(3.34c)

for C2n+4
M,M+(RL)sLM−(LR)sR, n = 2s+ 1, s ∈ N.

Figure 3.2: (a) A scaled parallelogram area of the (ε, µ) parameter plane of the dis-

continuous map f . Di�erent colours correspond to di�erent chaoticity regions. (b) A

one-dimensional bifurcation diagram along the parameter path marked by the red arrow

in (a). Blue and red correspond to di�erent attractors.

The Theorem 3.13 is proved by using the arguments similar to those

used for the proof of the Theorem 3.12. Figure 3.2 serves as the respective

illustration with several chaoticity regions marked.
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3.3. Bandcount accretion bifurcation structure

In this section we consider the family of maps f̆ : R → R de�ned as

f̆ : x 7→ f̆(x) =


fL(x) = ax− µ, x < −1,

fM(x) = ax, −1 < x < 1 + ε,

fR(x) = ax+ µ, x > 1 + ε,

(3.35)

where a > 1, µ < 0, ε > 0. This map models the dynamics of an asset price

for the trading market involving heterogeneous interacting agents [197, 200].

However, in contrast to the map f from the Section 3.2, this case is asym-

metric corresponding to b = 0. We study a particular bifurcation structure

occurring in the parameter space of f̆ , based mainly on the novel bifurcations

of chaotic attractors, not related to any critical homoclinic orbits. Some of

these bifurcations are direct analogues of the border collision bifurcations for

chaotic attractors. Note that the introduced parameter constellation excludes

stable cycles, and only chaotic attractors may exist.

We will consider a parameter space section with a �xed a and changing

ε and µ. At �rst, we notice that

Lemma 3.14. For µ < −a(1 + ε) there is dL, dR ∈ J , if J exists.

Proof. The inequality µ < −a(1 + ε) is equivalent to cR < 0, which means

that the absorbing interval J+ ⊂ IM+
∪ IR cannot exist. It also implies that

−a− µ > aε > 0 ⇔ −a− µ > 0 ⇔ cL > 0.

The latter means that the absorbing interval J− ⊂ IL ∪ IM−
does not exist.

Hence, if the absorbing interval exists it is J = J± ∋ {dL, dR}.

When inequality sign in the statement of the Lemma 3.14 is replaced

by the equality sign, we get the condition for the homoclinic bifurcation

of the �xed point x∗M = cR which corresponds to the �nal bifurcation and

transformation of the absorbing interval between J+ and J±. The related

bifurcation boundary is denoted as χcR
M .
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Let us consider the parameter region

D = {p : −a(2 + ε) < µ < −a2(1 + ε)}, (3.36)

where a parameter point is p = (a, µ, ε).

Lemma 3.15. For p ∈ D the �xed point x∗M is nonhomoclinic.

Proof. For −a(2 + ε) < µ < −a(1 + ε), the absorbing interval is J± =

[cM−
, cM+

]. Indeed, there is

cR > cM−
⇔ cL < cM+

⇔ µ > −a(2 + ε).

The point x∗M is then left-side homoclinic if f−1
L (0) > cM−

, which holds for

µ > −a2. On the other hand, it is right-side homoclinic if f−1
R (0) < cM+

,

which holds for µ > −a2(1+ε). Clearly, µ < −a2(1+ε) implies µ < −a(1+
ε), as well as µ < −a2, which means that if x∗M is nonhomoclinic from the

right, it is inevitably nonhomoclinic from the left as well.

When µ = −a2(1+ε), we get the condition for the homoclinic bifurcation
of the �xed point x∗M = c1M+

. For certain parameter ranges it corresponds to

the expansion bifurcation and transformation of a multiband chaotic attrac-

tor to a 1-band attractor. For the other parameter ranges such a homoclinic

expansion is not associated with any bifurcations of the chaotic attractor.

The related boundary in the parameter space is denoted as ζ
c1M+

M .

Let us introduce the following additional notation for an absorbing inter-

val J = [Jmin, Jmax]: J
L = [Jmin, 0) and J

R = (0, Jmax].

Theorem 3.16. For a �xed parameter a value, consider the region

Daccr = {(ε, µ) : µ > −ε−a2−1, µ < −a2(1+ε), µ < −a(a+1)}. (3.37)

con�ned by the bifurcation surfaces υcM− ,cR (related to the contact cM−
= cR),

ζ
c1M+

M (related to the homoclinic bifurcation x∗M = c1M+
) and υcL,c

2
M− (related to

the contact cL = c2M−
). Inside this region one observes a bifurcation structure

described as follows:
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� Its �rst tier consists of chaoticity regions Cn+1
M , n = 1, n̄, each related

to a chaotic attractor Qn+1
M = ∪n+1

i=1Bi with B1 ⊂ JL and ∪n+1
i=2Bi ⊂ JR,

where

n̄ =

[
ln(a+ 1)

ln a

]
, (3.38)

with [·] denoting the integer part.

� For n < n̄, the region Cn+1
M is con�ned by the bifurcation boundaries

υc
n+1
M−

,c2M+ (a contact bifurcation cn+1
M−

= c2M+
) and υc

n
M−

,dR (a border colli-

sion bifurcation cnM−
= dR), expressions for which are given by

µ = −a31 + ε+ an−1

an + a− 1
and µ = −a2 − 1 + ε

an−1
. (3.39)

The region Cn̄+1
M is con�ned by υc

n̄+1
M−

,c2M+ , ζ
c1M+

M and υcL,c
2
M− .

� Between any two successive regions C(n−1)+1
M and Cn+1

M , n ≥ 2, of the

�rst tier, there are an in�nite number of regions Cn+k
M , k ≥ 2, of the

second tier, each associated with a chaotic attractor Qn+k
M = ∪n+k

i=1 Bi

having ∪k
i=1Bi ⊂ JL and ∪n+k

i=k+1Bi ⊂ JR. As k increases, regions Cn+k
M

accumulate to the curve Bn(a) de�ned as an intersection of the surfaces

ε = ε̄n :=
1

an − 1
, µ = µ̄n := − an+2

an − 1
. (3.40)

� Two successive regions Cn+k
M and Cn+(k+1)

M , k ≥ 2, are separated by

the bifurcation boundary υc
n−1
L ,cn+k

M− (related to the contact cn−1
L = cn+k

M−
)

de�ned by

µ = µc
n−1
L ,cn+k

M− := − an(ak+1 − 1)

an+k−1 − ak−1 − an−1 + 1
. (3.41)

Proof. At �rst, let us �nd the edges ofDaccr, which are de�ned as the pairwise
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intersections of the three surfaces:

SA : µ = −a(a+ 1), ε = a− 1,

SB : µ = −a(a+ 1), ε =
1

a
,

SC : µ = − a4

a2 − 1
, ε =

1

a2 − 1
.

(3.42)

Further, there is Daccr ∈ D, since −a(2 + ε) < −ε − a2 − 1. And this

guarantees that the absorbing interval for f̆ is J± = [cM−
, cM+

] and the point

x∗M is nonhomoclinic (see the Lemmas 3.14 and 3.15 and (3.36)). Then there

is smaller absorbing set A = BL ∪ BR ⊂ J± with BL = [cM−
, c1M+

] ⊂ JL and

BR = [c1M−
, cM+

] ⊂ JR, and a chaotic attractor is inevitably con�ned in A.
The su�cient condition for a chaotic attractor to coincide with A, i. e., to
have two bands, is

c1M−
< 1 + ε and cR < c2M+

and cL > c2M−
. (3.43)

Indeed, in this case any x ∈ [cM−
, c2M+

] has at least one preimage

f̆−1
M (x) ∈ [cM−

, c1M+
] and any x ∈ [c2M+

, c1M+
] has at least one preimage

f̆−1
R (x) ∈ [c1M−

, cM+
]. Similarly, any x ∈ [c2M−

, cM+
] has at least one preim-

age f̆−1
M (x) ∈ [c1M−

, cM+
] and any x ∈ [c1M−

, c2M−
] has at least one preim-

age f̆−1
L (x) ∈ [cM−

, c1M+
]. The �rst two inequalities in (3.43) hold for

µ > −ε − a2 − 1, i. e., inside Daccr. The last inequality in (3.43) holds

for µ > −a(a + 1); hence, the upper boundary of Daccr is associated with

the contact cL = c2M−
. For cL > c2M−

, we denote the respective attractor as

Q1+1
M to emphasise that it has exactly one band inside (coinciding with) BL

and one band in (coinciding with) BR.

Let us study what happens when a parameter point enters Daccr through

its upper boundary. Right before, for p ̸∈ Daccr, there is cL > c2M−
, and the

interval G̃ = (c2M−
, cL) has three preimages: f̆

−1
L (G̃) ⊂ BL, f̆

−1
M (G̃) ⊂ BR,

and f̆−1
R (G̃) ̸⊂ J . Right after, for p ∈ Daccr, there is cL < c2M−

, and the

interval G̃ has two preimages: f̆−1
M (G̃) ⊂ (c1M+

, c1M−
) and f̆−1

R (G̃) ̸⊂ J . The

interval (c1M+
, c1M−

) represents the gap of the chaotic attractor, which implies
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that G̃ cannot now belong to the attractor (since there are no more points

belonging to the absorbing area A that map into G̃).

Consider also the image f̆(G̃). There can be three cases: (a) G̃ ⊂ IR; (b)

G̃ = (cL, 1] ∪ [1, c2M−
); (c) G̃ ⊂ IM+

. If (a) G̃ ⊂ IR, which is equivalent to

cL ∈ IR ⇔ cL > 1 + ε ⇔ µ < −ε− a− 1, (3.44)

then G̃1 = f̆(G̃) = f̆R(G̃) = (c1L, c
3
M−

) ⊂ BL. The interval G̃1 has three

preimages: G̃, G̃L := f̆−1
L (G̃1) ∩ J = ∅, and G̃M := f̆−1

M (G̃1) = (cM
L , c

2,M
M−

)

with cM
L = f̆−1

M (c1L), c
2,M
M−

= f̆−1
M (c3M−

). If G̃M ⊂ BL, which holds for

c2,MM−
< c1M+

⇔ c3M−
< c2M+

⇔ µ > −a
3(1 + ε+ a)

a2 + a− 1
, (3.45)

then there are no gaps appear in BL. Hence, due to p crossing µ = −a(a+1)

a transformation of Q1+1
M to Q2+1

M , having two bands in BR and one band in

BL, occurs.

If (3.45) does not hold, then the interval G̃′ = (c2M+
, c3M−

) ⊂ G̃1 has three

preimages: f̆−1
L (G̃′) ∩ J = ∅J , f̆−1

M (G̃′) ⊂ (c1M+
, c1M−

), and f̆−1
R (G̃′) ⊂ G̃.

Thus, there are no points inside A that map into G̃′ and it cannot be a

part of the attractor. In such a way, due to p crossing µ = −a(a + 1) a

transformation of Q1+1
M to Q2+2

M , having two bands in BR and two bands in

BL, occurs. The next image G̃
′,1 := f̆(G̃′) belongs to the attractor (is not a

gap), until it has a preimage f̆−1
R (G̃′,1) ⊂ (1, cL). This holds for c

4
M−

< c1L, and

it can be shown that su�ciently near the bifurcation surface µ = −a(a+ 1)

this inequality is always true.

Consider the case (b) G̃ = G̃′∪ G̃′′ = (cL, 1]∪ [1, c2M−
), which is equivalent

to{
cL ∈ IM+

,

c2M−
∈ IR,

⇔

{
cL < 1 + ε,

c2M−
> 1 + ε,

⇔

 µ > −ε− a− 1,

µ < −a
3 + ε+ 1

a
,

(3.46)

then G̃1 = f̆(G̃) = f̆M(G̃
′) ∪ f̆R(G̃

′′) = (c1L, cM+
] ∪ [cR, c

3
M−

). It can be

shown that for the parameter range (3.46) there is c3M−
< c2M+

, and hence,
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the interval f̆R(G̃
′′) belongs to the attractor (is not a gap). On the contrary,

f̆M(G̃
′) cannot belong to the attractor, since it has two preimages G̃′ ⊂ G̃

and f̆−1
R (f̆M(G̃

′)) ∩ J = ∅. This implies that the upper boundary of the

attractor is c1L, i. e., due to p crossing µ = −a(a + 1) a transformation of

Q1+1
M to Q2+1

M , having two bands in BR and one band in BL, occurs.

Finally, if (c) G̃ ⊂ IM+
, which holds for

µ > −a
3 + ε+ 1

a
,

there is G̃1 = f̆(G̃) = f̆M(G̃) = (c1L, c
3
M−

) ⊂ BR. The interval G̃1 has

two preimages: f̆−1
M (G̃1) = G̃ and f̆−1

R (G̃1) ∩ J = ∅, and therefore also

represents a new gap of the attractor. Further, similarly to the case (a), we

must consider three cases, but for the interval G̃1. Then by using the similar

arguments, we conclude that

� if c1L > 1+ε and c4M−
< c2M+

, a transformation from Q1+1
M to Q3+1

M occurs;

� if c1L > 1 + ε and c4M−
> c2M+

, one observes a transformation from Q1+1
M

to Q3+2
M (again the image f̆(c2M+

, c4M−
) does not represent a gap, since

close to the boundary µ = −a(a+ 1) there is c5M−
< c2L);

� if c1L < 1 + ε and c3M−
> 1 + ε, a transformation from Q1+1

M to Q3+1
M

occurs;

� if c3M−
< 1+ε, one has to check the similar conditions for the next image

G̃2 = f̆(G̃1).

In general case, the above scenario can be summarised as

� if cn−2
L > 1 + ε and cn+1

M−
< c2M+

, one observes a transformation from

Q1+1
M to Qn+1

M ;

� if cn−2
L > 1 + ε and cn+1

M−
> c2M+

, one observes a transformation from

Q1+1
M to Qn+2

M (the image f̆(c2M+
, cn+1

M−
) does not represent a gap, since

close to the boundary µ = −a(a+ 1) there is cn+2
M−

< cn−1
L );
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� if cn−2
L < 1 + ε and cnM−

> 1 + ε, one observes a transformation from

Q1+1
M to Qn+1

M ;

In such a way, we have shown that, in general, the region Cn+1
M of the �rst tier

associated with the chaotic attractor Qn+1
M , having a single band in BL and n

bands in BR, is con�ned by the bifurcation boundaries related to conditions

cn+1
M−

= c2M+
and cnM−

= dR = 1 + ε. The respective analytic expressions are

derived as (3.39).

The number n̄ = n̄(a) of chaoticity regions of the �rst tier revealed in

the bandcount accretion bifurcation structure depends on the value of a. To

estimate n̄, at the moment of bifurcation cL = c2M−
, we compute the number

n = n(a, ε) such that cn−2
L > 1 + ε (or alternatively cn−3

L ∈ IM+
). For

µ = −a(a+1) := µcL, c
2
M− , the critical point ciL > 0, i = 0, n− 2, is obtained

as

ciL = f iM(cL) = aicL = −ai(a+ µcL, c
2
M−) = ai+2. (3.47)

The condition for cn−3
L ∈ IM+

is

cn−3
L = an−1 < 1 + ε. (3.48)

Recall that for p ∈ Daccr and cL = c2M−
(i. e., for µ = −a(a+1)) the value of

ε must range between a− 1 < ε < 1/a. Hence, we must �nd the maximum

n such that both inequalities hold: an−1 < 1 + ε,

ε <
1

a
,

⇔ an−1 < 1 +
1

a
⇔ n <

ln(a+ 1)

ln a
.

In such a way we get the estimation (3.38).

Let us consider now the regions of the second tier, which are located in

between the surfaces de�ned by cn−1
M−

= dR and cn+1
M−

= c2M+
. For the sake of

brevity, we denote this area as D̃. Recall that in this case the interval G̃′ =

(c2M+
, cn+1

M−
) represents a gap of the attractor. And its image G̃′,1 = (c3M+

, cn+2
M−

)

is not a gap, until cn+2
M−

< cn−1
L (which holds for parameter values su�ciently
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close to the bifurcation boundary µ = −a(a+1)). When p moves away from

this boundary staying inside D̃, at some moment the contact cn+2
M−

= cn−1
L

occurs. Let us consider the interval G̃′′ = (cn−1
L , cn+2

M−
) for cn+2

M−
> cn−1

L .

The preimage f̆−1
R (G̃′′) ⊂ (cn−2

L , cnM−
) with the latter being a gap. Under

this condition the interval G̃′′ cannot be a part of the attractor, and for

p crossing the boundary related to the contact cn+2
M−

= cn−1
L , one observes a

transformation from Qn+2
M to Qn+3

M . By the similar arguments, we derive that

for p crossing the boundary related to the contact cn+k
M−

= cn−1
L , one observes

a transformation from Qn+k
M to Qn+k+1

M . The related analytic expression is

given by (3.41).

To estimate the maximum k, we �rst note that the intersection of the

bifurcation surfaces related to the contacts cn−1
M−

= dR and cn+1
M−

= c2M+
is

de�ned as ε̄n and µ̄n in (3.40). Let us compute the limit of µc
n−1
L ,cn+k

M− for

k → ∞:

lim
k→∞

µc
n+k
M−

,cn−1
L = − an+2

an − 1
= µ̄n.

This means that there exist regions Cn+k
M of the second tier for any k ≥ 2.

And with increasing k they accumulate to the curve Bn(a).

The bifurcation structure described in the Theorem 3.16 is called a band-

count accretion structure and is primarily unrelated to any homoclinic orbits.

Corollary 3.17. The closer a to unity, the more chaoticity regions of the

�rst tier are revealed. For a > (
√
5+1)/2 the bandcount accretion bifurcation

structure is not observed.

Proof. From (3.38) it follows that lima→1 n̄ = ∞. And for a > (
√
5 + 1)/2

there is n̄ = 1 and only the region C1+1
M of the �rst tier is observed.

Figure 3.3 shows a typical view of the bandcount accretion bifurcation

structure in the (ε, µ) parameter plane of f for a = 1.1.

The results obtained in the current investigation concerning bifurcation

structures in discontinuous maps, may be also helpful in a di�erent area of re-

search. For dynamical systems with continuous time, especially with delays,
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Figure 3.3: (a) 2D bifurcation diagram in the (ε, µ) parameter plane of f , with a = 1.1.

(b) Close up of the parallelogram area marked by the dashed black line in (a).

such as, e. g., systems of delay coupled interacting neurons [76, 165, 168, 178�

180, 191], it is often much more di�cult to analyse bifurcations of solutions.

To simplify this analysis one chooses a lower-dimensional section and con-

structs a map acting on this section (often called a Poincar�e map), replicating

the major dynamic features of the original system. If the original system has

highly nonlinear functions, the Poincar�e map can have rather complicated

form and even be discontinuous. Having knowledge about generic asymp-

totic solutions of discontinuous maps, one can get some information about

bifurcations occurring to solutions of continuous time systems.

3.4. Border collision bifurcations of chaotic attractors

in one-dimensional maps with multiple disconti-

nuities

It is worth recalling that boundaries of a multi-band chaotic attractor of a

one-dimensional map are given by critical points and their images. Images
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and preimages of a critical point are also called critical points of certain

ranks. In case of a merging, an expansion, or a �nal bifurcation, a boundary

point of the chaotic attractor (i. e., a critical point) collides with a point of

the repelling cycle belonging to the immediate basin boundary of the attrac-

tor, that is, this cycle undergoes a homoclinic bifurcation. The bifurcation

mechanisms which are in the focus of the present section are not associated

with a homoclinic bifurcation: in our case, a critical point at the boundary

of the chaotic attractor collides with another critical point. In the simplest

case, it may be a collision with a discontinuity point not belonging to the

chaotic attractor, that is a direct border collision bifurcation of the chaotic

attractor may occur. We call this bifurcation an exterior border collision bi-

furcation of a chaotic attractor. A characteristic feature of this bifurcation is

the appearance / disappearance of one or several new bands of the attractor,

shrinking to zero size as the bifurcation value is approached. More sophisti-

cated cases are grouped under the term interior border collision bifurcation.

Their characteristic feature is that at the bifurcation moment one or several

gaps inside the attractor appear. By contrast to the exterior border collision

bifurcations, here the size of the gaps and not of the bands shrinks to zero

as the parameters approach the bifurcation value.

As the �rst step towards understanding the bifurcations of chaotic attrac-

tors in maps with multiple discontinuities, we consider a map with two dis-

continuities [22, 23, 173]. For simplicity, within the present work we restrict

ourselves to one-dimensional maps with everywhere expanding branches.

This condition guarantees that if the map has an attractor, this attractor

is chaotic. The simplest map satisfying this condition is the piecewise linear

map f de�ned in (3.13) with

dR = −dL = 1 and aL = aM = aR := a > 1. (3.49)

Note that the linearity of the branches fL, fM, and fR simpli�es the calcu-

lations discussed below, but preserves the generality of our analysis for the

considered class of maps. For this reason, all the results expressed in terms
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of the limiting values fL(−1), fM(−1), and fM(1), fR(1), are still valid for

maps with nonlinear everywhere expanding branches.

If map (3.13) with (3.49) has bounded asymptotic dynamics, this dy-

namics may be located on (1) one absorbing interval involving two adjacent

branches (either fL and fM, or fM and fR); (2) two coexisting absorbing

intervals, each involving two adjacent branches; (3) one absorbing interval

involving all three branches of the map. As piecewise increasing maps de-

�ned on two branches are already well investigated (see [21] and references

therein), only the third case is of interest to us. In this case, it is easy to see

that the invariant absorbing interval J , inside which any bounded asymptotic

dynamics takes place, is given by

J = [min{cM−
, cR},max{cL, cM+

}] . (3.50)

For this reason, the conditions cM−
= cR and cL = cM+

correspond to a change

in the boundaries of the absorbing interval, which may result also in a change

of the boundaries of a chaotic attractor.

Formulating the following results, we denote a bifurcation parameter as

α, which can be one of the four: a, µL, µM, or µR.

Theorem 3.18. Let us consider a discontinuous map of the form (3.13),

(3.49) with a bifurcation parameter α. Suppose there exists α∗ and a neigh-

bourhood U = U(α∗) such that for α ∈ U there hold:

1. For α < α∗ (α > α∗) the map f |α has a single n-band chaotic attractor

Q(α) = ∪n
i=1Bi(α), n ∈ N, with dL ∈ IntQ(α) and dR ̸∈ Q(α).

2. There exists only one critical point cks(α) ∈ ∂Q(α), k ∈ Z+, s ∈ { L,
M−}, such that cks(α

∗) = dR.

3. For α < α∗ (α > α∗) there is cks(α) ∈ Ir, while for α > α∗ (α < α∗)

there is cks(α) ∈ Iq with r, q ∈ {M+,R}, r ̸= q.

4. For α ∈ U the map f |α has no critical homoclinic orbits.
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If f i|α∗(cq(α
∗)) ∈ J\Q(α∗), where i = 0,m− 1, m ∈ N, then for α > α∗

(α < α∗) the intervals f i+1|α(B̃(α)) with B̃(α) = [dR, c
k
s(α)], represent new

bands of Q(α), i. e., Q(α) has (n+m) bands.

Proof. Without losing generality, suppose that the condition 1. holds for

α < α∗ and the boundaries of Q(α) are given by the critical points ciL and

cjM−
, i, j ≥ 0. At the bifurcation value α = α∗, one (and only one) of

the boundary points of Q(α) is cks(α
∗) = dR with some k ∈ Z+ and either

s = L or s = M− (the condition 2., which is the analogue of the regularity

condition for the border collision bifurcation of a cycle). For de�niteness,

suppose s = L. Let α = α∗. Consider critical points x ∈ ∂Q(α∗) with

x = ciM−
(α∗), 0 ≤ i ≤ K with some K ∈ N, or x = cjL(α

∗), 0 ≤ j < k. And

denote as σ(M−) = s0 . . . sK and σ(L) = s̄0 . . . s̄k−1 the symbolic sequences

associated with the sets of points {ciM−
(α∗)}Ki=0 and {cjL(α∗)}k−1

j=0 , respectively.

Since all three branches fL, fM, and fR of f are linear (i. e., continuous),

there exists some neighbourhood U = U(α∗) = U−∪U+ with U− = U−(α) =

{α : α < α∗} and U+ = U+(α
∗) = {α : α > α∗} such that ∀α ∈ U the same

σ(M−) and σ(L) represent the respective �nite itineraries of cM−
and cL.

For de�niteness suppose that at α = α∗ we have x ∈ Q(α∗) for x →
dR− (x ∈ IM+

) and x ̸∈ Q(α∗) for x → dR+ (x ∈ IR). According to the

condition 3., the critical point cks(α) colliding with the border necessarily

moves due to the bifurcation from IM+
to IR, i. e., r = M+ and q = R.

For α ∈ U+, the critical points c
i
M−

(α), 0 ≤ i ≤ K, and cjL(α), 0 ≤ j < k,

belong to the same partitions as for α ∈ U−, and hence, the respective bands

qualitatively remain unchanged. Consider the band Bi0 = [ai0, c
k
L(α)] and let

B̃(α) = [ckL(α), dR]. For α ∈ U−, the open interval IntB̃(α) = (ckL(α), dR) ⊂
J\Q(α), while for α ∈ U+, there is B̃(α) ⊂ Bi0 and note that B̃(α) shrinks

to a point dR as α → α∗. Consider then f |α(B̃(α)) = [cR(α), c
k+1
L (α)]. If

cR(α
∗) = ck+1

L (α∗) ∈ J\Q(α∗), then the same holds for a certain range of

α > α∗, and consequently, f |α(B̃(α)) represents a new band of Q(α). The

same can be stated for ciR(α
∗) = ck+1+i

L (α) with i = 0,m− 1 for some m ∈
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Z+. Choosing appropriately the right neighbourhood U+(α
∗), one obtains

the main statement of the Theorem.

Note that we need the condition 4. to guarantee that no homoclinic

bifurcations occur for the considered range of parameter values, i. e., the

bifurcation is of codimension-one.

A statement similar to the Theorem 3.18 can be formulated for the case

with dL ̸∈ Q(α), dR ∈ Q(α) for α < α∗ (α > α∗) by setting s ∈ {M+,R}
and r, q ∈ {L,M−}. The bifurcations of such kind are referred to as exterior
border collision bifurcations for chaotic attractors. A sample one-dimensional

bifurcation diagram is shown in Fig. 3.4(a), where the values of the parameter

µR marked by vertical dashed lines (dark-red and grey) correspond to exterior

border collision bifurcations. The panel b shows the map f (3.13), (3.49) at

the moment of the exterior border collision bifurcation for the value µR =

−2.662 (dark-red line in a). According to the Theorem 3.18, the critical

point cks = c2M−
collides with the border point dR = 1. At the bifurcation

moment the point cM+
and two its images belong to G. Hence, three new

bands appear after the bifurcation and one observes the transition from a

3-band to a 6-band chaotic attractor for decreasing µR.

Figure 3.4: (a) The one-dimensional bifurcation diagram versus µR of the map f (3.13),

(3.49) at a = 1.22, µL = 5.1, µM = −0.5. (b) The map f at µR = −2.662 corresponding

to the vertical dark-red dashed line in (a).
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To explain the transformations of chaotic attractors occurring at some

of these parameter values, it is necessary to consider the invertibility of the

map on its absorbing intervals. It is well known that the invertibility plays an

important role for determining possible dynamics of a one-dimensional map.

For example, it is easy to prove that an invertible continuous one-dimensional

map cannot have other attractors than �xed points and 2-cycles. Accordingly,

to observe a more complex dynamics in a continuous one-dimensional map,

one has to require that the map is non-invertible. In order to distinguish

between several classes of non-invertible maps, it is convenient to identify in-

tervals in the state space with di�erent number of preimages. In [154, 156], a

classi�cation of maps has been introduced according to the number of preim-

ages in the complete domain of de�nition of the map. However, what matters

for the possible asymptotic dynamics and in particular for transformations

of chaotic attractors we are dealing with, is not the invertibility of the map

on its complete domain of de�nition (e. g., the real line), but on the absorb-

ing interval (where the bounded asymptotic dynamics takes place). In this

context, for a map with an absorbing interval J it is preferable to de�ne the

corresponding intervals Zk as

Zk = {x ∈ J : the number of preimages of x belonging to J is k}. (3.51)

Following this de�nition, for piecewise increasing maps with a single discon-

tinuity (also known as piecewise increasing Lorenz maps), it has been proven

that chaotic dynamics can occur if the map belongs to the class of so-called

overlapping maps (such as, for example, Z1 − Z2 − Z1, or Z1 − Z2, or Z2),

and cannot in so-called gap maps (of the Z1 −Z0 −Z1 class) [21]. In fact, it

is easy to show that neither the interval Z0 nor any of its images such that

f j(Z0) ⊂ Z1 for j = 1, k, k ∈ N, can contain a point of an attractor. This

property applies also to maps with multiple discontinuities and helps us to

explain several transformations of chaotic attractors.

Lemma 3.19. Consider an n-band chaotic attractor Q = ∪n
i=1Bi, Bi =
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[ai, bi], of the map f with n ≥ 2 and let an interval I ⊂ (a1, bn) be I ⊂ Z1.

If f−1(I) ⊂ J\Q, then I ⊂ G = ∪n−1
i=1Gi.

Proof. Recall that the chaotic attractor Q is invariant for f , which means

that for any x ∈ Q both, its image f(x) ∈ Q and at least one its preimage

f−1(x) ∈ Q (where f−1 is appropriately chosen). For any x ∈ I, there is

f−1(x) ̸∈ Q, which implies x ̸∈ Q, i. e., x ∈ G.

Theorem 3.20. Let us consider a discontinuous map of the form (3.13),

(3.49) with a bifurcation parameter α. Suppose there exists α∗ and a neigh-

bourhood U = U(α∗) such that for α ∈ U there hold:

1. For α ≤ α∗ (α ≥ α∗) the map f |α has a single n-band, n ≥ 2, chaotic

attractor Q(α) with dL, dR ∈ IntQ(α).

2. For α < α∗ (α > α∗) there exist two critical points cks(α) ∈ ∂Q(α) and

cmq (α) ∈ IntQ(α), s, q ∈ {L,M−,M+,R}, s ̸= q, k,m ∈ Z+, such

that cmq (α) ∈ Z2 ∩ Z1 has both preimages in IntQ(α) and ck+1
s (α) ∈ Z2

has the other preimage c̄(α), c̄(α) ̸= cks(α) being c̄(α) ∈ IntQ(α);

3. ck+1
s (α∗) = cmq (α

∗) and for α > α∗ (α < α∗) there is ck+1
s (α) ∈ Z1

having only one preimage cks(α).

4. For α ∈ U there is cir(α) ̸= dL, c
i
r(α) ̸= dR for any i ∈ Z+, r ∈

{L,M−,M+,R}.

5. For α ∈ U the map f |α has no critical homoclinic orbits.

Then there hold:

� for α > α∗ (α < α∗) the map f |α has a single chaotic attractor Q(α)

having at least n+ 1 bands, where the interval G̃(α) = [ck+1
s (α), cmq (α)]

represents a new additional gap of Q(α);

� if cm+i
q (α∗) ∈ Z1, where i = 1, l, l ∈ N, then for α > α∗ (α < α∗) the

intervals f i|α(G̃(α)) also represent new additional gaps of Q(α), i. e.,

Q(α) has n+ l + 1 bands.
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Proof. Without losing generality, suppose that the condition 1. holds for

α < α∗, that is, the bifurcation occurs for increasing α. Since both bor-

der points belong to Q, the boundaries of Q can be de�ned by all four

critical points, namely, by the sets of points Sr := {cir(α)}
Kr

i=0, Kr ∈ Z+,

r ∈ {L,M−,M+,R}. Again due to linearity (continuity) of the branches

fL, fM, and fR, as well as the condition 4., an appropriate neighbourhood

U = U(α∗) = U− ∪U+ with U− = U−(α) = {α : α < α∗} and U+ = U+(α
∗)

= {α : α > α∗} can be chosen, so that for all α ∈ U the �nite itineraries σ(r)

associated with the sets Sr remain the same. It means that the respective

boundaries of Q(α) do not change qualitatively.

Consider the interval G̃(α) con�ned by the critical points ck+1
s (α) and

cmq (α), described in the conditions 2. and 3.. Suppose �rst that the preimage

cks(α) ∈ (a1, bn), where a1 and bn are the outermost points of Q(α), i. e., for

α ∈ U− the point cks(α) represents the border of some gap Gi0 (on one side),

as well as the border of some band Bj0 (on the other side) with j0 = i0 or

j0 = i0+1. Let us denote the two branches responsible for the two preimages

of ck+1
s (α) as fr1 and fr2, namely, f

−1
r1

(ck+1
s (α)) = cks(α) and f

−1
r2

(ck+1
s (α)) =

c̄(α). For de�niteness, suppose that ck+1
s (α) > cmq (α) for α ∈ U− (and hence,

there is ck+1
s (α) < cmq (α) for α ∈ U+).

Consider α ∈ U and two points x < ck+1
s (α) and y > ck+1

s (α) being su�-

ciently close to ck+1
s (α). Denote I1 := [x, ck+1

s (α)], I2 := (ck+1
s (α), y). From

the conditions 2. and 3., we have that I−1
1,r1

= f−1
r1

(I1) = [f−1
r1

(x), cks(α)] ⊂ Bj0

and I−1
2,r1

= f−1
r1

(I2) = (cks(α), f
−1
r1

(y)) ⊂ Gi0.

For α ∈ U−, since c̄(α) ∈ IntQ(α), there holds I−1
1,r2

= f−1
r2

(I1) =

[f−1
r2

(x), c̄(α)] ⊂ Q(α) and I−1
2,r2

= f−1
r2

(I2) = (c̄(α), f−1
r2

(y)) ⊂ Q(α). And

therefore, even if I−1
2,r1

⊂ G(α), its image is I2 ⊂ Q(α), since I2 has an-

other preimage I−1
2,r2

. Moreover, G̃(α) = [cmq (α), c
k+1
s (α)] ⊂ I1, and hence,

f−1
r1

(G̃(α)) ⊂ I−1
1,r1

⊂ Bj0.

Now consider α ∈ U+. According to the condition 3. and the simplifying

assumption above, there is ck+1
s (α) < cmq (α). Then G̃(α) = [ck+1

s (α), cmq (α)]
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⊂ I2. However, now the preimage c̄(α) either does not exist any more, or is

located outside the absorbing interval J . The same holds for the preimage

intervals I−1
1,r2

and I−1
2,r2

, none of which can be a part of the attractor Q(α).

It means that G̃(α) ⊂ I2, which is now I2 ⊂ Z1. Then G̃(α) has only one

preimage f−1
r1

(G̃(α)) ⊂ I−1
2,r1

⊂ G. By the Lemma 3.19, there is G̃(α) ⊂ G.
If cm+1

q (α∗) ∈ Z1, then there is also ck+1
s (α∗) ∈ Z1 and for an appro-

priate U+ there holds f |α(G̃(α)) = [ck+1
s (α), cmq (α)] ⊂ Z1. This implies

that f |α(G̃(α)) ⊂ G. Similarly, it can be shown for any i ∈ N such that

cm+i
q (α∗) ∈ Z1. Which completes the proof.

By the similar arguments we can prove the case when cks(α) = a1 or

cks(α) = bn for α ∈ U−.

The condition 5. guarantees the bifurcation is of codimension one.

The bifurcations of this latter kind are referred to as interior border col-

lision bifurcations for chaotic attractors. A sample one-dimensional bifur-

cation diagram is shown in Fig. 3.4a, where the values of the parameter

µR marked by vertical dashed lines (dark-red and grey) correspond to in-

terior border collision bifurcations. The panel b shows the map f (3.13),

(3.49) at the moment of the interior border collision bifurcation for the value

µR = −7.58 (dark-red line in a). According to the Theorem 3.20, the crit-

ical point ck+1
s = c4L collides with the critical point cmq = cM−

. Before the

bifurcation, the alternative preimage of c4L is c̄ = f−1
M (c4L). At the bifurca-

tion moment two images of cM−
belong to Z1, while c

3
M−

∈ Z2. Hence, three

new gaps appear after the bifurcation and one observes the transition from

a 4-band to a 7-band chaotic attractor for decreasing µR.

3.5. Expansion of a chaotic attractor due to its colli-

sion with a chaotic repeller

In this section, we present results concerning further transformations of

chaotic attractors, generically not related to homoclinic bifurcations of any
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Figure 3.5: (a) The one-dimensional bifurcation diagram versus µR of the map f (3.13),

(3.49) at a = 1.22, µL = 5.1, µM = −0.5. (b) The map f at µR = −7.58 corresponding to

the vertical dark-red dashed line in (a).

repelling periodic points [24, 172, 173]. Namely, if the basin boundary of a

chaotic attractor undergoing an exterior border collision bifurcation contains

a chaotic repeller, then this bifurcation may additionally lead (immediately

or not) to an expansion bifurcation at which the chaotic repeller becomes

incorporated into the chaotic attractor. To investigate this bifurcation pat-

tern, in the following we consider discontinuous one-dimensional maps with

at least four monotone branches. This is a convenient setting, since two

monotone branches are necessary to accommodate a chaotic attractor, and

we use two other branches to accommodate the chaotic repeller.

Consider a piecewise linear map f : R → R de�ned on four partitions as

follows

f : x→ f(x) =



fL(x) = aLx+ µL, x < −1,

fM1
(x)= aM1

x+ µM1
, −1 < x < 0,

fM2
(x)= aM2

x+ µM2
, 0 < x < 1,

fR(x) = aRx+ µR, x > 1.

(3.52)

The parameters are |aL|, |aM1
|, |aM2

|, |aR| ∈ (1,∞) and µL, µM1
, µM2

, µR ∈ R+.

The partitions, clearly, are IL = (−∞,−1), IM1
= (−1, 0), IM2

= (0, 1), and
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IR = (1,+∞). As before the function f is not de�ned at the border points

x = ±1 and x = 0. However, there are a few further details depending on

these de�nitions as commented on below. And for better clarity we will not

use the special notations for critical points, writing instead directly fL(−1),

fM1
(−1), fM1

(0), etc.

In what follows we discuss two distinct bifurcation patterns observed un-

der variation of the parameter µL, occurring at di�erent values of µM2
with

the �xed

aL > 1, aM1
> 1, aM2

> 1, aR < −1, µM1
< 0, µR > 0. (3.53)

We assume that before the bifurcation, the map f has a one-band chaotic

attractor Q1 = B1 ⊂ IL ∪ IM1
, which occupies the invariant absorbing in-

terval J = [fM1
(−1), fL(−1)], as long as the condition fL(−1) < 0 holds.

Additionally, f has a chaotic repeller Λ ⊂ IM2
∪ IR.

To describe the structure of Λ, we need to de�ne an escape interval Iesc,

such that each point belonging to Iesc or to any of its preimages eventually

leaves the neighbourhood of the chaotic repeller. The de�nition of Iesc de-

pends on the shape of fM2
and fR. In particular, the behaviour of the end

points of Iesc may depend on the de�nition of f at the border point x = 0.

At �rst, a bounded domain containing the repeller Λ is

IΛ := {x | x ≥ 0, f(x) ≥ 0} =
[
0, f−1

R (0)
]
. (3.54)

And the escape interval can be de�ned as

Iesc = {x | f(x) > f−1
R (0)}. (3.55)

Clearly, there must be max{fM2
(1), fR(1)} > f−1

R (0), since otherwise there

is the other absorbing interval located in the partitions IM2
∪ IR leading to

existence of another attractor. If fM2
(1) > f−1

R (0) and fR(1) > f−1
R (0) then

Iesc =
(
f−1

M2
◦ f−1

R (0), f−2
R (0)

)
. (3.56)
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Alternatively, if fM2
(1) ≤ f−1

R (0), then Iesc =
(
1, f−2

R (0)
)
, or if fR(1) ≤

f−1
R (0), then Iesc =

(
f−1

M2
◦ f−1

R (0), 1
)
. Now, the set Λ can be constructed as

follows:

Λ = IΛ \
∞⋃
j=0

f−j (Iesc) , (3.57)

where the inverse function f−j is considered to be appropriately multi-valued.

Note that if f(0) = fM1
(0), then the end points of Iesc de�ned in (3.56)

and their preimages also escape from IΛ being mapped into Q1. Then to

obtain the set of all points escaping from IΛ one has to de�ne Iesc as a closed

interval. If f(0) = fM2
(0), which we assume below, then the end points of

Iesc, and, respectively, the border point x = 0, may escape from IΛ or not

(in the latter case, the border point belongs to Λ).

In the generic case, the point x = 0 does not belong to Λ, that is, it

belongs to a preimage of Iesc of some rank k ∈ N, i. e., 0 ∈ f−k(Iesc), where

f−k is the appropriate sequence of inverses. By construction, f(Iesc) ⊂ IR,

f 2(Iesc) ⊂ IL ∪ IM1
, and there may exist some m ≥ 2, such that

fm−1(Iesc) ̸⊂ Q1, while fm(Iesc) ⊂ B1. For the sake of simplicity, we as-

sume that fm−1(Iesc) ∩ B1 = ∅. The opposite case fm−1(Iesc) ∩ B1 ̸= ∅ is

similar but a bit more tricky and is omitted here.

Then with increasing µL, at

fL(−1) = −aL + µL = 0 ⇔ µL = aL, (3.58)

one observes �rst an exterior border collision bifurcation of Q1 characterised

by the appearance of (k +m− 1) new bands. Indeed, right after this bifur-

cation, there is an interval B̃ = [0, fL(−1)] ⊂ B1 and B̃ ⊂ f−k(Iesc), where

f−k is the appropriate sequence of inverses. Hence, fk(B̃) ⊂ Iesc ⊂ IΛ,

fk+1(B̃) ⊂ f(Iesc) ⊂ IR, f
k+j(B̃) ̸⊂ B1, j = 2,m− 1, while fk+m(B̃) ⊂ B1.

Using the arguments similar to those expressed in the proof of the Theo-

rem 3.18, we deduce that the images f j(B̃), j = 1, k +m− 1 represent

new bands of the chaotic attractor, i. e., one observes a transformation
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Figure 3.6: Transition from a 1-band chaotic attractor located in the domains of the

branches fL and fM1
to a 1-band chaotic attractor located in the domains of all four

branches of the map f . Parameter values: aL = 1.5, aM1
= 1.75, aM2

= 1.725, aR =

−2.8, µM1
= −0.25, µR = 4.8, and (a) µM2

≈ 0.22 (generic case); (b) µM2
≈ 0.2216

(codimension-two case).

from Q1 = B1 to Q̄k+m = ∪k+m
i=1 B̄i with B̄i = fk+i+1(B̃), i = 1,m− 2,

B̄m−1 = B1, and B̄i = f i−m+1(B̃), i = m, k +m. Thereafter, the (k +m)-

band chaotic attractor Q̄k+m persists until it collides with the chaotic repeller

Λ. After this bifurcation, the intervals IΛ and f(Iesc) become a part of the

attractor. Accordingly, the bands B̄i, i = m− 1, k +m of Q̄k+m expand to

a single band, leading to the (m − 1)-band attractor Q̃m−1 = ∪m−1
i=1 B̃i with

B̃i = B̄i, i = 1,m− 2, and B̃m−1 = B̄m−1 ∪ IΛ ∪ f(Iesc).
For example, �xing aL = 1.5, aM1

= 1.75, aM2
= 1.725, aR = −2.8,

µM1
= −0.25, µM2

= 0.2209769234, µR = 4.8, one gets k = 7, m = 2.

Changing µL, one then observes at µL = µBCB

L = 1.5 an exterior border

collision bifurcation (see Fig. 3.6a) related to the transition from Q1 to Q̄9

(the point A) and at some µL = µexp

L an expansion of the chaotic attractor

corresponding to the transition from Q̄9 to Q̃1 (the point B).

In the non-generic case when the border point x = 0 belongs to Λ, the ex-
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terior border collision bifurcation and the expansion bifurcation occur at the

same moment. Hence, it is a bifurcation of codimension two and is associated

with two conditions independent from each other. The �rst condition is the

border collision condition (3.58). The second condition di�ers depending on

the characteristics of the leftmost point of Λ. For example, let µM2
increase

(with respect to the generic case considered above) until there holds

f l(0) = x∗R ⇔ µM2
:= µPP

M2
(3.59)

i. e., at µM2
= µPP

M2
the border point x = 0 is pre-periodic to the unstable

�xed point x∗R. Note that x = 0 belongs to a critical homoclinic orbit of x∗R,

but it is not a homoclinic bifurcation for x∗R, because for both, µM2
< µPP

M2
and

µM2
> µPP

M2
, it is double-side homoclinic. If one changes µL and µM2

so that

at some moment both conditions (3.58) and (3.59) are satis�ed, one observes

a direct transition from a one-band chaotic attractor Q1 to an (m− 1)-band

chaotic attractor Q̃m−1, where m is de�ned as above.

For example, let us change µL and µM2
(with the other parameters being

as before) so that at some moment µL = µBCB

L = 1.5 and µM2
= µPP

M2
≈

0.2215823519, at which f 3M2
(0) = x∗R (l = 3 in (3.59)). Then one observes

an exterior border collision bifurcation related to the sudden expansion of

Q1 = [fM1
(−1), fL(−1)] to Q̃1 = [fM1

(−1), fR(1)] (see Fig. 3.6b).

A bifurcation of codimension two also occurs when the border point x = 0

belongs to an n-periodic, n ≥ 2, or an aperiodic orbit located inside the

chaotic repeller Λ. The former case is associated with a homoclinic bifurca-

tion of the involved cycle, as it changes from being one-side homoclinic to

being double-side homoclinic.

In maps with more than four monotone branches, another e�ect involving

multi-band chaotic attractors may occur. Namely, some of the bands appear-

ing at the exterior border collision bifurcation are a�ected by the following

expansion bifurcation, while the other bands are not. This leads to an un-

usual shape of the bifurcation diagrams where some of the bands have vertical

edges, typical for expansion bifurcations, while the other bands have pointed
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tail shapes typical for exterior border collision bifurcations. To explain the

mechanism causing this e�ect, let us examine the following discontinuous

map

f : x→ f(x) =



fL(x) = aLx+ µL x < −1,

fM1
(x)= aM1

x+ µM1
−1 < x < 0,

fM2
(x)= aM2

x+ µM2
0 < x < 1,

fM3
(x)= aM3

x+ µM3
1 < x < 2,

fR(x) = aRx+ µR x > 2,

(3.60)

de�ned on �ve partitions IL = (−∞,−1), IM1
= (−1, 0), IM2

= (0, 1),

IM3
= (1, 2), and IR = (2,∞). Let the parameters satisfy

aL > 1, aM1
> 1, aM2

> 1, aM3
< −1, aR < −1, (3.61)

µM1
< 0, µM2

> 0, µM3
> 0, µR < 0, (3.62)

fR(2) < fM1
(−1), 0 < fM3

(2) < 1, max{fM2
(1), fM3

(1)} > 2. (3.63)

If fL(−1) < 0 (before the bifurcation) the map f in (3.60) has a one-band

chaotic attractor Q1 = B1 = [fM1
(−1), fL(−1)] ⊂ IL ∪ IM1

. And there is a

chaotic repeller Λ ⊂ IM2
∪ IM3

given by Eq. (3.57) with

IΛ = [fM3
(2), 2] , (3.64a)

Iesc = {x | f(x) > 2}. (3.64b)

By construction, f(Iesc) ⊂ IR, f
2(Iesc) ⊂ IL, and there may exist some

m ≥ 2, such that fm−1(Iesc) ∪Q1 = ∅, while fm(Iesc) ⊂ B1.

For increasing µL at the parameter value µL = µBCB

L satisfying the condi-

tion (3.58), the right boundary of Q1 collides with the border point x = 0.

Consider l ∈ N such that f l(0) ∈ IΛ, which prede�nes the outcome of the

bifurcation, similarly to how it concerned the border point x = 0 in the previ-

ous examples. Namely, if f l(0) ̸∈ Λ, an exterior border collision bifurcation is

followed by an expansion bifurcation. On the contrary, for f l(0) ∈ Λ the bi-

furcation is of codimension two, i. e., the exterior border collision bifurcation

and the expansion bifurcation occur simultaneously.
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Right after the bifurcation for µL > µBCB

L , there occurs an interval B̃ = [0,

fL(−1)] = B1 ∩ IM2
. In the generic case, there is f l(0) ∈ f−k (IntIesc), where

f−k is the appropriate sequence of inverses and IntIesc is the interior of Iesc.

Then f l(B̃) ⊂ f−k(Iesc), and hence, f l+k(B̃) ⊂ Iesc, f
l+k+1(B̃) ⊂ f(Iesc) ⊂

IR, f
l+k+j(B̃) ̸⊂ B1, j = 2,m− 1, while f l+k+m(B̃) ⊂ B1. Using again the

arguments as above, we deduce that the images f j(B̃), j = 1, l + k +m− 1

represent new bands of the chaotic attractor, i. e., one observes a transfor-

mation from Q1 = B1 to Q̄l+k+m = ∪l+k+m
i=1 B̄i with

• B̄i = f l+k+i+1(B̃) ⊂ IL \B1, i = 1,m− 2;

• B̄m−1 = B1;

• B̄i = f i−m+1(B̃) ⊂ IM2
\ IΛ, i = m, l +m− 2;

• B̄i = f i−m+1(B̃) ⊂ IΛ ∪ f(Iesc), i = l +m− 1, l + k +m.

Thereafter, the (l + k +m)-band chaotic attractor Q̄l+k+m persists and its

bands grow in size linearly. At some µL parameter value Q̄l+k+m collides

with the chaotic repeller Λ. The bands belonging to IΛ ∪ f(Iesc) expand to

a single band (that is the bands B̄i, i = l +m− 1, l + k +m). As a result

one observes a transition from Q̄l+k+m to an (l + m − 1)-band attractor

Q̃l+m−1. Note that the bands B̄i, i = 1,m− 2, also abruptly increase in

size, since they belong to the images of the escape interval Iesc. On the

contrary the bands B̄i, i = m, l +m− 2, are not a�ected by the expansion

bifurcation and continue to grow in size linearly. As for the band B̄m−1, in

case if fm(Iesc) ⊂ B1 (before the bifurcation), it is neither a�ected by the

expansion. In case if fm(Iesc) ̸⊂ B1 but f
m(Iesc) ∩ B1 ̸= ∅, the band B̄m−1

abruptly increases in size as well (as occurs, for instance, in the example

below).

Let us �x aL = 1.5, aM1
= 1.75, aM2

= 1.25, aM3
= −1.3, aR = −1.2,

µM1
= −0.25, µM2

= 0.236908479630166, µM3
= 3.35, µR = −0.1. Then

l = 3, k = 7, m = 4 and changing µL one observes at µL = µBCB

L = 1.5 an

exterior border collision bifurcation related to the transition from Q1 = B1

to Q̄14 = ∪14
i=1B̄i with
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Figure 3.7: Transition from a 1-band to a 14-band and then to a 6-band chaotic attrac-

tor via an exterior border collision bifurcation occurring at µL = µBCBL followed by an

expansion bifurcation at µL = µexpL . In (b) the close up of the rectangular area in (a) is

shown. Parameter values aL = 1.5, aM1
= 1.75, aM2

= 1.25, aM3
= −1.3, aR = −1.2,

µM1
= −0.25, µM3

= 3.35, µR = −0.1, µM2
≈ 0.237.

• B̄i ⊂ IL \B1, i = 1, 2;

• B̄3 = B1;

• B̄i =⊂ IM2
\ IΛ, i = 4, 5;

• B̄i ⊂ IΛ ∪ f(Iesc), i = 6, 14.

And at some µL = µexp

L an expansion of the chaotic attractor occurs corre-

sponding to the transition from Q̄14 to Q̃6, where the bands B̄i, i = 6, 14,

collide into a single one (see Fig. 3.7). Note that the bands B̃i = B̄i, i = 4, 5,

continue to grow in size linearly, since they do not belong to IΛ, as well as

to either of its images. On the contrary the bands B̃i = B̄i, i = 1, 3, are

a�ected by the expansion abruptly changing their size at µL = µexp

L (although

this change is not so remarkable in the large scale).
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Chapter 4

Noninvertible smooth and piecewise smooth

two- and three-dimensional maps modelling

real phenomena: Asymptotic solutions and

their bifurcations

In the current Chapter 4, we present results related to studies of various

aspects of asymptotic dynamics for two-dimensional and three-dimensional

maps with particularities, which model actually important real problems from

economics, ecology, and developmental psychology. Among the considered

examples there are noninvertible smooth maps, piecewise smooth continuous

maps, discontinuous maps, and even maps with vanishing denominator.

4.1. Preliminary facts and additional de�nitions

In comparison with one-dimensional noninvertible maps, for which �xed and

periodic points can have only real eigenvalues, for noninvertible nonlinear

maps of larger dimensions, eigenvalues can be also complex. This implies

the possibility for another bifurcation to occur, namely, a Neimark�Sacker

bifurcation, which is related to two complex conjugate eigenvalues crossing

the unit circle. In the non-degenerate case, it is known to be associated

with the appearance/disappearance of a closed smooth invariant curve. If

the bifurcation is supercritical, a stable �xed point is transformed into an

attracting closed invariant curve, surrounding this point. In the subcritical

case, a stable �xed point coexists with a repelling closed invariant curve,
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which disappears due to the bifurcation, while the �xed point becomes un-

stable. If a stable cycle undergoes a Neimark�Sacker bifurcation, the set of

cyclic closed invariant curves appears/disappears (depending on the super-

or subcritical bifurcation type). There are also known degenerate cases of

this bifurcation, when the structure of the phase space in the neighbourhood

of the target �xed (or periodic) point can di�er (sometimes drastically) from

the one in the non-degenerate case (for details, see, e. g., [109, 133]).

Attracting closed invariant curves born due to a Neimark�Sacker bifur-

cation can undergo further transformations, when a parameter point moves

away from the Neimark�Sacker bifurcation value, and, in particular, become

nonsmooth, and eventually lead to a chaotic attractor. These transforma-

tions are closely related to so-called critical sets, existing in the phase space

of not only noninvertible smooth, but also continuous piecewise smooth and

discontinuous maps [1, 4, 112, 156]. The critical set (the critical line in

the phase plane) appeared as the generalisation of the notion of local max-

ima/minima in one-dimensional maps for a higher-dimensional framework.

And they are known to play signi�cant role in determining global dynamic

phenomena, being responsible for qualitative changes of certain invariant sets

and their basins of attraction. For example, as shown in [94], critical lines

are crucial for transformations occurring to the closed invariant curve, men-

tioned above. Being initially smooth and �unru�ed�, the closed invariant

curve, say Γ, eventually starts having smooth oscillations in its shape. This

happens because the curve Γ intersects at the �rst time the set of merging

preimages LC−1. The successive images of this intersection point are the

points of tangency between the curve Γ and the critical lines LCk. Moreover,

with changing the bifurcation parameter(s), the slope of Γ at the points of

intersection with LC−1 can also change. Eventually this slope can become

collinear to the eingenvector corresponding to the zero eigenvalue of the map

Jacobian computed at this point (recall that for smooth maps LC−1 contains

the points at which the Jacobian vanishes). After this occurrence the curve
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Γ starts having self-intersections and is not smooth any more.

With further change of the bifurcation parameter(s), the closed invariant

curve Γ can disappear, either due to a contact with its basin of attraction

or due to a homoclinic tangle, leading to appearance of a chaotic attractor,

which can be also in the form of a chaotic area. The �rst studies of such

areas has been provided by, e. g., [112, 125]. In simple words, a chaotic area

is an invariant region in the phase space con�ned by parts of critical sets of

�nite rank, the points of which give rise to orbit having sensitivity to initial

conditions. An extended notion of a mixed chaotic area has been introduced

in [36]. These areas are con�ned not only by parts of critical sets, but also

by the relevant parts of the unstable set(s) of some saddle �xed (or periodic)

point(s). Note that the stable multipliers of the related saddle periodic points

must be positive, to prevent the points jumping outside the mixed chaotic

area (see also [156] for details).

Critical lines can be helpful also from another side. For some two-

dimensional piecewise smooth maps, in their phase space there can exist

a closed invariant curve, which is not related to Neimark�Sacker bifurcation,

but instead is made up of relevant segments of critical lines of di�erent ranks.

In particular, it happens when a certain region of the phase space is mapped

in one step onto LC. Then there can exist a closed invariant piecewise smooth

curve, consisting of the images of a proper segment of LC (for more details

see, e. g., [121, 131, 228]). For the original map, it is then often possible to in-

vestigate its asymptotic dynamics by means of a one-dimensional �rst return

map acting on the aforementioned segment of LC, which can signi�cantly

simplify the analysis. The best-known example of such �rst return maps is

a one-dimensional discontinuous piecewise increasing map (often called the

Lorenz map) associated with Lorenz-like �ows (see, e. g., [21] and references

therein).

Another large class of nonsmooth dynamical systems with discrete time

are maps having at least one components in the form of a rational function.
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This implies that the respective map function has a set of nonde�nition, be-

ing the locus of points in which the function's denominator vanishes. Maps

of such kind are called maps with vanishing denominator and have been ex-

tensively investigated by many researchers. See, for instance, the triology

[45, 48, 50] and references therein, for a detailed description of peculiar prop-

erties of such maps, related to particular bifurcations and changes in struc-

ture of the phase space. One may also refer to [201, 234], where the authors

survey several models coming from economics, biology and ecology de�ned

by maps with vanishing denominator and investigate the global properties of

their dynamics.

Two distinguishing concepts related to maps with vanishing denominator

are notions of a prefocal set and a focal point.

De�nition 4.1. Consider a map F : R2 → R2 and suppose that one of the

components of F is of the form Fi(x1, x2) =
N(x1,x2)
D(x1,x2)

for i = 1 or i = 2. A

point Q(xQ1 , x
Q
2 ) ∈ R2 is called a focal point if

(i) Ni(x
Q
1 , x

Q
2 ) = Di(x

Q
1 , x

Q
2 ) = 0, i. e., the component Fi takes the form of

uncertainty zero over zero at Q;

(ii) there exist smooth simple arcs γ(τ) with γ(0) = Q such that

limτ→0 F (γ(τ)) is �nite.

The set of all such �nite values, obtained by taking di�erent arcs γ(τ) through

Q, is called the prefocal set δQ.

Note that not every point at which Fi takes the form 0/0 is a focal point.

Roughly speaking a prefocal set is a locus of points that is mapped (or often

said �is focalised�) into a single point (focal point) by one of the map inverses.

In a certain sense, the focal point can be considered as the preimage of the

prefocal set with using a particular inverse of the map. At the focal point

at least one component of the map takes the form of uncertainty 0/0, and

hence, the focal point can be derived as a root of a two-dimensional system

of algebraic equations. If it is a simple root, the focal point is called simple.
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De�nition 4.2. The point Q is called simple if Ni1Di2−Ni2Di1 ̸= 0, where

Ni1, Ni2, Di1 and Di2 are the respective partial derivatives over xi, i = 1, 2.

Otherwise, Q is called nonsimple.

Presence of focal points and prefocal sets has an important in�uence on

the global dynamics of the map. There may occur certain global bifurcations

related to contacts of prefocal sets with invariant sets (such as basin bound-

aries) or critical lines. Such bifurcations usually lead to qualitative changes

in structure of attracting sets or basins of attraction. In particular, one

may observe creation of basin structures speci�c to maps with denominator,

called lobes and crescents, sometimes resembling feather fans centred at focal

points. In the Subsection 4.7, we describe a dynamic phenomenon, which has

not been observed before, namely, when for certain parameter constellations,

a focal point at the origin has a basin of attraction of nonzero measure.

4.2. Endogenous desired debt in a Minskyan business

model

In this section we consider, following [69], a family of the two dimensional

smooth noninvertible maps T : R2 ∋ (Y,D) 7→ T (Y,D) ∈ R2, where

T (Y,D) =
(
T1(Y,D), T2(Y,D)

)
(4.1)

with

T1(Y,D) = Y + αa2

(
a1 + a2

a1e−γvY+(r+γ)D−Ḡ + a2
− 1

)
,

T2(Y,D) = D + γ(vY −D)

(4.2)

The parameters are α ∈ R+, ai ∈ R+, i = 1, 2, γ ∈ R+, v ∈ R+, Ḡ ∈ R+,

r ∈ (0, 1).

Remark 4.3. Since Y and D denote economic variables, namely, the income

and the debt, that cannot attain negative values, we must require (Y,D) ∈
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R2
+, which is, though, not invariant under the map T . This implies that

certain orbits with component-wise positive initial conditions may eventually

leave the region of de�nition R2
+ (thus having no economic signi�cance).

Therefore, below we limit our analysis to those orbits that stay always inside

R2
+.

Lemma 4.4. The unique component-wise positive �xed point of the map T

is given by

F ∗ = (Y ∗, D∗) =
Ḡ

r

(
1

v
, 1

)
. (4.3)

Proof. The statement of the Lemma trivially follows from equating Y =

T1(Y,D) and D = T2(Y,D).

Theorem 4.5. At v = vf with

vf =
2γ − 4

αγ(2 + r)

a1 + a2
a1a2

, (4.4a)

the �xed point F ∗ undergoes a �ip bifurcation, while at v = vns with

vns =
1

α(1 + r)

a1 + a2
a1a2

. (4.4b)

it undergoes a Neimark�Sacker bifurcation. For v < vf or for v > vns the

point F ∗ is unstable.

Proof. To determine the bifurcations of F ∗, we use the Jury conditions [83]:

P (1) = 1− trJ∗ + det J∗ > 0, (4.5a)

P (−1) = 1 + trJ∗ + det J∗ > 0, (4.5b)

det J∗ < 1, (4.5c)

where J∗ is the Jacobian matrix of T at F ∗ and P (λ) is the characteristic

polynomial of J∗. The equalities in (4.5a), (4.5b), and (4.5c) correspond to
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the fold, the �ip, and the Neimark�Sacker bifurcations, respectively. The

trace and the determinant of J∗ are given by

trJ∗ = 2−γ+αγv a1a2
a1 + a2

and det J∗ = 1−γ+αγv(1+r) a1a2
a1 + a2

. (4.6)

Substituting (4.6) into (4.5), we get that (i) (4.5a) holds for any parameter

values, which implies that F ∗ cannot undergo a fold bifurcation; (ii) (4.5b)

is violated for v < vf , with the latter de�ned in (4.4a); and (iii) (4.5c) is

violated for v > vns, with the latter given by (4.4b).

The Theorem 4.5 has the following

Corollary 4.6. There are three di�erent regimes of stability of F ∗ with re-

spect to the variation of v:

1. For γ < 2, the �xed point F ∗ is locally asymptotically stable for 0 <

v < vns.

2. For 2 < γ < 4
(
1
r + 1

)
, the point F ∗ is locally asymptotically stable for

vf < v < vns.

3. For γ ≥ 4
(
1
r + 1

)
, the point F ∗ is unstable.

Proof. Since all parameters are positive, the value vf > 0 for γ > 2 and the

�rst statement follows. For γ ≥ 4
(
1
r + 1

)
, there is vf > vns and the third

statement follows. Finally, for 2 < γ < 4
(
1
r + 1

)
, there is vf < vns and the

range v ∈ (vf , vns) for the local asymptotic stability of F
∗ exists.

Lemma 4.7. The map T is topologically conjugate to the map T̃ : R2 → R2,

T̃ (Y,D) = (T̃1(Y,D), T̃2(Y,D)), where

T̃1(Y,D) = Y + αa2

(
a1 + a2

a1e−γvY+(γ+r)D + a2
− 1

)
,

T̃2(Y,D) = D + γ(vY −D),

(4.7)

through the homeomorphism h(Y,D) = (Y + Y ∗, D +D∗).
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Proof. From (4.3) it follows that γ(vY ∗ − D∗) = 0 and rD∗ = Ḡ. Then

T1(Y +Y ∗, D+D∗)−Y ∗ = T̃1(Y,D) and T2(Y +Y ∗, D+D∗)−D∗ = T̃2(Y,D),

which proves the statement.

The map T̃ has a unique �xed point (0, 0), which undergoes a �ip bifur-

cation at v = vf .

Theorem 4.8. If 2 < γ < 4(1r +1), then there exists a neighbourhood U(vf)

such that for any v ∈ U(vf) map T̃ given in (4.7) has a local one-dimensional

invariant manifold Wv such that Wvf is the central manifold at the moment

of bifurcation. The restriction of map T̃ = T̃vf to its centre manifold Wvf is

locally topologically conjugate near the �xed point (0, 0) to the normal form

η → −η + c(0)η3 +O(η4), (4.8)

where

c(0) =
2(γ − 2)(r + 2)3(a21 + a22 − a1a2)

3(a1 + a2)2(rγ − 4r − 4)
. (4.9)

Proof. The proof is merely technical and uses the well-known projection

method for centre manifold computation, described in detail in [133]. There-

fore only a sketch is provided.

We decompose the map T̃ into Taylor series in the neighbourhood of the

�xed point (0, 0):

T̃ (x) = J̃x+ F (x) = J̃x+
1

2
B(x, x) +

1

6
C(x, x, x) +O(∥x∥4), (4.10)

where x is the two-dimensional column vector with the components Y and

D, J̃ is the Jacobian matrix of T̃ evaluated at (0, 0) and, for i = 1, 2,

Bi(x, y) =
2∑

j,k=1

∂2T̃i(0, 0)

∂ξj∂ξk
xjyk, Ci(x, y, u) =

2∑
j,k,l=1

∂3T̃i(0, 0)

∂ξj∂ξk∂ξl
xjykul.

Clearly B2(x, y) ≡ 0 and C2(x, y, u) ≡ 0. Let us denote as q the eigenvector

of J̃ corresponding to the eigenvalue µ = −1. We also compute the adjoint

eigenvector p such that J̃ ′p = µp and ⟨p, q⟩ = 1 with J̃ ′ being the transpose
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of J̃ and ⟨·, ·⟩ denoting the scalar product. Then the centre manifold Wvf

of T̃vf is represented by a function whose Taylor series starts from quadratic

terms and the restriction T̃vf |Wvf
takes the form

u 7→ −u+ a(0)u2 + b(0)u3 +O(u4), (4.11)

where the expressions for coe�cients a(0) and b(0) include J̃ , q, p, B(q, q)

and C(q, q, q). By the Theorem about the normal form for the �ip bifurcation

(see, [133, p. 121]), the map (4.11) is topologically conjugate to

ξ 7→ −ξ + c(0)ξ3 +O(ξ4),

where

c(0) = a2(0) + b(0) =
1

6
⟨p, C(q, q, q)⟩ − 1

2
⟨p,B(q, (J̃ − Id)−1B(q, q))⟩

with Id being the identity matrix. Direct computation gives c(0) in the form

(4.9).

Theorem 4.9. If

C1 γ ̸= k(1/r + 1), k = 2, 3, 4,

then the map T̃ , for values of v su�ciently close to vns, is locally topologically

conjugate near the �xed point (0, 0) to the normal form

z → r(v)eiθ(v)z + c(v)z|z|2 +O(|z|4), (4.12)

where z ∈ C, c(v) ∈ C and r(vns) = 1. Moreover, there holds

ℜ
(
e−iθ(vns)c(vns)

)
= −rγ

2((a1 − a2)
2γ + 2a1a2)

4(1 + r)α2a21a
2
2

. (4.13)

Proof. Again the proof is simply technical and based on the known method

described in [133]. Hence, only a sketch is provided.

We again decompose the map T̃ into Taylor series (4.10) in the neighbour-

hood of (0, 0). For v = vns the Jacobian matrix J̃ has two complex conjugate

eigenvalues µ = eiθ0 and µ̄ = e−iθ0, θ0 = θ(vns), located at the unit circle.
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Let us denote as q the eigenvector of J̃ related to µ, then q̄ corresponds to

µ̄. Let p be the adjoint eigenvector such that J̃ ′p = µ̄p and ⟨p, q⟩ = 1. Any

real-valued column vector x = (Y,D)′ can be represented as x = zq + z̄q̄

for some complex z. The new complex variable is then de�ned by z = ⟨p, x⟩
and the map T̃ in terms of this new variable becomes

z 7→ µz + g(z, z̄, p), g(z, z̄, p) = ⟨p, F (zq + z̄q̄)⟩. (4.14)

The Taylor series of the function g with respect to (z, z̄) starts with quadratic

terms and has coe�cients denoted gkl, k + l ≥ 2. Taking into account the

decomposition of F (·) into sum of B(·, ·), C(·, ·, ·) and higher order terms (see
(4.10)), the coe�cients gkl with k + l ≤ 3 are computed as scalar products

of p and functions B and C over arguments q, q̄. Omitting further technical

details, we recall that by an invertible smooth change of complex coordinate

map (4.14) can be transformed into (4.12).

Note that to have the suitable transformation, the non-degeneracy con-

ditions (i) r′(vns) ̸= 0 and (ii) eikθ0 ̸= 1, k = 1, 2, 3, 4 are required. By

straightforward computation we get that

r(v) =

√
αa1a2γv(1 + r)

a1 + a2
+ 1− γ,

from which the condition (i) follows. As for the condition (ii), it is always

true for k = 1, while the values k = 2, 3, 4 imply the restriction C1.

Now we discuss the case when the condition C1 in the Theorem 4.9 is not

satis�ed and the related Neimark�Sacker bifurcation is degenerate. What is

the result of such a bifurcation needs deeper analysis. In fact, three crit-

ical values of γ are associated with three strong resonances and represent

bifurcation points of the codimension two. The value γ = 4(1r + 1) is re-

lated to strong resonance 1:2, when both the multipliers of the �xed point

e±iθ(vns) = −1. The value γ = 3(1r + 1) =: γ1:3 is associated with strong

resonance 1:3, when θ(vns) = 2π/3. And for γ = 2(1r + 1) =: γ1:4 strong
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Figure 4.1: (a) A typical 2D bifurcation diagram in the (v, γ) parameter plane of the map

T . (b) Enlargement of the art near the codim-2 bifurcation point R1:3.

resonance 1:4 occurs, that is, θ(vns) = π/2. Below we consider only cases of

strong resonances 1:3 and 1:4. The dynamics of the map T in the mentioned

two cases is described numerically for the particular chosen set of parameters.

For di�erent parameter set, the general dynamical picture can be di�erent,

especially in case of strong resonance 1:4, which is much more tricky than

the case 1:3.

Let us �rst �x γ = γ1:3. As it is visible in Fig. 4.1a, there is no tongue

related to a 3-cycle as one could expect. Though the complete picture of

dynamics that can occur in the neighbourhood of the point R1:3 is unknown,

certain common features can be described. For all parameter values close

enough to R1:3, the Neimark�Sacker bifurcation produces a closed invariant

curve Γ surrounding the �xed point F ∗ and there also exists a saddle 3-

cycle O3, which is located outside Γ and whose stable set con�nes its basin

of attraction. With increasing v, the curve Γ becomes larger and �nally is

destroyed through boundary crisis (that is, colliding with the boundary of

its basin of attraction). In the (v, γ) parameter plane, the curve related to
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the boundary crisis of Γ touches the Neimark�Sacker bifurcation curve at the

codimension two point R1:3.

Let us now turn to the region related to a stable 4-cycle emerging from the

point R1:4 = (vns, γ1:4), at which strong resonance 1:4 occurs (see Fig. 4.1b).

This case appears to be much more tricky than the strong 1:3 resonance.

Detailed description of dynamics that can occur in the neighbourhood of

the related parameter point can be found, e. g., in [133]. Here we describe

the bifurcation scenario associated with the codimension two point R1:4 =

(vns, γ1:4) for the map T with the particular parameter set. As one can

see in Fig. 4.1b, showing a 2D bifurcation diagram in the (v, γ) parameter

plane, for the values of γ < γ1:4 being su�ciently close to γ1:4, there are

two regions related to multistability, P1&4 (shown pink) and PΓ&4 (shown

orange). In the region P1&4 a stable �xed point F ∗ coexists with a stable

4-cycle OI
4. The latter appears due to the fold bifurcation together with

a saddle 4-cycle OII
4 . In Fig. 4.2a (which corresponds to the parameter

pair marked �a� in Fig. 4.1b) we plot in scale the parallelepiped area of

the phase space with vertices (Y a
11, D

a
1), (Y

a
21, D

a
2), (Y

a
22, D

a
2), and (Y a

12, D
a
1)

with Y a
11 = 1133.21, Y a

12 = 1133.222, Y a
21 = 1133.447, Y a

22 = 1133.459,

Da
1 = 499.94, Da

2 = 500.047, where OI
4 is shown by blue points, OII

4 by red

points and its unstable set by red line. The stable set W s(OII
4 ) separates

the basins of attraction of F ∗ (light-blue) and OI
4 (violet). One branch of

the unstable set of OII
4 is attracted to the node OI

4, while the other branch

asymptotically approaches F ∗.

With increasing v when a parameter point crosses Neimark�Sacker bi-

furcation boundary and enters the region PΓ&4, the �xed point F ∗ becomes

unstable and an invariant curve Γ appears still coexisting with the stable

4-cycle. In Fig. 4.2b (which corresponds to the parameter pair marked �b�

in Fig. 4.1b) we show scaled the parallelepiped area of the phase space with

vertices (Y b
11, D

b
1), (Y

b
21, D

b
2), (Y

b
22, D

b
2), and (Y b

12, D
b
1) with Y

b
11 = 1133.038,

Y b
12 = 1133.05, Y b

21 = 1133.347, Y b
22 = 1133.359, Db

1 = 499.92, Db
2 = 500.06,
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where Γ is plotted by green line. The stable setW s(OII
4 ), as before, separates

the basins of two attractors.

Figure 4.2: Scaled parallelepiped area of the phase space of T corresponding to the re-

spective points �a�, �b�, and �c� marked in Fig. 4.1b with γ = 99 and (a) v = 0.44117, (b)

v = 0.44122, (c) v = 0.44135. Other parameters are as before.

With further increasing v, the invariant curve Γ disappears due to bound-

ary crisis, colliding with W s(OII
4 ). The cycle OI

4 remains the only attractor,

but now both cycles are located on the closed invariant curve Γ′ composed by

the unstable set W u(OII
4 ). In Fig. 4.2c (which corresponds to the parameter

pair marked �c� in Fig. 4.1b) there is shown the scaled parallelepiped area

of the phase space with vertices (Y c
11, D

c
1), (Y

c
21, D

c
2), (Y

c
22, D

c
2), and (Y c

12, D
c
1)

with Y c
11 = 1133.038, Y c

12 = 1133.049, Y c
21 = 1132.635, Y c

22 = 1132.646,

Dc
1 = 499.89, Dc

2 = 500.07, where Γ′ is plotted by red line.

For the values of γ > γ1:4, the scenario with varying v is the same as for

any generic tongue. That is, with increasing v the �xed point F ∗ undergoes

the Neimark�Sacker bifurcation and the invariant curve Γ appears around

F ∗. With further increasing v the cycles OI
4 (stable) and OII

4 (saddle) are

born on Γ due to fold bifurcation. Then there follows the standard related

bifurcation sequence.

Note that if we �x v close to vns and increase γ starting from the value

below γ1:4 where the invariant curve Γ is the only attractor, the scenario

is the following. First a pair of 4-cycles, OI
4 and OII

4 , appear due to fold
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bifurcation outside Γ. Then Γ undergoes boundary crisis and disappears,

but the unstable set W u(OII
4 ) composes now a new (wider) invariant curve

Γ′. Finally, OI
4 and OII

4 disappear due to another fold bifurcation and there

remains an attracting Γ′. For a detailed description of similar scenarios of

bifurcations associated with invariant curves we refer to [3] and references

therein.

As shown above, the map T has oscillating solutions (stable closed invari-

ant curves) occurring after the Neimark�Sacker bifurcation. The presence of

such stable attractors surrounding the �xed point F ∗, at least just after the

bifurcation, follows from the fact that, according to the Theorem 4.9, the

mentioned bifurcation when non-degenerate is of supercritical type. Below

we uncover further transformations of such a closed invariant curve, leading

�nally to an attracting chaotic area, when the bifurcation parameter value

moves away from the the Neimark�Sacker bifurcation boundary in the pa-

rameter space. For this we must consider the critical set of the map T and

its images, as explained, for example, in [94].

Theorem 4.10. The critical set of the map T is LC = ∅ for γ ≤ 1 or for

γ > 1 and

a1 + a2 <
4(γ − 1)

αγv(1 + r)
. (4.15)

Otherwise, it is

LC =

{
(Ȳ , D̄) : D̄ =

γv(1 + r)

γ + r
Ȳ

− (ln s± + Ḡ)(γ − 1)

γ + r
− αa2γv(1 + r)

γ + r

(
a1 + a2
a1s± + a2

− 1

)}
, (4.16)

where

s± =
a2
2a1

(
A±

√
A2 − 4

)
, A =

αγ(a1 + a2)v(1 + r)

γ − 1
− 2. (4.17)

Proof. Let us �nd the set of merging preimages LC−1, which for the map T

is de�ned by

detDT (Y,D) = 0. (4.18)
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The equation (4.18) allows for analytical solution:

D =
ln s± + Ḡ

γ + r
+

γv

γ + r
Y, (4.19)

where s± are given by (4.17). For γ ≤ 1, (4.19) produces complex values,

and hence, LC−1 = ∅. For γ > 1, we must require that A > 0, which

implies (4.15). Substituting then (4.19) into (4.2) produces (4.16).

Let us show that the number of preimages of a point (Ȳ , D̄) changes when

it crosses the set LC. We notice that both components of the map T are

invertible on D. We solve both equations

Ȳ = T1(Y,D) and D̄ = T2(Y,D)

with respect to D, which implies

D = f1(Y, Ȳ ) =
γvY + Ḡ

γ + r
+

1

γ + r
ln

(
a2(a1α + Y − Ȳ )

a1(a2α− Y + Ȳ )

)
,

D = f2(Y, D̄) =
γvY − D̄

γ − 1
.

The Y -component of preimages of (Ȳ , D̄) can be obtained as the intersection

of the graphs of f1 and f2. Since all parameters are positive, the function

f2 represents an increasing line. Let us investigate the properties of f1. It is

de�ned for Y ∈ I := (Ȳ − αa1, Ȳ + αa2) and its derivative

∂f1(Y, Ȳ )

∂Y
=

γv

γ + r
+

α(a1 + a2)

(γ + r)(a1α + Y − Ȳ )(a2α− Y + Ȳ )

is positive for all Y ∈ I. Hence the function f1 is increasing in the whole

de�nition interval I. Further, there is

lim
Y→Ȳ−αa1

∂f1(Y, Ȳ )

∂Y
= lim

Y→Ȳ+αa2

∂f1(Y, Ȳ )

∂Y
= +∞

and

lim
Y→Ȳ−αa1

f1(Y, Ȳ ) = −∞ and lim
Y→Ȳ+αa2

f1(Y, Ȳ ) = +∞.
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It means that there must be at least one intersection of f1 and f2, that is,

any point (Ȳ , D̄) has at least one preimage. Let us now �nd the point Y (or

points if multiple) such that

∂f1(Y, Ȳ )

∂Y
=
∂f2(Y, D̄)

∂Y
=

γv

γ − 1
.

The latter results in the quadratic equation

Y 2 + C1Y + C0 = 0 (4.20)

with

C1 = α(a1 − a2)− 2Ȳ and

C0 =
α(a1 + a2)(γ − 1)

γv(r + 1)
− (a1α− Ȳ )(a2α + Ȳ ).

The discriminant of (4.20) is negative when (4.15) holds. Then the quadratic

equation has no solutions (case 1), which means that f1 is always steeper than

f2. If (4.20) has a single solution (case 2), it means that f1 is steeper than

f2 everywhere except for the one point. Finally, if there are two solutions Y−

and Y+, Y− < Y+, then f1 is steeper than f2, except for the interval (Y−, Y+),

where f2 is steeper than f1.

In the cases 1 and 2, f1 and f2 cannot have more than one

intersection, since there is always either f1(Y±, Ȳ ) > f2(Y±, D̄) or

f1(Y±, Ȳ ) < f2(Y±, D̄). However, in case 3, it can be f1(Y−, Ȳ ) > f2(Y−, D̄)

and f1(Y+, Ȳ ) < f2(Y+, D̄), and then the functions f1 and f2 have three

intersection points: Y1 < Y−, Y2 ∈ (Y−, Y+), and Y3 > Y+. Transition from

one intersection to three intersections occurs at f1(Y−, Ȳ ) = f2(Y−, D̄) or

f1(Y+, Ȳ ) = f2(Y+, D̄). By technical transformations it can be shown that

that these two conditions are equivalent to (4.16).

Clearly, (4.16) de�nes in the state space two parallel lines, say, L+ and L−.

The lines L+ and L− divide the state space into three sub-regions, namely,
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two half-planes

Π+ =

{
(Y,D) : D >

γv(1 + r)

γ + r
Y − (ln s+ + Ḡ)(γ − 1)

γ + r
− U+

}
,

Π− =

{
(Y,D) : D <

γv(1 + r)

γ + r
Y − (ln s− + Ḡ)(γ − 1)

γ + r
− U−

}
,

U± :=
αa2γv(1 + r)

γ + r

(
a1 + a2
a1s± + a2

− 1

)
each point of which has only one preimage and the band

B =

{
(Y,D) :

γv(1 + r)

γ + r
Y − (ln s+ + Ḡ)(γ − 1)

γ + r
− U+ > D

>
γv(1 + r)

γ + r
Y − (ln s+ + Ḡ)(γ − 1)

γ + r
− U+

}
,

each point of which has three preimages. That is, the map T is of type

Z1 − Z3 − Z1.

Due to the fact that the invariant curve Γ, which appears after the

Neimark�Sacker bifurcation of the �xed point F ∗, cannot be expressed ana-

lytically, we study its transformations numerically by using computer simu-

lations. In Figs. 4.3 we plot the respective scaled parallelepiped areas of the

phase space containing the attractor of T (shown with green colour) together

with the set of merging preimages LC−1 (plotted grey) and critical lines LCk

of several ranks for several di�erent values of v (cyan colour for LC, blue for

LC1, steel-blue for higher ranks). The bifurcation scenario from a smooth

invariant curve through a curve with self-intersections to a chaotic attractor

is much similar to phenomena described in [94]. For smaller value of v (in

Fig. 4.3a) the invariant curve Γ does not have any contacts/intersections

neither with LC−1, nor with LC. With increasing v, the curve Γ expands

towards both branches of LC−1 and at some v = v̄ it becomes �rst tangent to

the lower branch of LC−1. For v somewhat greater than v̄, the curve Γ start

having intersections with LC−1 at points Ai (shown white in Fig. 4.3b). As

a consequence, Γ is then tangent to LC at points Bi = T (Ai) (shown cyan

in Fig. 4.3b). Clearly, Γ is also tangent to critical lines of higher rank at the
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successive images of Bi (for instance, the points T (Bi) and T
2(Bi) located

at LC1 and LC2 are shown by blue and steel-blue, respectively). In such a

way, Γ starts to have smooth oscillations in its shape. Note that the slope of

Γ at points Ai changes as v varies. Recall that at the points of LC−1 the de-

terminant detDT (Y,D) = 0 and, hence, along LC−1 one of the eigenvalues

is always zero. At some v = ṽ slope of Γ at a point Ai becomes collinear to

the eingenvector corresponding to this zero eigenvalue. After this occurrence

(that is, for v > ṽ) the curve Γ has self-intersections and is not smooth any

more (see Fig. 4.3c, in particular, the respective inset). Further increase of

the constant factor v leads to occurrence of a homoclinic tangle and then

the attractor becomes a chaotic area con�ned by segments of critical lines

of di�erent rank (in Fig. 4.3d LC−1 is shown grey, LC is plotted with cyan,

LC1 with blue, and critical lines of higher ranks are steel-blue).

Figure 4.3: Scaled parallelepiped areas of the phase space containing the attractor (green),

being an invariant curve Γ in (a)�(c) and a chaotic attractor in (d). The graph limits are

(a) Y a
11 = 1045, Y a

12 = 1049, Y a
21 = 1070, Y a

22 = 1074, Da
1 = 492, Da

2 = 504; (b) Y b
11 = 639,

Y b
12 = 647, Y b

21 = 749, Y b
22 = 757, Db

1 = 453, Db
2 = 533; (c) Y c

11 = 457, Y c
12 = 467, Y c

21 = 615,

Y c
22 = 625,Dc

1 = 415,Dc
2 = 560; (d) Y d

11 = 115, Y d
12 = 135, Y d

21 = 405, Y d
22 = 425,Dd

1 = 210,

Dd
2 = 710. The parameters are γ = 2.4, α = 1, a1 = 4, a2 = 5, Ḡ = 10, r = 0.02, c = 0.7,

and (a) v = 0.47; (b) v = 0.706; (c) v = 0.9; (d) v = 1.7.
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4.3. Global dynamic scenarios in a discrete-time

model of renewable resource exploitation

In this section we follow the paper [42], where a model for a renewable re-

source exploitation process is considered, under the assumption that agents

can choose between two harvesting strategies (an intensive one and an envi-

ronmentally friendly one). Asymptotic dynamics is described by a family of

two-dimensional smooth noninvertible maps F : R2 ∋ (x, r) → F (x, r) ∈ R2:

F (x, r) =
(
F1(x, r), F2(x, r)

)
(4.21)

with

F1(x, r) =

(
1 + α− Na0q0

2γ

)
x− α

k
x2 +

N

2γ
(a0q0 − a1q1)xr,

F2(x, r) =r

{
r + (1− r)e

β

(
a20q0−a21q1

4γ x−ξ

)}−1

.

(4.22)

where parameters are α ∈ R+, k ∈ R+, N ∈ N, qi ∈ R+, ai ∈ R+, i = 0, 1,

q0 < q1, a1 < a0, γ ∈ R+, β ∈ R+, ξ ∈ R−. Below we also assume that

a0q0 < a1q1, which follows from economic relevance (in fact, this condition

means that the technology q0 is indeed more ecological).

Due to economic de�nition of the state variables (x is the available

quantity of the target resource and r is the share of agents adopting

the standard technology), the region of feasible states of the map F is

DF = {(x, r) : x ≥ 0, 0 ≤ r ≤ 1}. The region DF is not invariant

under F . More precisely, the value of r always stays between zero and one

but x can eventually become negative. Therefore, we must limit our analysis

to those orbits that stay always inside DF .

Trivial dynamics of F (concerning �xed points and their stability) has

been studied in [42] and can be resumed as follows.
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Proposition 4.11 (Bischi et al.). The lines M = {(x, r) : x = 0}, M0 =

{(x, r) : r = 0}, and M1 = {(x, r) : r = 1} are invariant under the action

of F . The respective one-dimensional restrictions are de�ned as fr=i : R ∋
x→ fr=i(x) ∈ R with

fr=i(x) =

(
1 + α− Naiqi

2γ

)
x− α

k
x2, i = 0,1, (4.23)

and fx=0 : R ∋ r → fx=0(r) ∈ R with

fx=0(r) =
r

r + (1− r)e−ξβ
. (4.24)

Proposition 4.12 (Bischi et al.). The map F has �ve �xed points, namely,

the boundary ones E0
0(0, 0), E

0
1(0, 1), E

∗
0(x

∗
0, 0), E

∗
1(x

∗
1, 1), and an internal

one E∗(x∗, r∗), where

x∗i =

(
1− Naiqi

2γα

)
k, i = 0, 1, (4.25)

x∗ =
4ξγ

a20q0 − a21q1
, r∗ =

2γα(1− x∗/k)−Na0q0
N(a1q1 − a0q0)

. (4.26)

Proposition 4.13 (Bischi et al.). The �xed point E0
i , i = 0, 1, is stable if

(Naiqi)/(2γ)− 2 < α < (Naiqi)/(2γ) and (−1)iξβ < 0.

The �xed point E∗
i , i = 0, 1, is stable if

Naiqi
2γ

< α <
Naiqi
2γ

+2 and (−1)iξ < (−1)i
(
a20q0 − a21q1

)
4γ

k

(
1− Naiqi

2γα

)
.

At ξβ = 0, the points E0
0 and E0

1 undergo a degenerate +1 bifurcation.

At α = (Naiqi)/(2γ)− 2, the point E0
i undergoes a �ip bifurcation.

At α = (Naiqi)/(2γ), E
∗
i and E0

i undergo a transcritical bifurcation.

At α = (Naiqi)/(2γ) + 2, E∗
i and E∗ undergo a transcritical bifurcation.

Proposition 4.14 (Bischi et al.). The �xed point E∗ is stable if(
Na0q0
2γ

−B

)(
Na1q1
2γ

−B

)
ξβ > 0, (4.27)
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Na0q0
2γ

−B

)(
Na1q1
2γ

−B

)
ξβ + (2− αA)

N(a1q1 − a0q0)

γ
> 0, (4.28)(

Na0q0
2γ

−B

)(
Na1q1
2γ

−B

)
ξβ − αA

N(a1q1 − a0q0)

2γ
< 0, (4.29)

where

A =
4ξγ

(a20q0 − a21q1)k
, B = α(1− A).

The equalities in (4.27), (4.28), and (4.29) are related to the transcritical,

the �ip, and the Neimark�Sacker bifurcations of E∗, respectively.

Note that if ξ < 0 (as accepted above), then x∗ > 0 provided that

a20q0 < a21q1, which we assume in the following. We also set the parameter

values so that the extinction boundary �xed points E0
i are not stable, and

hence, α > (Naiqi)/(2γ).

Below we continue investigation, as reported in [70, 175], of asymptotic

dynamics of the map F when the internal �xed point E∗ becomes unstable.

For this we compute the critical set LC as an image of the set of merging

preimages LC−1.

Theorem 4.15. For the map F , the set of merging preimages is

LC−1 = {(x, r) : x = x̂(r), r ∈ [0, 1]}, (4.30)

where

x̂(r) =
8kγ2(1 + α)− 4kγN(a0q0(1− r) + a1q1r)

16αγ2 − βkN(a0q0 − a1q1)(a20q0 − a21q1)r(1− r)
. (4.31)

The critical set is the locus of points

LC = {(F1(x̂(u), u), F2(x̂(u), u))}u∈[0,1]. (4.32)

Proof. To �nd the set of merging preimages LC−1 we consider the equation

detDF (x, r) = 0. (4.33)

The latter allows for analytical solution x = x̂(r) de�ned in (4.31). To prove

that (4.31) de�nes the set of two merging preimages, it is enough to show
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that for a point (x̄, r̄), the system x̄ = F1(x, r), r̄ = F2(x, r) has generically

either two solutions or none.

To simplify analytic transformations we rewrite the components of F as

F1(x, r) = −Ax2 +Bx+ Cxr and F2(x, r) =
r

r + (1− r)eDx−G
,

where

A =
α

k
> 0, B =

(
1 + α− Na0q0

2γ

)
> 0,

C =
N

2γ
(a0q0 − a1q1) < 0, D = β

a20q0 − a21q1
4γ

< 0, G = βξ < 0.

The second component F2 is monotone on r. Solving F2(x, r) = r̄ for r gives

a single solution

r = 1− 1

R̄eDx−G + 1
, R̄ =

r̄

1− r̄
> 0.

Substituting the latter into x̄ = F1(x, r) one obtains

g1(x) := x̄− Cx

(
1− 1

R̄eDx−G + 1

)
= −Ax2 +Bx =: g2(x).

The function g2(x) is a quadratic function with two zeros at 0 and B/A > 0

having a local maximum. Let us analyse g1(x). At �rst, g1(0) = x̄ > 0 and

limx→+∞ g1(x) = x̄. The derivative is

dg1(x)

dx
= −

CR̄eDx−G
(
R̄eDx−G +Dx+ 1

)(
R̄eDx−G + 1

)2 .

The only extremum point is then

xextr = −R̄e
−W (R̄e−G−1)−G−1 + 1

D
> 0,

where W denotes the Lambert W function. Moreover, the second derivative

dg1(x)

dx

∣∣∣∣
x=xextr

= −CDW (R̄e−G−1)

W (R̄e−G−1) + 1
< 0,
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and hence, the extremum is the point of maximum. The x-component of

the preimages of (x̄, r̄) is obtained as the point of intersection of two uni-

modal maps g1(x) being strictly positive for x > 0 and the logistic-like g2(x).

Clearly, there can be generically either two intersections or none, which means

that the point (x̄, r̄) either has two preimages or none.

Corollary 4.16. The map F is of type Z2−Z0, that is, phase points (x, r) ∈
DF located to the right-hand side of the critical line LC = F (LC−1) do not

have preimages, while the points located to the left-hand side of LC have two

preimages.

A sample bifurcation diagram in the (ξ, β) parameter plane is presented

in Fig. 4.4a. The point E∗ becomes stable due to a transcritical bifurcation

(the corresponding boundary κE∗,E∗
0
is shown blue) colliding with E∗

0 at the

line M0 and entering DF from below. Then it can lose stability through a

�ip or a Neimark�Sacker bifurcation (the corresponding curves ηE∗ and ζE∗

are shown by red and green colours, respectively).

Remark 4.17. As follows from the Proposition 4.14, the stability region PE∗

of the internal �xed point can be con�ned by at most four boundaries, namely,

κE∗,E∗
0
related to the transcritical bifurcation of E∗ and E∗

0 , κE∗,E∗
1
related

to the transcritical bifurcation of E∗ and E∗
1 , ηE∗ associated with the �ip

bifurcation of E∗, and ζE∗ associated with the Neimark�Sacker bifurcation

of E∗.

In Fig. 4.4b one can see the magni�cation of the rectangular area marked

in Fig. 4.4a, related to the period-doubling cascade emerging after the �ip

bifurcation of E∗. The black dot at the curve ηE∗ marks the the parameter

pair P̄ = (ξ̄, β̄) with ξ̄ ≈ −0.29355, β̄ ≈ 8.33, at which the type of the �ip

bifurcation changes from supercritical to subcritical. Nonetheless, the other

periodicity regions associated with 2m-cycles, m > 1, do not accumulate to

the point P̄ , as one would expect. To explain this occurrence deeper analysis

is needed. First, in Fig. 4.5a we show the magni�cation of the respective area
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Figure 4.4: Colour coded 2D bifurcation diagram in (ξ, β) parameter plane

with di�erent colours corresponding to di�erent periods. The parameters are

α = 3.39203, a0 = 1.973, a1 = 1.91, q0 = 0.1013, q1 = 0.404, γ = 1.875, N = 15, k = 3. In

(b) the magni�cation of the rectangular area marked �b� in (a) is shown.

(marked by �S1� in Fig. 4.4b) together with several bifurcation curves related

to the stable cycles O2 and O4. Below the point P̄ the curve ηE∗ is related

to the supercritical �ip bifurcation (at which the stable 2-cycle O2 is born),

while above P̄ it corresponds to the subcritical �ip (at which the stable �xed

point E∗ collides with some saddle 2-cycle Õ2 and the latter disappears).

Clearly, above P̄ there is no stable O2 and the stable O4 must appear

due to some other bifurcation. To discover the origin of O4, in Figs. 4.6a,b,

we plot 1D bifurcation diagram versus ξ for β = 7.9 < β̄ along an arrow

marked �S1� in Fig. 4.5a. Red and pink lines (both solid and dashed) show

saddles and unstable nodes, respectively. The grey stripes denote the attrac-

tor at the line M0, while blue and green colours are related to two di�erent

attractors located in the interior of DF . As one can see, there is a range of
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Figure 4.5: (a) The magni�cation of the area marked by �S1� in Fig. 4.4b. (b) The

schematic representation of the bifurcation structure related to periodicity regions for

O2s , O2s+1 , and O2s+2 , s ∈ N.

coexistence of the two stable cycles O2 and O4. The former appears due to

the (supercritical) �ip bifurcation of E∗ and then disappears for smaller ξ

due to the fold bifurcation with the related complementary saddle cycle Õ2

shown by solid red line. In its turn, for some larger ξ, the cycle Õ2 enters

Figure 4.6: (a), (b) 1D bifurcation diagram corresponding to the arrow marked �F3� in

Fig. 4.4b. Green and blue lines denote two orbits related to di�erent initial conditions; red

and pink colours denote saddles and unstable nodes, respectively. (c) The cyclic invariant

curves Γ4 coexisting with the stable O2 for ξ = −0.2927511.

the interior of DF crossing the line M0. At this moment Õ2 collides with



177

the unstable 2-cycle O0
2 ⊂ M0 and undergoes the transcritical bifurcation

(changing from being a saddle to being an unstable node). With decreasing

ξ, the cycle Õ2 becomes a saddle again due to a (subcritical) �ip bifurcation,

while an unstable node 4-cycle O4 appears (shown by cyan line). Eventu-

ally, O4 becomes an unstable focus, being surrounded by four cyclic invariant

curves Γ4 and then becomes stable due to a Neimark�Sacker bifurcation ζO4

(see the inset in Fig. 4.6b). The panel c presents the part of the phase

space for ξ = −0.2927511 (corresponding to the vertical dashed line visi-

ble in the mentioned inset) with two coexisting attractors, O2 and Γ4, the

basins of which (pink and white, respectively) are separated by the stable

set of the saddle Õ2. The bifurcation curves θO2,Õ2
and ζO4

, associated, re-

spectively, with the fold bifurcation of the stable O2 and the saddle Õ2 and

the Neimark�Sacker bifurcation of O4 intersect at the point P̃ = (ξ̃, β̃) with

ξ̃ ≈ −0.29242, β̃ ≈ 7.5 (marked by the other black dot in Fig. 4.5a). The

point P̃ is a codimension-2 bifurcation point for the complimentary cycles

O2 and Õ2, both of which at P̃ have one multiplier equal to +1 and the other

to −1. Thus, at P̃ two more bifurcation curves meet, namely, ηO2
and ηÕ2

corresponding to the �ip bifurcations of O2 and Õ2, respectively.

In such a way, the periodicity region related to the stable O2 is con�ned

by three borders: ηE∗, θO2,Õ2
(between the points P̄ and P̃ ), and ηO2

(below

P̃ ). The bifurcation boundaries of the region related to the stable O4 are

ηO2
below P̃ , ζO4

above P̃ , and ηO4
, corresponding to the �ip bifurcation of

O4. In the parameter domain con�ned by ζO4
, ηO4

, and ηE∗ the stable �xed

point E∗ coexists with the stable O4, while in the domain con�ned by ηE∗,

ζO4
, and θO2,Õ2

the stable O4 coexists with the stable O2.

Scenario similar to the one described above for the �xed point E∗ can be

observed for the stable 22s-cycles O22s, s ∈ N. It is schematically represented
in Fig. 4.5b, where solid lines are related to the boundaries of the periodicity

regions and dashed lines correspond to several auxiliary bifurcation curves.

The stable O22s loses stability due to a �ip bifurcation, which can be super-
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critical (below some point P̄ ′) or subcritical (above P̄ ′). At the bifurcation

curve κÕ22s+1 ,O0
22s+1

the saddle Õ22s+1 and the unstable node O0
22s+1 ⊂ M0 un-

dergo a transcritical bifurcation changing stabilities. There exists some point

P̃ ′, at which four bifurcation curves meet: ηÕ22s+1
, ζO22s+2 , θO22s+1 ,Õ22s+1

, and

ηO22s+1 . At the curve ηÕ22s+1
(above P̃ ′), the unstable Õ22s+1 becomes a saddle

due to a subcritical �ip bifurcation, giving rise to an unstable node O22s+2.

The latter eventually transforms to an unstable focus and gains stability at

a Neimark�Sacker bifurcation curve ζO22s+2 . At the curve θO22s+1 ,Õ22s+1
(the

part located between the points P̄ ′ and P̃ ′), the stable cycle O22s+1 disap-

pears due to a fold bifurcation together with its complementary saddle cycle

Õ22s+1. Note that below P̃ ′ at θO22s+1 ,Õ22s+1
, the same two cycles undergo the

fold bifurcation but now they are a saddle and an unstable node, respectively.

Below the point P̃ ′, the stable O22s+2 appears at the curve ηO22s+1 due to a

�ip bifurcation of O22s+1. The cycle O22s+2 loses stability due to a (subcritical

or supercritical) �ip bifurcation at ηO22s+2 .

The bifurcation structure of the respective part of the (ξ, β) parameter

plane can be summarised as follows:

Proposition 4.18. Consider the (ξ, β) parameter plane of the map F with

the other parameters �xed and consider the area located below the curve ηE∗

related to the �ip bifurcation of the internal �xed point E∗. The region

PO22s+1 , s = 0, 1, . . ., is con�ned by ηO22s
and ηO22s+1 , related to the �ip bifur-

cations of the respective cycles, and θO22s+1 ,Õ22s+1
, corresponding to the fold

bifurcation. The region PO22s+2 is con�ned by ηO22s+1 , the other �ip bifurca-

tion boundary ηO22s+2 , and ζO22s+2 associated with the Neimark�Sacker bifur-

cation. In the domain con�ned by ηO22s
, ηO22s+2 , and ζO22s+2 , the stable O22s

and O22s+2 coexist. In the domain con�ned by ηO22s
, ζO22s+2 , and θO22s+1 ,Õ22s+1

,

the stable O22s+1 and O22s+2 coexist. In between the curves ζO22s+2 and ηÕ22s+1

(related to the �ip of the unstable Õ22s+1) there exists a domain associated

with an attracting cyclic invariant curves Γ22s+2, coexisting with the other

internal attractor (either O22s or O22s+1).
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For small enough β, when the attractor becomes non-regular, the bifur-

cation scenario further observed is non-typical for such kind maps, though

being characteristic for the map F . In order to describe the transformations

of the related attractor, in Fig. 4.7 we show the evolution of the coordinate

r versus ξ corresponding to the arrow marked �S2� in Fig. 4.4b for the �xed

β = 5.56. The dark-grey (horizontal) line at r = 0 is related to the attrac-

tor at M0. Cyan colour denotes the unstable cycle O24 commented below.

Two vertical light-grey stripes mark two sample periodicity windows of order

twenty-four and forty.

Figure 4.7: 1D bifurcation diagram for β = 5.56 (the respective path is marked �S1� in the

inset of Fig. 4.4b). (a) Evolution of r; (b) an enlargement of the rectangular area marked

in (a); (c) an enlargement of the rectangular area marked in (b). Cyan line denotes the

cycle O24 when it is unstable.

In Figs. 4.8a,b we plot the state space of F with the related chaotic

attractor, which is an 8-piece Q8 for the chosen parameter set. There are

also shown two saddle cycles O4 and O8 together with some part of their

unstable sets W u(O4) and W u(O8), needed for further explanation of the

dynamic phenomena. The stable multipliers of both cycles are 0 < µs4 < 1,

0 < µs8 < 1. Clearly, W u(O4) andW
u(O8) asymptotically approach Q8, and

the structure of these sets is rather complex due to in�nitely many pleats

and self-intersections.

Let us de�ne the domain ∆ = ∪4
i=1∆i con�ned by the critical lines

LCn, n = 0, . . . , 7, and the appropriate segments of unstable sets W u(O4)

and W u(O8). The domains ∆i are cyclically mapped one into another,
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that is, F (∆i) ⊆ ∆i+1, i = 1, 2, 3, F (∆4) ⊆ ∆1. For instance, the

domain ∆1 is shown in Fig. 4.8b. Its boundary is a closed contour

∂∆ = (P1P2P3P4P5P6P1), where the points Pi are intersections of LC, LC4,

LC8 and W
u(O4), W

u(O8). In fact, ∆1 is the absorbing area of mixed type

for F 4. Indeed,

1. F 4(∆1) ⊂ ∆1;

2. There exists a neighbourhood U = U(∆1) such that F 4(U) ⊂ U and

almost all points (x, r) ∈ U\∆1 (except for the points belonging to the

stable sets W s(O4), W
s(O8)) have �nite rank images in the interior of

∆1 (the boundary ∂U of the neighbourhood U is shown in Fig. 4.8b by

black line);

3. The boundary ∂∆1 consists of the segments of the critical lines and the

unstable sets of the saddle cycles.

Similarly, every domain ∆i, i = 2, 3, 4, is the mixed absorbing area for F 4.

It means that ∆ = ∪4
i=1∆i is the mixed absorbing area for F . Moreover, it

is also known that if ∆ is the mixed absorbing area, then its image F (∆)

is the mixed absorbing area as well, according to the Proposition 4.2′ from

[156, p. 208]. Hence, either (i) there exists a �nite M such that FM(∆) is

invariant, that is, FM+1(∆) = FM(∆), or (ii) ∩∞
i=1F

i(∆) is invariant.

Proposition 4.19. Consider the (ξ, β) parameter plane of the map F with

the other parameters �xed. In the area located below the sequence of �ip

bifurcation curves ηO2s
, s ∈ N, there exists a connected parameter set C∆

associated with a mixed absorbing area ∆ = ∪4
i=1∆i. The boundaries of

∆ are given by the critical lines LCn, n = 0, . . . , 7, and the appropriate

segments of unstable sets W u(O4) and W
u(O8), where the saddle cycles O4

and O8 have positive stable multipliers.

It is know that the invariant absorbing area of mixed type, obtained by

the aforementioned iterative process, can contain other invariant areas, and
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Figure 4.8: State space for β = 5.56 and (a)�(c) ξ = −0.29571; (d) ξ = −0.29571771307;

(e) ξ = −0.29571775. The saddle cycles O4 and O8 together with their unstable sets are

shown red and magenta, respectively. In (b) the rectangular area marked �b� in (a) is

shown enlarged. The black line contours the neighbourhood U = U(∆1). In (c)�(e) the

magni�cation of the area marked �c-e� in (b) is plotted showing the evolution of the part

of the attractor.

hence, the attractor is not necessarily chaotic. This is also con�rmed by the

one-dimensional bifurcation diagram in Fig. 4.7, where one can clearly notice

at least two periodicity windows (related to a 24-cycle and a 40-cycle for the

chosen parameter set, which are marked by two vertical light-grey stripes).

Moreover, in Fig. 4.7c, where a part of the diagram is shown enlarged, it

becomes clear that at �rst (for the value of ξ ≈ −0.2957177) the chaotic

attractor suddenly shrinks, and then for smaller ξ the stable O24 is revealed.

Below we explain such peculiar behaviour.

In Fig. 4.8c the part of the state space for ξ = −0.295715 is shown, where

one can see the rightmost piece (the closest to LC) of the chaotic attractor

Q8. This piece has a particular shape, namely, it is multiply connected.

Inside Q8 the are two cycles marked, namely, the unstable node cycle O24

(cyan points), whose evolution is also shown in the one-dimensional bifur-

cation diagram in Figs. 4.7, and the saddle cycle Õ24 (red points). Cycles

O24 and Õ24 appear for a certain larger ξ due to a fold bifurcation. With

decreasing ξ, due to an interior crisis, the cycle Õ24 together with its unsta-

ble set W u(Õ24) �detaches� from Q8, which then suddenly decreases in size

and splits into 24 pieces. The case right after this bifurcation is depicted in
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Fig. 4.8d, where W u(Õ24) is shown by red line. When ξ is decreased further,

24-piece chaotic attractor Q24 is transformed into 24-cyclic invariant curves

Γ24, now surrounding the unstable focus O24 (see Fig. 4.8e). Eventually, O24

undergoes a Neimark�Sacker bifurcation and becomes stable with succeeding

period-doubling cascade that �nally leads to the chaotic attractor Q8 again.

This particular bifurcation scenario is typical for considered range of the

parameter ξ and small β and is repeated for cycles of di�erent periods. For

example, at ξ ≈ −0.29563 similar periodicity window corresponding to pe-

riod forty exists (marked by a vertical light-grey stripe in Figs. 4.7), where

the same bifurcation sequence is observed. Note that 24 = 4 · 2 · 3 and

40 = 4 · 2 · 5, so that with decreasing ξ the periods follow the Sharkovsky

ordering multiplied by four.

4.4. Revealing bifurcation mechanisms in a two-

dimensional nonsmooth map by means of the �rst

return map

In this section we analyse the e�ects of fraud in a public procurement pro-

cedure as in [176, 177, 181, 194, 195]. For this we consider the map family

S : [0, 1]2 ∋ (x, q) 7→ S(x, q) ∈ [0, 1]2, describing the dynamics of the model,

as

S(x, q) =
(
F (x, q), G(x)

)
, (4.34)

where

F (x, q) =

{
FB(x, q), 0 ≤ q < q̄,

FT (x, q), q̄ ≤ q ≤ 1,
(4.35a)

FB(x, q) = x+ x(1− x)
α(∆c − fq)− 1

α(∆c − fq) + 1
, FT (x, q) = x2, (4.35b)

with q̄ = ∆c/f and

G(x) = γxβ. (4.36)
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Here the parameters are α > 0, f > 0, γ ∈ (0, 1], β > 0 and ∆c > 0.

Remark 4.20. The parameter ∆c only stretches the parameter space. In-

deed, one can introduce α̃ = ∆cα and f̃ = f/∆c. So, without losing gener-

ality, we put ∆c = 1, that is function FB acquires the form

FB(x, q) = x+ x(1− x)
α(1− fq)− 1

α(1− fq) + 1
, (4.37)

while the threshold value becomes q̄ = 1/f .

Remark 4.21. The maps S1 and S2 with, resp., γ1, γ2 ∈ (0, 1] and f1γ1

= f2γ2, are topologically conjugate through the homeomorphism h(x, q) =

(x, γ2q/γ1). To qualitatively describe the dynamics of the map S, one can �x

any value of γ. We choose γ = 0.9, which is reasonable from an application

viewpoint.

In the case with f ≤ 1, and hence, q̄ ≥ 1, in the whole square of de�nition

[0, 1]2 there is q ≤ q̄ and the map S is smooth, since the dynamics of the

x-coordinate is de�ned only by the function FB.

For the case when q̄ < 1, the map S is continuous, since for any 0 ≤
x ≤ 1 there is FT (x, q̄) = FB(x, q̄) = x2, but piecewise smooth, as the related

Jacobians at the point (x, q̄) in general do not coincide. The regions, in which

the map S is de�ned di�erently, are given as

DB = {(x, q) : 0 ≤ x ≤ 1, 0 ≤ q < q̄} (4.38)

and

DT = {(x, q) : 0 ≤ x ≤ 1, q̄ ≤ q ≤ 1}. (4.39)

Any orbit τ = {(x0, q0), (x1, q1), . . . , (xi, qi), . . .} of the map has correspon-

dence with a symbolic sequence σ(τ) = s0s1 . . . si . . . where

si =

{
B, if (xi, qi) ∈ DB

T , if (xi, qi) ∈ DT

, i = 0, 1, . . .
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We will use this notation below to distinguish between cycles of the same pe-

riod but with di�erent location of points. We will also use symbolic sequences

to denote the composite of n successive iterations of function F , that is, for

σ = s0 · · · sn−1, si ∈ {B, T }, i = 0, . . . , n− 1, there is Fσ = Fsn−1
◦ . . . ◦ Fs0.

The regions DB and DT are separated by the horizontal line

LC−1 = {(x, q) : 0 ≤ x ≤ 1, q = q̄}. (4.40)

Its �rst image�the critical line�is de�ned as

S(LC−1) := LC0 = LC = {(x, q) : q = γx
β
2 , 0 ≤ x ≤ 1}. (4.41)

For the map S, all points from [0, 1]2 located above LC have no preimages,

while every point below LC has one preimage. We can also clearly see that

any point belonging to the region DT is mapped in one step onto LC. Thus,

the critical line LC is Z∞-region and the map S is noninvertible of type

Z1 − Z∞ − Z0. The asymptotic dynamics of such maps is often reduced

to a one-dimensional subset of the state space, made up of the parts of

LCi, i = 0, 1, 2, . . ., more precisely, of the images of a proper segment of

LC [121, 131, 228]. This allows one to study the asymptotic dynamics of

the map S by means of the one-dimensional �rst return map acting on the

aforementioned segment, as we shall see below.

Before considering stable cycles and more complicated attractors of the

map S by means of the �rst return map, let us recall the main facts about

the trivial dynamics of the map [73].

There can be at most three �xed points:

E0 = (0, 0), E1 = (1, γ), E∗ =

((
α−1
γαf

) 1
β
, α−1

αf

)
, (4.42)

among which E0 and E1 always exist, while E
∗ can be located outside the

feasible square or even unde�ned.1 Concerning the stability of the �xed

points, main facts can be summarised in the following
1When α < 1, the x-coordinate should be obtained in general as exponentiation of a negative real

number to a real power. Such a function can not be de�ned consistently, since depending on β it may be

non-real, have several values, or even allow multiple de�nitions.
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Proposition 4.22 (Coppier et al.). Let us consider the map S : [0, 1]2 →
[0, 1]2 as de�ned in (4.34)�(4.37). For its �xed points given in (4.42), the

following statements hold:

1. For α < 1, the �xed point E0 is stable, at α = 1, a transcritical bifur-

cation for E0 and E
∗ occurs, and for α > 1 the point E0 is a saddle.

2. For α < 1
1−γf , the �xed point E1 is a saddle, at α = 1

1−γf , a transcritical

bifurcation for E1 and E∗ occurs, and for α > 1
1−γf the point E1 is

stable.

3. The �xed point E∗ is stable for

� γf ≤ 1 and 1 < α < 1
1−γf or

� γf > 1, α > 1 and

Z := 1 +
(α− 1)β

2

(
1−

(
α− 1

αfγ

) 1
β

)
> 0

At Z = 0, the �xed point E∗ undergoes a Neimark�Sacker bifurcation,

and for Z < 0, the point E∗ is an unstable focus.

Remark 4.23. Note that the transcritical bifurcation for points E0 and E
∗

is particular, since for α < 1 and almost all values of β the point E∗ does not

exist in the real plane. Nonetheless, for α = 1 the point E∗ coincides with

E0. One can interpret this situation as if before the bifurcation E
∗ is virtual,

located outside the feasible region, and then it becomes �real� through a

transcritical bifurcation at the critical value of α.

Remark 4.24. It can be shown that if γf ≤ 1, it is always Z > 0, and,

in this case E∗ cannot undergo the Neimark�Sacker bifurcation. It is also

clear that if γf > 1 and α > 1, there is always E∗ ∈ DB, and therefore the

transcritical bifurcation for E∗ and E1 cannot occur.
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Assume γf > 1 and α > 1, so that E∗ ∈ DB, E1 ∈ DT . The Jacobian

matrix evaluated at point E∗ is

J∗ =


1 αf

2

(
α−1
αfγ

) 1
β

(
1−

(
α−1
αfγ

) 1
β

)

γβ
(
α−1
αfγ

)β−1
β

0

 . (4.43)

If det J∗ = 1, the characteristic equation for E∗ reads as

λ2 − λ+ 1 = 0,

which corresponds to the Neimark�Sacker bifurcation with the eigenvalues

λ1,2 = e±iπ3 related to the rotation number 1
6 .

Figure 4.9: (a) A typical view of the bifurcation structure for map S in the (α, f) parame-

ter plane where di�erent colours are associated with attracting cycles of di�erent periods.

The other parameters are γ = 0.9, β = 1. (b) The magni�cation of the boxed area in (a).

In Fig. 4.9a, we show a typical 2D bifurcation diagram for the map S in

the (α, f) parameter plane. One can observe some periodicity regions that

form a bifurcation structure similar to the period adding structure, usually
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observed near a Neimark�Sacker bifurcation curve [3, 56, 229]. For instance,

between regions corresponding to periods six and seven, there is a region cor-

responding to period thirteen, and between regions corresponding to periods

seven and eight, there is a region corresponding to period �fteen. Neverthe-

less, none of these regions issues from the Neimark�Sacker bifurcation curve.

In the panel b we show the enlargement of the boxed area marked in the

panel a. One can see multiple periodicity regions, marked as Pσ with various

symbolic sequences σ, related to cycles Oσ of di�erent periods. Some regions

correspond to cycles of the same period but di�erent symbolic sequences,

such as PB5T , PB4T 2, and PB3T 3 for period six or PB6T , PB5T 2, PB4T 3, and PB3T 4

for period seven. Moreover, between di�erent pairs of regions associated with

periods n and n+ 1, one can see regions related to periods j · n+ n+ 1 and

n + j · (n + 1), j = 1, 2, . . ., having symbolic sequences that are the con-

catenations of the respective basic sequences. For example, one can observe

several chains of regions of periods 13 = 6+ 7, 19 = 2 · 6 + 7, 25 = 3 · 6 + 7,

such as PB4T 2B4T 3, P(B4T 2)2B4T 3, etc. This suggests an intuitive idea that the

bifurcation structure in this part of the parameter space of the map S has

common features with the period adding structure. Below we show that this

bifurcation structure is not associated with the Neimark�Sacker bifurcation.

Instead, it is related to the appearance of the closed invariant set made up

of the parts of critical lines LCi and the particular ordering of the periodic-

ity regions can be explained by means of the �rst return map acting on the

respective segment of this closed invariant set.

We make �rst several observations concerning critical lines LCi, i ≥ 0.

The endpoints of LC (de�ned in (4.41)) are the �xed points E0 and E1.

For γf > 1 and α > 1, it is E1 ∈ DT , which implies LC ∩ DT ̸= ∅.
Since S(DT ) = LC, there is always a segment of LC that is mapped by S

back to LC. More precisely, let B0 = LC−1 ∩ LC and B1 = S(B0), then

LC1 ⊃ B1E1 = S(B0E1) ⊂ LC. Hence, B1E1 = LC ∩ LC1. Similarly,

there is a segment of LC1 that is mapped by S back to LC1, namely, LC2 ⊃
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B2B1E1 = S(B1E1) ⊂ LC1, that is, B2B1E1 = LC1 ∩ LC2. And so on.

Let us consider a set L := ∪i≥0BiBi+1. If set L is completely located in

the region DB (more precisely, below LC in the region Z1), then L cannot

contain any closed contour. This case corresponds to the values of α and f

which are small enough. For instance, when the �xed point E∗ is attracting

or right after the Neimark�Sacker bifurcation. With the increase of α and f ,

the set L expands outwards from the �xed point E∗ and eventually some arc

BkBk+1 for a certain k touches LC−1, so that from now on BkBk+1 ∩DT ̸=
∅. The portion of BkBk+1 belonging to DT is mapped by S to the critical

line LC. Then the segments of critical lines constitute the closed contour

Bk+2B1 . . . BkBk+1Bk+2, which is, however, not invariant under the action of

S. This case corresponds to existence of an attracting closed invariant curve

Γ, which is nonsmooth and some parts of it belong to the closed contour

Bk+2B1 . . . BkBk+1Bk+2. Finally, when Bk+2 is located on LC to the right

of B0, there exists an attracting closed invariant set A made up of the parts

of LCi, i = 0, . . . , k + 2, that is, A = B0B1 . . . Bk+1Bk+2B0. To sum up, we

can formulate the following result.

Theorem 4.25. Let k > 0 be the smallest number such that LCk ⊃ BkBk+1

∩ LC−1 ̸= ∅ and Bk ∈ DB, Bk+1 ∈ DT . Let us denote by C = C(xC , q̄) the

respective intersection point. Then the closed invariant set A made up of the

segments BiBi+1 ⊂ LCi, i = 0, . . . , k + 1 exists if S(C) is located on LC to

the right of the point B0, that is, xC ≥ xB0
, where xB0

is the x-coordinate of

B0:

xB0
=

(
1

γf

) 2
β

. (4.44)

Proof. It is easy to show that for any point (x, q) ∈ DB, it cannot be mapped

onto the critical line LC, that is, S(x, q) ̸∈ LC. This implies that if all arcs

BiE0, i ≥ 1 are located in DB, the closed invariant set A made up of the

respective segments of critical lines LCi cannot exist.

Let k ≥ 1 be the smallest number, such that BkE0 ∩ LC−1 ̸= ∅, but
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�rst let BkBk+1 ⊂ DB. The arc BkE0 has two intersection points with LC−1,

denoted as C(xC , q̄) and C̃(x̃C , q̄) with xC < x̃C . Due to the form of map

FT , the arc CC̃ of LCk and the straight line segment CC̃ of LC−1 are both

mapped onto the same segment S(C)S(C̃) ⊂ LC. So, the parts of LCi now

create a closed set Â := B1B2 . . . Bk+1S(C)B1. However, this set is not

invariant under the action of S. Indeed, since BkBk+1 ⊂ DB, there is also

Â ⊂ DB. Then set Â does not contain any preimages of B1, as B0 ̸∈ Â.
Then, the image S(Â) does not contain B1, the second image S2(Â) does

not contain B2, and so on. It means that each successive image of set Â
con�nes the smaller area.

Now let Bk ∈ DB and Bk+1 ∈ DT and suppose that xC < xB−1
0

with

xB−1
0

=

(
1

γf

) 1
β

, (4.45)

such that S maps the whole vertical line segment B̄−1
0 B−1

0 , where B̄−1
0 =

(xB−1
0
, q̄) and B−1

0 = (xB−1
0
, 1), to the point B0. In this case, everything

depends on the images of the segment C̆S(C) with C̆ being the inter-

section point of Bk+1S(C) and LC−1. Suppose there exists i0 such that

Si0(C̆S(C)) ⊂ DB. Then using a similar argument as used in the paragraph

above, we can show that the invariant set A does not exist (with the di�er-

ence that in our reasoning instead of points Bi we must consider images of

C and C̆). On the other hand, it can also happen that Sk+1(C̆S(C)) ⊂ DT .

Then the set A = C̆S(C)S(C̆)S2(C) . . . Sk+1(C̆)Sk+2(C)C̆ is invariant for

S.

It means that if the arc Bk+1S(C) has a non-empty intersection with DB,

then further analysis is needed to understand whether the closed invariant

set A made up of segments of critical lines exists or not. This implies that

the su�cient condition for existence of set A is that the x-coordinate of S(C)

is xS(C) ≥ xB0
. Indeed, if the latter holds, there is Bk+1S(C) ⊂ DT , then

its image belongs completely to LC and the set A = B0B1 . . . Bk+1B0 is

invariant for S.
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Remark 4.26. Note that it can also happen that the x-coordinate of Bk+1

is greater than xB−1
0

and point Bk+2 is located on LC to the right of B0.

Then set A also contains the segment Bk+2B0.

When the set A exists, its bearing segment is B0B1 ⊂ LC. Then there

exists a one-dimensional map φ : B0B1 → B0B1 that is the �rst return map.

By de�nition φ maps the x-coordinate of a point (x, q) ∈ B0B1 to the x-

coordinate of the point Sn(x, q) ∈ B0B1 where n is the smallest possible. For

di�erent initial points (x, q) the number n can attain di�erent values, which

implies that the �rst return map φ is discontinuous.

Theorem 4.27. The �rst return map φ : B0B1 → B0B1 always has at least

one discontinuity point and at least one kink point.

Proof. The discontinuity point(s) of φ is related to the intersection of

the invariant set A with the segment B̄−1
0 B−1

0 (see (4.45)) of DT that

is mapped into B0. Let BmBm+1 ⊂ A be the segment leading to this

intersection for a certain m, and the intersection point is denoted as

B̃−1
0 := BmBm+1 ∩ B̄−1

0 B−1
0 . Suppose also that Bm+1 = S(Bm) ̸∈ B0B1,

while Bm+2 = S(Bm+1) ∈ B0B1.
2 Then the image of the arc BmB̃

−1
0 is

S(BmB̃
−1
0 ) = Bm+1B0 (not belonging to B0B1), while the image of the

segment B̃−1
0 S(C)Bm+1 is S(B̃−1

0 S(C)Bm+1) = B0S
2(C)Bm+2 (belonging

to B0B1). Hence, there exists a point Ẽ = (x̃, q̃) ∈ B0B1 such that

Sm(x̃, q̃) = B̃−1
0 . The points to the left of Ẽ (close enough to it) return

to B0B1 in m + 1 steps, while the points to the right of Ẽ (close enough to

it) return to B0B1 in m+ 2 steps. In such a way, x̃ (the x-coordinate of Ẽ)

represents a discontinuity point of map φ.

Map φ also has at least one kink point. Indeed, set A has at least two

intersections with LC−1, one of which is B0 and the other is the point

C de�ned in the Theorem 4.25. Suppose that the situation is generic,

2Note that the relevant value of m always exists in case m > k. Otherwise, if m = k, then Bk+1

is located to the left of segment B̄−1
0 B−1

0 and Bk+2 is located to the left of B0. In this case instead of

segments BmBm+1 and Bm+1Bm+2 one has to consider CBk+1 and S(C)Bk+2
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that is, S(C) ̸= B0 and let Sm(C) ∈ B0B1 for a certain m. Clearly,

here there is Sm = (Fm, Gm) = (FTm, Gm). Consider the two points

(x1, q1) ∈ BkBk+1 ∩ DB and (x2, q2) ∈ BkBk+1 ∩ DT su�ciently close to

C. Since map S is continuous, both points will be mapped in B0B1 by m

iterations of S. However, the symbolic sequences related to these m succes-

sive S-iterations di�er by one letter, namely, σ(Sm(x1, q1)) = BT m−1 and

σ(Sm(x2, q2)) = T m. As any point from B0B1 is mapped into BkBk+1 by

Sk = (F k, Gk) = (FBk, G
k), there must exist a point (x̂, q̂) ∈ B0B1 such that

Sk(x̂, q̂) = C, that is, FBk(x̂, q̂) = xC and Gk(x̂, q̂) = q̄. The point x̂ is a

kink point for the map φ.

Generally, the closed set A can attain more complicated forms with mul-

tiple pleats, and can have several intersections with the line x = xB−1
0
, some

of which are relevant to induce more discontinuity points for φ. Similarly, A
can have multiple intersections with LC−1, and hence, the �rst return map φ

can have multiple kinks. Due to this reason, the map φ can be constructed

only numerically.

The �rst return map φ consists of several branches separated by kink and

discontinuity points. Each branch is associated with a symbolic sequence that

corresponds to the combinations of functions FB and FT applied subsequently

while iterating the initial point from B0B1 until it returns. Every �xed point

of φ is associated with a cycle of a period n and a rotation number 1
n for

the original two-dimensional map S (here n is the number of steps required

for the initial point to return to B0B1). Every cycle of period m for φ is

associated with a cycle of a period l > m and a rotation number m
l for the

map S, where l is the sum of the lengths of symbolic sequences related to

the respective branches.

Since the �rst return map φ is nonsmooth and discontinuous, one ob-

serves in the parameter space dynamic aspects and bifurcation phenomena

characteristic for such kind maps, e. g., traits of several period adding struc-

tures. Moreover, φ often has nonlinear smooth branches, and hence, its �xed
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points and cycles may also appear due to smooth fold bifurcations. By con-

structing the respective �rst return map near a particular bifurcation, one

can describe the mechanism of appearance of a certain cycle (or cycles) of

the original map S and also determine the related symbolic sequences.

Figure 4.10: (a) 1D bifurcation diagram along the strait line segment marked by letter

�B� in Fig. 4.9b. (b)�(d) The �rst return map corresponding to vertical dashed lines in

the panel a for (b) α = 18.4, f = 1.389; (c) α = 19.9, f = 1.338375; (d) α = 21.7, f =

1.277625.

To illustrate the period adding like bifurcation structure, in Fig. 4.10a,

we show a 1D bifurcation diagram along the strait line segment marked by

the letter �B� in Fig. 4.9b. This segment intersects the regions PB4T 2B4T 3,

P(B4T 2)2B4T 3, and P(B4T 2)3B4T 3 corresponding to periods thirteen, nineteen and

twenty-�ve and located between periodicity regions PB4T 2 and PB4T 3. As one

can see, the related periods are combinations j ·6+7 with j = 1, 2, 3 and the

related symbolic sequences are the respective concatenations of the basic se-

quences B4T 2 and B4T 3. In Figs. 4.10b�d the �rst return maps φ associated
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with all three cycles are shown. Locally, near the respective discontinuity

point, the map φ is of increasing-increasing type, for which period adding

structures are characteristic. However, in contrast to the piecewise linear

map f̃ (1.6) considered in the Sec. 1.2, here every stable cycle of φ coexists

with its complementary unstable cycle (i. e., they appear due to a smooth

fold bifurcation or due to a fold border collision bifurcation).

4.5. Dynamics of a durable commodity market involv-

ing trade at disequilibrium

The current section is devoted to studies of asymptotic dynamics of a family

of the three-dimensional piecewise smooth maps modelling an elementary

market with two agents exchanging two stock commodities, totals of which

are normalised to unity, which was suggested in [169, 188, 190]. That is, the

current distribution of stocks is uniquely given by the current asset shares

for the �rst agent denoted as X and Y . We consider the relative prices of the

related stocks, and obtain the third model variable being the relative price

p. All in all, we construct the map Φ : R3 ∋ (X, Y, p) 7→ Φ(X, Y, p) ∈ R3,

Φ(X, Y, p) =
(
Φ1(X, Y, p),Φ2(X, Y, p),Φ3(X, Y, p)

)
, (4.46)

where the map components are de�ned as

Φ1(X, Y, p) =


x1(X, Y, p) =: x1, (x1 − x2)(x1 −X) ≤ 0,

x2(X, Y, p) =: x2, (x2 − x1)(x2 −X) ≤ 0,

X, otherwise

(4.47a)

Φ2(X, Y, p) =


y1(X, Y, p) =: y1, (x1 − x2)(x1 −X) ≤ 0,

y2(X, Y, p) =: y2, (x2 − x1)(x2 −X) ≤ 0,

Y, otherwise

(4.47b)

Φ3(X, Y, p) = peδ(x2−x1), (4.47c)
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where

x1 = α(X + pY ), x2 = 1− β
(
1−X + p(1− Y )

)
, (4.48)

y1 =
1− α

pα
x1, y2 = 1− 1− β

pβ
(1− x2). (4.49)

The values xi and yi are obtained, given the budget X + pY , by maximising

the utility function of the �rst and the second agent, respectively:

U = U(x, y) = xαy1−α, V = V (x, y) = (1− x)β(1− y)1−β, (4.50)

where α ∈ (0, 1), β ∈ (0, 1) and without loss of generality, we assume that

α > β. The opposite case is considered likewise. The pairs (x1, y1) and

(x2, y2) are referred to as the �rst and the second trader's optima. The

parameter δ ∈ R+ denotes the sensitivity of the price change.

Since the variables X, Y , and p denote economic quantities, we must

require that (X, Y ) ∈ E , E = [0, 1]2, and p > 0.

Lemma 4.28. The region E × (0,∞) is invariant under the action of Φ.

Proof. For the third coordinate p, from (4.47c) it is obvious that it stays

positive.

For X and Y , the two-dimensional point computed according to (4.47a)

and (4.47b) may fall outside E . In particular, the point (x1, y1) ̸∈ E if either

x1 > 1 or y1 > 1, while (x2, y2) ̸∈ E when x2 < 0 or y2 < 0. Consider a

two-dimensional section p = const. Then the points (X, Y ) ∈ E , (x1, y1),
and (x2, y2) all belong to the same line (de�ned by (X, Y )) with the negative

slope −1
p . The points (x1, y1) and (x2, y2) can be located either (i) at the

same side with respect to (X, Y ) or (ii) at both sides from it.

In the case (i), the result of Φ1 and Φ2 will be the point, the distance from

which to (X, Y ) is smaller. And the points (x1, y1) and (x2, y2) can not fall

outside E simultaneously. Indeed, suppose X < x1 < x2, then Y > y1 > y2

(clearly, (X, Y ) ∈ E). There cannot be x1 > 1, since there is always x2 < 1,

while y1 < Y < 1. So, even if y2 < 0 (note that x2 > X > 0), the action of
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Φ1 and Φ2 will result in (x1, y1) ∈ E . Similarly, if 0 < X < x2 < x1, then

1 > Y > y2 > y1 > 0. So, even if x1 > 1, the action of Φ1 and Φ2 will

result in (x2, y2) ∈ E . The remaining two possibilities: x2 < x1 < X and

x1 < x2 < X are handled in a similar way.

The case (ii) where both optima are at either side of (X, Y ) corresponds

to (X − x1)(X − x2) < 0, or the third row in (4.47a) and (4.47b). It means

that the action of Φ1 and Φ2 will result in (X, Y ) ∈ E , indi�erently from

whether (xi, yi), i = 1, 2, belong to E or not.

The map Φ is piecewise smooth and its state space is divided into regions

P1 = {(X, Y, p) : (x1 − x2)(x1 −X) ≤ 0}, (4.51)

P2 = {(X, Y, p) : (x2 − x1)(x2 −X) ≤ 0}, (4.52)

PX = {(X, Y, p) : (X − x1)(X − x2) < 0}, (4.53)

where the action of the map is performed by using the di�erent functions

(with xi de�ned in (4.48)). For (X, Y, p) ∈ P1 ∪ P2, its image Φ(X, Y, p) is

such that∥∥(Φ1(X, Y, p),Φ2(X, Y, p)
)
− (X, Y )

∥∥ = min
i=1,2

∥(xi, yi)− (X, Y )∥ . (4.54)

In other words, the trader's optimum that is closer to the initial point is cho-

sen. The intersections of P1, P2, and the closure PX constitute the switching

set of Φ.

Lemma 4.29. The switching set of the map Φ consists of the three surfaces

ξ1 =

{
(X, Y, p) : (X, Y ) ∈ E , p = (1− α)X

αY

}
(4.55a)

ξ2 =

{
(X, Y, p) : (X, Y ) ∈ E , p = (1− β)(1−X)

β(1− Y )

}
(4.55b)

ξ3 =

{
(X, Y, p) : (X, Y ) ∈ E , p = 1− β − (α− β)X

β + (α− β)Y

}
(4.55c)
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Proof. The borders separating the regions P1, P2, and PX are clearly given

by

(x1−x2)(x1−X) = 0, (x2−x1)(x2−X) = 0, (X−x1)(X−x2) = 0,

which result in three equalities: x1 = X, x2 = X, and x1 = x2. Using the

expressions (4.48), we obtain (4.55).

Remark 4.30. Note that at the surface ξ1 there holds x1 = X, at ξ2 there

is x2 = X, and at ξ3 there is x1 = x2.

Lemma 4.31. The surfaces ξ1, ξ2 and ξ3 all intersect along a single curve

LB = {(X, Y, p) : X ∈ [0, 1], Y = Y e(X), p = pe(X)} , (4.56)

where

Y e(X) =
(1− α)βX

α(1− β) + (β − α)X
, (4.57)

pe(X) =
α(1− β) + (β − α)X

βα
. (4.58)

Moreover, each point (X, Y, p) ∈ LB is a �xed point of Φ and there are no

other �xed points.

Proof. The existence of the line LB as a simultaneous intersection of all three

surfaces follows directly from the expressions in (4.55). As mentioned in the

Remark 4.30, the surfaces ξ1, ξ2, ξ3 correspond to x1 = X, x2 = X, x1 = x2,

respectively. Then for a point (X, Y, p) ∈ LB all three equalities hold: X =

x1 = x2, which mean that Φ1(X, Y, p) = X. Due to (4.49), the equalities

x1 = x2 and y1 = y2 are linearly dependent, and hence, Y = y1 = y2, leading

to Φ2(X, Y, p) = Y . From (4.47c) it follows Φ3(X, Y, p) = p, which implies

that (X, Y, p) is a �xed point.

Consider an arbitrary �xed point (X, Y, p). There must be Φ(X, Y, p) =

(X, Y, p). From Φ3(X, Y, p) = p it follows that x1(X, Y, p) = x2(X, Y, p),

which implies that there must hold x1 = x2 = X, and hence, (X, Y, p) ∈
LB.
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Remark 4.32. For the symmetric case α = β the equation (4.57) becomes

a line Y = X and (4.58) degenerates to the constant function p = (1−α)/α.
For α ̸= β the shape of the curve LB is either convex (α > β) or concave

(α < β). The more the di�erence between α and β, the higher the curvature

of LB.

The surfaces ξ1, ξ2 and ξ3 divide the state space into six partitions denoted

as PI
s , PII

s , s ∈ {1, 2, X}. In such a way, each s-region Ps consists of the two

sub-regions, PI
s located above the surface ξ3 and PII

s located below ξ3. Both

sub-regions PI
s and PII

s meet exactly at the curve LB (see Fig. 4.11). Fixed

points of the map Φ are in�nitely many and densely distributed along the

curve LB and each of them is always at the moment of its border collision

bifurcation, and hence, its stability must be studied by considering three

di�erent Jacobian matrices. Nonetheless, the stability condition appears to

be rather simple.

Figure 4.11: Three-dimensional state space of the map Φ with three border surfaces ξ1

(light-grey), ξ2 (dark-grey), and ξ3 (medium-grey).

Theorem 4.33. A �xed point (X∗, Y ∗, p∗) ∈ LB is stable in sense of Lya-

punov if

µ := 1− δ
(
1− β − (α− β)X∗) > −1. (4.59)



198

Proof. Since every �xed point is a border point, we must consider three

di�erent Jacobian matrices related to three regions of de�nition P1, P2 and

PX .

In the region P1, the Jacobian matrix of the �xed point (X∗, Y ∗, p∗) is

J1 =


α

r

β

αβ(1− α)X∗

r
αβ(1− α)

r
1− α −α

2β2(1− α)

r2
X∗

−rδ(α− β)

αβ
−r

2δ(α− β)

α2β2
µ

 , (4.60)

r = α(1− β) + (β − α)X∗.

It has three distinct eigenvalues 0, 1, and µ given in (4.59). The eigenvector

v0 related to the eigenvalue 0 belongs to the surface ξ3 and the eigenvector

v1 related to the eigenvalue 1 is tangent to the border curve LB. However,

the third eigenvector vµ related to the eigenvalue µ does not belong to P1. It

means that if we take a displacement of the �xed point in the direction vµ we

inevitably fall outside the region of de�nition of J1 in general case. Similar

statement is true for the matrix

J2 =


β

r

α
−αβ(1− β)(1−X∗)

r
αβ(1− β)

r
1− β

α2β2(1− β)

r2
(1−X∗)

−rδ(α− β)

αβ
−r

2δ(α− β)

α2β2
µ

 (4.61)

applied in the region P2. Namely, it has eigenvalues 0, 1, and µ. The

eigenvector of 0 belongs to ξ3, the eigenvector of 1 is tangent to LB, and the

eigenvector of µ is located outside P2.

In the region PX , the Jacobian matrix is de�ned as

JX =


1 0 0

0 1 0

−rδ(α− β)

αβ
−r

2δ(α− β)

α2β2
µ

 . (4.62)
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It has the eigenvalue 1 of multiplicity two and a simple eigenvalue µ whose

eigenvector is (0, 0, 1), being collinear to the vertical line

L∗ = L∗(X∗, Y ∗) = {(X, Y, p) : X = X∗, Y = Y ∗}. (4.63)

To sum up, whatever region of de�nition Pi, i = 1, 2, X, we consider,

the signi�cant eigenvalue of the respective linearisation is always µ (4.59).

If |µ| < 1 for the �xed point (X∗, Y ∗, p∗), then there exists ε > 0 small

enough, so that any orbit with an initial condition inside the neighbourhood

Uε(X
∗, Y ∗, p∗) never leaves this neighbourhood. And since α < 1 and β < 1,

there is always µ < 1.

Note that µ depends on X∗, which means that there exists a critical value

X∗
c =

δ(1− β)− 2

δ(α− β)
(4.64)

such that the �xed points (X∗, Y ∗, p∗) with X∗ > X∗
c are stable and those

with X∗ < X∗
c are not. Below we describe asymptotic dynamics in the

neighbourhood of unstable �xed points.

Let us �x the stock distribution (X∗, Y ∗) so that it corresponds to one

of the �xed points, but allow the price to change arbitrarily. This de�nes a

vertical line L∗ (4.63) being parallel to the p-axis passing through the �xed

point (X∗, Y ∗, p∗), where p∗ = pe(X∗) is obtained from (4.58). The line L∗

is invariant for Φ, since it belongs to the region PX . Asymptotic dynamics

of Φ on L∗ is de�ned by only a single row (4.47c) giving a one-dimensional

map for the price p. With substituting x1 and x2 from (4.48) with X = X∗,

Y = Y ∗ into (4.47c), this one-dimensional map is rewritten as

R∗ : p→ peδ(1−β−βp−(α−β)(X∗+pY ∗)). (4.65)

By denoting

λ(X) = eδ(1−β+(β−α)X), B(Y ) = δ(β − (β − α)Y ), (4.66)
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the expression (4.65) is further reduced to

R∗ : p→ pλ∗e−B∗p (4.67)

with λ∗ = λ(X∗) and B∗ = B(X∗), which is a Ricker-type map R∗ : [0,∞)

→ [0,∞) [57, 213].

The Ricker map belongs to a family of smooth unimodal one-dimensional

maps and shows the respective asymptotic dynamics and bifurcation struc-

tures (for details see, e. g., [217]) with respect to changing parameters. More

precisely, the bifurcation parameter is λ∗ while B∗ is related to scaling the

state variable p. Indeed, the map R∗ is topologically equivalent to the map

R̃∗ : q → λ∗qe−q

through the homeomorphism q = h(p) = B∗p. With increasing λ∗, evolution

of the attractor of R∗ is similar to that of the logistic map. With the only

di�erence that since R∗(p) > 0 the �nal bifurcation can never occur, and for

any λ∗ > 0 the map R∗ has a bounded attractor.

Clearly, the map R∗ always has two �xed points, p̄ = 0 and

p∗ = lnλ∗/B∗ (4.68)

with the latter corresponding to the �xed point (X∗, Y ∗, p∗) of the map Φ.

When µ becomes less than −1, the �xed point p∗ of the

map R∗ undergoes a �ip bifurcation and a stable 2-cycle OR∗

2 =

{p∗1(X∗, Y ∗), p∗2(X
∗, Y ∗)} appears. Clearly, it corresponds to the cycle

OΦ
2 = {

(
X∗, Y ∗, p∗1(X

∗, Y ∗)
)
,
(
X∗, Y ∗, p∗2(X

∗, Y ∗)
)
} of the three-dimensio-

nal map Φ, which is stable in the vertical direction. Let us now con-

sider a pair (X, Y ) located in a small neighbourhood of (X∗, Y ∗). This

new pair also de�nes a vertical line L(X, Y ) and the related Ricker map

R of the type (4.67) with λ(X) and B(Y ). If the neighbourhood is

small enough, this Ricker map acting on L(X, Y ) has a stable 2-cycle

OR
2 = {p1(X, Y ), p2(X, Y )}. The cycle OR

2 is associated with the cycle
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OΦ
2 = {

(
X, Y, p1(X, Y )

)
,
(
X, Y, p2(X, Y )

)
} of Φ provided that both points(

X, Y, pi(X, Y )
)
∈ PX , i = 1, 2.

Technically, a map of type (4.67) with λ(X), B(Y ) can be de�ned for

any pair (X, Y ) ∈ E . Let us denote as D2 the set of (X, Y ) such that the

respective Ricker map R has a stable 2-cycle OR
2 = {p1(X, Y ), p2(X, Y )}.

The expressions p1(X, Y ), p2(X, Y ) represent a two-parametric family. In

the three-dimensional state space of Φ this family de�nes the locus of points,

which is constituted of two disjoint surfaces

SI
2 = {(X, Y, p) : (X, Y ) ∈ D2, p = p1(X, Y )},

SII
2 = {(X, Y, p) : (X, Y ) ∈ D2, p = p2(X, Y )}

with SI
2 located below ξ3 and SII

2 located above ξ3. The pair of points(
X, Y, p1(X, Y )

)
∈ SI

2 ,
(
X, Y, p2(X, Y )

)
∈ SII

2 constitute the 2-cycle for Φ

if both
(
X, Y, pi(X, Y )

)
∈ PX , i = 1, 2. We denote the set of such 2-cycles

(if there exist any) as P2 and its projection onto the plane (X, Y ) as PXY
2 ,

which generically has positive Lebesgue measure in E . We refer to a pair

(X, Y ) ∈ PXY
2 as a disequilibrium point or a no-trade point of period two in

contrast to economic equilibria related to the �xed points.

As one can surmise, disequilibrium points can be related to solutions of

any period and even chaotic sets. Indeed, for a pair (X, Y ) consider the

respective Ricker map R of the form (4.67) and let the set

AR = {p1(X, Y ), . . . , pi(X, Y ), . . .}

denote the attractor for R. If all respective three-dimensional points(
X, Y, pi(X, Y )

)
∈ PX , then the set

AΦ = {
(
X, Y, p1(X, Y )

)
, . . . ,

(
X, Y, pi(X, Y )

)
, . . .}

is invariant with respect to Φ. The collection of all invariant sets of the same

type (if they exist) is denoted as PA and its projection PXY
A onto (X, Y )-

plane generically has positive Lebesgue measure. The pairs (X, Y ) ∈ PXY
A

are also referred to as disequilibrium points of the respective period if AR is

periodic or chaotic disequilibrium points otherwise.
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Theorem 4.34. Any orbit of the map Φ asymptotically approaches either

a �xed point on the curve LB or a nontrivial solution with a disequilibrium

pair (X, Y ) and price changing according to the attractor of the respective

Ricker map.

Proof. At �rst, we show that whatever the current position (X, Y, p) of the

system is, the two optima (x1, y1, p) and (x2, y2, p) are located at either side

of the surface Y = Y e(X). We explain the case Y > Y e(X), and for the

opposite inequality sign similar arguments are applied.

The projection of the surface Y = Y e(X) onto (X, Y )-plane coincides

with the projection of the border curve LB. We refer to this projection as

LXY
B . In the (X, Y )-plane, an arbitrary point (X̄, Ȳ ) de�nes two indi�erence

curves UX̄Ȳ = UX̄Ȳ (X, Y ) (convex) and VX̄Ȳ = VX̄Ȳ (X, Y ) (concave) for

the �rst and the second agent, respectively (see (4.50)). The curve UX̄Ȳ

intersects with the budget line LI at two points, (X̄, Ȳ ) and (X̄1, Ȳ1). The

�rst agent's optimum (x1, y1) is obviously located somewhere in between

(X̄, Ȳ ) and (X̄1, Ȳ1). Similarly, VX̄Ȳ and LI intersect at (X̄, Ȳ ) and (X̄2, Ȳ2)

with the optimum (x2, y2) being located between (X̄, Ȳ ) and (X̄2, Ȳ2). The

line LI also intersects with the curve LXY
B at (X∗, Y ∗), which corresponds

to the equilibrium price p∗ given by (4.58).

For the �rst trader's optimum there holds

if p̄ < p∗ then X̄ < x1 < X∗,

if p̄ > p∗ then X∗ < x1 < X̄1.

For the second trader the opposite inequalities are satis�ed:

if p̄ < p∗ then X∗ < x2 < X̄2,

if p̄ > p∗ then X̄ < x2 < X∗.

Consequently, the points (x1, y1) and (x2, y2) are always at di�erent sides

of the curve LXY
B . Recall that the choice of the new stock distribution(

Φ1(X, Y, p),Φ2(X, Y, p)
)
corresponds to the optimum that is closer to the

initial point. The distance between the current (X, Y ) and the optimum
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(xi, yi) that is located at the same side of LXY
B is obviously shorter than the

distance between (X, Y ) and the other optimum. Hence, any orbit of Φ never

crosses the surface Y = Y e(X).

Moreover, if the current point is (X, Y, p) ∈ PI
1 ∪ PII

2 , then there

holds Y < Y e(X) which implies for the next iterate Φ1(X, Y, p) < X,

Φ2(X, Y, p) > Y . Similarly, if (X, Y, p) ∈ PII
1 ∪ PI

2 , then Y > Y e(X)

and Φ1(X, Y, p) > X, Φ2(X, Y, p) < Y . It means that at each iteration

of Φ the distribution (X, Y ) either approaches the surface Y = Y e(X) (if

(X, Y, p) ∈ P1 ∪ P2) or remains unchanged (if (X, Y, p) ∈ PX). Note that if

(X, Y, p) ∈ PX then Φ1(X, Y, p) = X, Φ2(X, Y, p) = Y , while the new price

p′ is greater or less than p depending on whether (X, Y, p) is below (x2 > x1)

or above (x2 < x1) the surface ξ3. In such a way, if the orbit enters the

region PX it remains there either forever converging to an attractor related

to some disequilibrium point or until it eventually drops in P1 ∪ P2 and the

next image is closer to the surface Y = Y e(X).

4.6. A discontinuous model of exchange rate dynamics

with sentiment traders

In this section we develop a simple model of exchange rate determination

where the market is populated by investors characterised by heterogeneous

expectations, as studied in [63�65]. In particular, we assume the presence of

three types of traders: one kind of fundamentalists and two kinds of chartists.

Skipping the economic details, for the dynamics of the exchange rate we

get the two-dimensional map T : R2
+ ∋ (X, Y ) 7→ T (X, Y ) ∈ R2

+,

T (X, Y ) =
(
f(X, Y ), X

)
(4.69)
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with

f(X, Y ) =



f1(X, Y ) if X > 0 ∧ |X − Y | > 1,

f2(X, Y ) if X > 0 ∧ |X − Y | ≤ 1,

f3(X, Y ) if X ≤ 0 ∧ |X − Y | > 1,

f4(X, Y ) if X ≤ 0 ∧ |X − Y | ≤ 1,

(4.70)

where

f1(X, Y ) = d1X
2 − d1XY + aX − fc,

f2(X, Y ) = d2X
2 − d2XY + aX − fc,

f3(X, Y ) = −d1X2 + d1XY + bX + fd,

f4(X, Y ) = −d2X2 + d2XY + bX + fd.

(4.71)

The parameters are di > 0, i = 1, 2, a > 0, b > 0, fc ≥ 0, fd ≥ 0. The map

T is discontinuous and its switching manifolds (the sets of discontinuity) are

represented by three border lines

B± = {(X, Y ) : Y = X ± 1} and B0 = {(X, Y ) : X = 0}, (4.72)

which divide the state space into six regions of de�nition:

DR−
= {(X, Y ) : X > 0, Y < X − 1},

DR+
= {(X, Y ) : X > 0, Y > X + 1},

DR0
= {(X, Y ) : X > 0, X − 1 ≤ Y ≤ X + 1},

DL−
= {(X, Y ) : X ≤ 0, Y < X − 1},

DL+
= {(X, Y ) : X ≤ 0, Y > X + 1},

DL0
= {(X, Y ) : X ≤ 0, X − 1 ≤ Y ≤ X + 1}.

(4.73)

The function f1 is applied in the regions DR−
and DR+

, the function f3 in the

regions DL−
and DL+

, the function f2 in the region DR0
, while the function f4

in the region DL0
.

Every point (X, Y ) in the state space is associated with a respective sym-

bol, depending on the region of de�nition Ds, s ∈ {L−,L0,L+,R−,R0,R+}
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the point belongs to. And any orbit τ = {(X0, Y0), (X1, Y1), . . . , (Xi, Yi), . . .}
of the map T has correspondence with a symbolic sequence σ(τ) =

s0s1 . . . si . . . with si such that (Xi, Yi) ∈ Dsi. Note that due to the sec-

ond component of the map T , the sequence of Yi values, except for the initial

Y0, is represented by the sequence of Xi's shifted by one.

If the orbit τ is periodic (a cycle) of period n, its symbolic sequence is

clearly �nite (consisting of n symbols). In such a case we use the notation

Oσ := {p1, p2, . . . , pn}, where pi = (Xi, Yi), i = 1, n, and σ = s1s2 . . . sn

with the sequence σ being shift invariant. Clearly, for Oσ there is Yi = Xi−1,

i = 2, n and Y1 = Xn, that is, Oσ = {(X1, Xn), (X2, X1), . . . , (Xn, Xn−1)}.
Hence, every n-cycle is de�ned by n values of the �rst coordinate, while

the values of the second coordinate consist of the same sequence of numbers

shifted by one. This property restricts location of cycles in the state space (in

particular, 2-cycles are always symmetric with respect to the main diagonal

Y = X).

Each point pi of the cycle Oσ is related to a particular cyclical per-

mutation of σ, namely, if p1 corresponds to s1 . . . sn then p2 corresponds

to s2 . . . sns1, p3 to s3 . . . sns1s2, and so on. Whenever it is neces-

sary to distinguish di�erent points of the cycle (for instance, to pro-

vide an explicit condition at a border collision), we use the notation

pi := psisi+1...sn...si−1
= (Xi, Xi−1) with Xi = Xsisi+1...sn...si−1

. For example,

let us consider a cycle OL+L0R0
= {p1, p2, p3}, then p1 = (X1, X3) := pL+L0R0

,

p2 = (X2, X1) := pL0R0L+
, p3 = (X3, X2) := pR0L+L0

, where correspondingly

X1 = XL+L0R0
, X2 = XL0R0L+

, and X3 = XR0L+L0
.

In the parameter space, a region associated with a cycle Oσ is called the

periodicity region and is denoted as Pσ.
3

Theorem 4.35. The map T can have at most two �xed points, namely,

3If the cycle is attracting, one can discover the respective periodicity region by numerical simulation.

However, if the cycle is repelling (or a saddle), the periodicity region is not observable numerically, though

it exists.



206

EL0
= (X∗

L0
, X∗

L0
) ∈ DL0

and ER0
= (X∗

R0
, X∗

R0
) ∈ DR0

with

X∗
L0
= − fd

b− 1
, X∗

R0
=

fc
a− 1

, (4.74)

which exist for b > 1 and a > 1, respectively. The point EL0
is a saddle if

b2 > 1− 2fdd2 (4.75)

and an unstable node otherwise. The point ER0
is a saddle if

a2 > 1− 2fcd2 (4.76)

and an unstable node otherwise.

Proof. From the second component of the map T , it is clear that the �xed

points of T must belong to the diagonal Y = X. This implies that the

functions f1 and f3 cannot be related to real �xed points. By using f4 and

f2, one obtains the �xed points EL0
and ER0

, respectively. Conditions for

their existence trivially follow from (4.74).

As for the stability, the Jacobian matrix of the point EL0
is

J4(X
∗
L0
, X∗

L0
) := J∗

L0
=

 fdd2
b− 1

+ b − fdd2
b− 1

1 0

 . (4.77)

Then

trJ∗
L0
=

fdd2
b− 1

+ b, det J∗
L0
=

fdd2
b− 1

, (4.78)

and the Jury conditions [83], read as

1− trJ∗
L0
+ det J∗

L0
= 1− b > 0, (4.79a)

1 + trJ∗
L0
+ det J∗

L0
= 1 +

2fdd2
b− 1

+ b > 0, (4.79b)

det J∗
L0
=

fdd2
b− 1

< 1. (4.79c)
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When EL0
exists (b > 1), the condition (4.79a) does not hold, and EL0

can not

be stable. If additionally condition (4.79b) does not hold, EL0
is an unstable

node. Otherwise, EL0
is a saddle.

Similarly for the point ER0
, the Jacobian matrix is

J2(X
∗
R0
, X∗

R0
) := J∗

R0
=

 fcd2
a− 1

+ a − fcd2
a− 1

1 0

 . (4.80)

Then

trJ∗
R0

=
fcd2
a− 1

+ a, det J∗
R0

=
fcd2
a− 1

, (4.81)

and the Jury conditions read as

1− trJ∗
R0
+ det J∗

R0
= 1− a > 0, (4.82a)

1 + trJ∗
R0
+ det J∗

R0
= 1 +

2fcd2
a− 1

+ a > 0, (4.82b)

det J∗
R0

=
fcd2
a− 1

< 1. (4.82c)

When ER0
exists (a > 1), condition (4.82a) does not hold, and ER0

can not

be stable. If additionally condition (4.82b) does not hold, ER0
is an unstable

node. Otherwise, ER0
is a saddle.

The Theorem 4.35 implies that the map T cannot have any stable �xed

points. In order to study asymptotic dynamics of T further, we should de-

termine its critical set. For maps de�ned by discontinuous functions, the set

LC−1 is de�ned in the same way as for continuous piecewise smooth maps,

that is, it consists of both�the set of vanishing Jacobian determinant, in case

it exists, and the switching manifolds (including the points of discontinuity).

However, the de�nition of the critical set LC is slightly modi�ed. Namely,

for each switching manifold given by the points of discontinuity, one obtains

two �rst rank images by using di�erent determinations of the map at both

sides of this switching manifold. Then these two images belong to the criti-

cal set LC if they represent boundaries of the regions containing points with
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di�erent number of �rst rank preimages (see, e.g., [156]). For the map T ,

four Jacobians are de�ned as:

J1(X, Y ) =

(
2d1X − d1Y + a −d1X

1 0

)
, (4.83a)

J2(X, Y ) =

(
2d2X − d2Y + a −d2X

1 0

)
, (4.83b)

J3(X, Y ) =

(
−2d1X + d1Y + b d1X

1 0

)
, (4.83c)

J4(X, Y ) =

(
−2d2X + d2Y + b d2X

1 0

)
. (4.83d)

Then the condition det Ji(X, Y ) = 0, i = 1, 4, holds for X = 0. Hence,

the set LC−1 is only made up of the points of discontinuity. For every point

(0, Y ) ∈ B0, Y ∈ R, we compute two di�erent images by using the functions
f2 and f4 (if |Y | ≤ 1) or f1 and f3 (if |Y | > 1). Since

f1(0, Y ) = f2(0, Y ) = −fc, f3(0, Y ) = f4(0, Y ) = fd,

the image of the border line B0 is represented by two points, (−fc, 0) and
(fd, 0). The images of the other two border lines B± by using fi, i = 1, 4,

are given by the following eight lines, respectively:

B1,± =

{
(X, Y ) : Y =

X + fc
a∓ d1

, Y > 0

}
,

B2,± =

{
(X, Y ) : Y =

X + fc
a∓ d2

, Y > 0

}
,

B3,± =

{
(X, Y ) : Y =

X − fd
b± d1

, Y ≤ 0

}
,

B4,± =

{
(X, Y ) : Y =

X − fd
b± d2

, Y ≤ 0

}
.

(4.84)

The lines Bi,± con�ne images of the regions Ds, s ∈ {L−, L0, L+, R−, R0,

R+}. If d1 < d2, the map T is noninvertible. Below we focus on the invertible

case d1 > d2.
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It is worth noting that the horizontal axis Y = 0 also serves as a border

between T (DL+
), T (DR+

), T (DL−
) and T (DR−

), although this line is not an

image of any of the switching manifolds. To explain this issue, let us take a

sample point (X ′, ε) ∈ T (DR+
) with some �xed X ′ < −fc and 0 < ε≪ 1. Its

preimage (X, Y ) is obtained by using the function f1 for the �rst coordinate,

from where we have X = ε and

X ′ = d1ε
2 − d1εY + aε− fc ⇔ Y = ε+

a

d1
− fc +X ′

d1ε
. (4.85)

Clearly, the smaller ε and/or the larger the absolute value of X ′, the larger

Y . More precisely,

lim
ε→0

(
ε+

a

d1
− fc +X ′

d1ε

)
= +∞ and

lim
X ′→−∞

(
ε+

a

d1
− fc +X ′

d1ε

)
= +∞. (4.86)

Roughly speaking, the image of the switching manifold B0 (for a bounded

value of Y ) under T with f1 is contracted to the point (−fc, 0), while the
limit point (0,+∞) is unfolded into the ray {(X ′, Y ′) : X ′ < −fc, Y ′ =

0}. Likewise, the limit point (0,−∞) is unfolded by using f1 into the ray

{(X ′, Y ′) : X ′ > −fc, Y ′ = 0}. For the images T (DL+
) and T (DL−

) one can

apply a similar argument but by using f3 instead of f1 and fd instead of −fc.
In what follows we describe some typical bifurcation structures uncovered

in the parameter space of the map T . In Fig. 4.12 we plot two typical 2D

bifurcation diagrams in (fc, fd) parameter plane for a �xed 0 < b < 1, one

with 0 < a < 1 and the other with a > 1, where regions of distinct colours

correspond to attracting cycles of di�erent periods.

As the �rst observation, we notice a bunch of regions issuing from the

single point (fc, fd) = (0, 0) and related to attracting cycles with symbolic

sequences having only letters L0 and R0. Similar bifurcation structures are

also detected in a neighbourhood of a speci�c type of organising centres

(bifurcation points of codimension two) in the parameter space, commonly
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called big bang bifurcations ([25, 27, 28]). Bifurcations of this type are char-

acterised by the in�nite number of bifurcation curves issuing from a single

point and were initially reported in one-dimensional piecewise smooth maps,

although they are known to occur in maps of higher dimensions as well. In

particular, a big bang bifurcation may occur in a one-dimensional map due

to the phenomenon known as continuity breaking ([96�98]). In such a case, a

single �xed point existing for the continuous version of a map may bifurcate

to a cycle of any period when the continuity is destroyed.

For larger values of fc and fd, there are periodicity regions for cycles

having symbolic sequences that involve also the other two symbols L+ and

R−. In most cases, two neighbour regions related to the same base period

(say, n) are associated with symbolic sequences that di�er for one letter. For

a = 1.15 (see Fig. 4.12b), these neighbour regions often overlap leading to

coexistence of the two cycles of the same period (see, e. g., the right-hand side

inset related to period three). On the contrary, for a = 0.73 (see Fig. 4.12a),

neighbour regions corresponding to the same period n are usually separated

from each other by another bifurcation structure. The latter is related to

periods that are factors of the base period (namely, j · n, j = 2, 3, . . .; see

the insets in the panel a). Note that for n = 2, this structure is particular

as will be shown below.

Let us consider a particular case of fc = fd = 0. Then, the map T is

continuous at the switching manifold B0; however, it is still discontinuous at

the other two border lines B±. The images T (DL0
) and T (DR0

) issue from the

origin (0, 0), which is now a �xed point, since EL0
= ER0

= (0, 0). The point

(0, 0) has two di�erent Jacobian matrices, the right and the left, respectively:

JL0
(0, 0) =

(
a 0

1 0

)
and JR0

(0, 0) =

(
b 0

1 0

)
. (4.87)

Clearly, the stability of (0, 0) depends on the values of a and b, because the

second multiplier is always zero. Thus, if |a| < 1 (|b| < 1) the point is stable
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Figure 4.12: Typical two-dimensional bifurcation diagram in (fc, fd) parameter plane for

b = 0.64, d1 = 0.2, d2 = 0.1 and (a) a = 0.73; (b) a = 1.15.

from the right-hand (left-hand) side. If both |a| > 1, |b| > 1, the origin is a

saddle being always superstable along Y = 0 (in the vertical direction).

If at least one of the two parameters fc or fd becomes di�erent from zero,

the discontinuity of T at B0 is restored, leading to a continuity breaking

bifurcation.

Proposition 4.36. Let us �x a parameter pair (fc, fd) such that fc and fd

are positive but su�ciently close to zero. Orbits of the map T that are close

to the origin can be approximated by considering the linearisation in the

neighbourhood of (0, 0), given by DT |(0,0): R2 ∋ (X, Y ) → (g(X), X) ∈ R2

with

g(X) =

{
aX − fc, X > 0,

bX + fd, X ≤ 0.
(4.88)

As one can see, the �rst component does not depend on Y , as well as

the second one. Therefore, locally for (fc, fd) close to (0, 0), asymptotic

dynamics of T in the neighbourhood of the origin can be approximated by



212

a one-dimensional piecewise linear map g de�ned in two partitions of the

increasing-increasing type with a negative jump. In the parameter plane

(fc, fd) of the map g the point (0, 0) is a point of the big bang bifurcation.

Periodicity regions issuing from this point and related to attracting cycles of

di�erent periods are organised in a period adding bifurcation structure.

When fc and fd increase, the in�uence of the nonlinear terms in the

expression for fi, i = 1, 4, becomes more signi�cant and the border collision

bifurcation boundaries of the regions forming the period adding structure

become curved. Additionally, the images T (DL0
) and T (DR0

) become more

displaced from the origin. This implies that the points of a cycle move

towards one of the other two switching manifolds B±, eventually crossing

them one by one.

In Fig. 4.12 for larger values of fc and fd, one can see the periodicity

regions associated with symbolic sequences having not only L0 and R0 but

also L+ and R−. In most cases, symbolic sequences corresponding to two

neighbour regions related to the same period di�er for one letter. For exam-

ple, the pairs PR0L0
2 and PR0L+L0

, PL0R0
2 and PL0R−R0

, PR0L0R0L0
2 and PR0L+R0L0

2,

PR0L+R0L0
2 and PR0L+R0L+L0

, and so forth. One of the exceptions are the regions

related to period two, PL0R0
and PL+R−

, considered in more detail below.

Such a dependence of the symbolic sequences associated with neighbour

regions can be easily explained. As shown above for (fc, fd) being su�ciently

close to (0, 0), points of cycles are located near the origin in the state space.

If the parameter point (fc, fd) is moved away from (0, 0) so that it always

belongs to a particular region Pσ, σ = s1 . . . sn, si ∈ {L0,R0}, i = 1, n,

then some of the points of the respective cycle move towards one of the other

two switching manifolds B±. As a rule, only one point at a time collides

with either B+ or B−. This leads to another border collision bifurcation

corresponding to the third boundary of Pσ. Since the map T is discontinu-

ous at B±, the cycle of the same period having the symbolic sequence with

one symbol changed cannot appear immediately after this border collision
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bifurcation.

Proposition 4.37. Two regions Pσ and Pσ′ related to the same period n,

with σ and σ′ being di�erent for one letter, can be located with respect to

each other in two ways:

(i) they can be disjoint and separated from each other by a sequence of

regions related to periods j · n, j = 2, 3, . . .;

(ii) they can overlap leading to coexistence of the two cycles.

Let us consider a typical region PL0R0
2 for a < 1, from the period adding

structure in the neighbourhood of its third border collision bifurcation bound-

ary, far from the point fc = fd = 0. The respective 3-cycle is

OL0R0
2 = {(XL0R0

2, XR0L0R0
), (XR0

2L0
, XL0R0

2), (XR0L0R0
, XR0

2L0
)}. (4.89)

As we have already shown, two boundaries of PL0R0
2 correspond to the border

collision conditions

XL0R0
2 = 0 and XR0L0R0

= 0. (4.90)

The third boundary is related to the collision of (XR0
2L0
, XL0R0

2) with B−,

that is, to the condition

XL0R0
2 = XR0

2L0
− 1. (4.91)

The region PL0R−R0
related to the complementary cycle OL0R−R0

is also ob-

served and is con�ned by the BC boundaries related to the conditions

XL0R−R0
= 0, XR0L0R−

= 0, and XL0R−R0
= XR−R0L0

− 1. (4.92)

Both bifurcation boundaries, related to (XR0
2L0
, XL0R0

2) ∈ B− (4.91) and

(XR−R0L0
, XL0R−R0

) ∈ B− (the last equation of (4.92)), lead to another period

adding structure based on the symbolic sequences of the cycles OL0R0
2 and

OL0R−R0
. Periodicity regions forming this structure are clearly located in the

parameter space between PL0R−R0
and PL0R0

2. Symbolic sequences of the cycles
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of higher periods are concatenations of L0R−R0 and L0R2
0, namely, they are

L0R−R0(L0R2
0)

j and (L0R−R0)
jL0R2

0, j = 1, 2, . . . (see Fig. 4.13a). The

same regularity is also observed between two disjoint regions related to cycles

of di�erent periods. For example, between PL0R−R0
and the region P(L0R−R0)2R0

associated with a cycle of period seven, there exists a period adding structure

based on the two respective symbolic sequences. Namely, it is composed by

the regions P(L0R−R0)j(L0R−R0)2R0
and PL0R−R0((L0R−R0)2R0)j , j = 1, 2, . . ., associ-

ated with cycles of periods 7 + 3j and 3 + 7j. Similarly, between the region

PL0R−R0(L0R−R0)2R0
corresponding to period ten and PL0R0

2 there exists a period

adding structure based on the sequences σ1 = L0R−R0(L0R−R0)
2R0 and

σ2 = L0R2
0.

For a di�erent parameter constellation (i. e., for a = 1.15 as in Fig. 4.12b),

regions related to two complementary cycles can overlap, such as PR0L0
2

and PRL+L0
, leading to coexistence of two cycles of period three. Simi-

larly, the regions related to di�erent periods belonging to two distinct period

adding structures may overlap pairwise, as for example for a = 0.73, the

regions PL0R0
2 and P(L0R−R0)2R0

, P(L0R−R0)3R0
and PL0R−R0L0R0

2, P(L0R−R0)4R0
and

P(L0R−R0)2L0R0
2, etc.(see Fig. 4.13a). In all these cases, two di�erent attracting

cycles coexist in the state space.

As we have already mentioned, the regions related to cycles of period two

are particular. First, there are two respective regions, PL0R0
and PL+R−

, asso-

ciated with symbolic sequences that di�er for two letters (not a single one).

Second, between PL0R0
and PL+R−

there exists a particular patchwork-like bi-

furcation structure, all regions of which are related to cycles of even periods

(see Fig. 4.13b). As shown below, some of the periodicity regions belonging

to this bifurcation structure are organised according to the period adding

principle, and ordering of the others correspond to the period incrementing.

The major reason why a cycle of period two is di�erent from the oth-

ers, is that its points are always symmetric with respect to the main di-

agonal Y = X. Indeed, for any Os1s2 = {(X1, Y1), (X2, Y2)}, si ∈ {L−,
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Figure 4.13: (a) Period adding structure between periodicity regions PL0R0
2 and PL0R−R0

in the (fc, fd) parameter plane for b = 0.64, d1 = 0.2, d2 = 0.1 and a = 0.73. (b)

The bifurcation structure between periodicity regions PL0R0
and PL+R− in the (fc, fd)

parameter plane for b = 0.64, d1 = 0.2, d2 = 0.1 and a = 0.73.

L0, L+, R−, R0, R+}, i = 1, 2, there is Y2 = X1 and Y1 = X2, i. e.,

Os1s2 = {(X1, X2), (X2, X1)}. Due to this property, the admissible symbolic
sequences for cycles of period two are L2

0, R2
0, L0R0, L−L+, R−R+, and

L+R−. It is easy to show further that the cycles OL0
2, OR0

2, OL−L+
, and

OR−R+
cannot exist. Therefore, the only admissible 2-cycles are OL0R0

and

OL+R−
, for which the two respective periodicity regions are observed in the

(fc, fd) parameter plane for a < 1.

The boundaries of the region PL0R0
, issuing from the point (fc, fd) = (0, 0)

are given by the conditions XL0R0
= 0 and XR0L0

= 0. The third boundary is

related to the collision (XL0R0
, XR0L0

) ∈ B+, or equivalentlyXR0L0
= XL0R0

+1.

On the other hand, the same condition means XL0R0
= XR0L0

− 1, and hence,

(XR0L0
, XL0R0

) ∈ B−, i. e., both points of the cycle collide simultaneously with

the respective switching manifold each. This corresponds to a so-called non-

regular border collision bifurcation. Similarly, three boundaries of PL+R−
are
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de�ned by the conditions XL+R−
= 0, XR−L+

= 0, and XR−L+
= XL+R−

+ 1,

the latter being the same as XL+R−
= XR−L+

− 1.

Non-regularity of two border collision bifurcations of the cycles OL0R0
and

OL+R−
related to the switching manifolds B± leads to a particular bifurcation

structure located between the regions PL0R0
and PL+R−

. Roughly speaking,

this structure is mostly con�ned within a quadrangle Q with vertices in

points A = (a+ d2, 1), B = (1, b+ d2), C = (a+ d1, 1), and D = (1, b+ d1).

However, some regions slightly overhang the area Q leading to coexistence of

the respective 2-cycle (either OL0R0
or OL+R−

) with the cycles of larger period.

The symbolic sequences related to this bifurcation structure are based on

the combinations of four pairs: σ1 = L0R0, σ2 = L+R−, σ3 = L+R0, and

σ4 = L0R−, among which two latter sequences correspond to 2-cycles that

are always virtual.

To describe this bifurcation structure, it is convenient to consider sepa-

rately four triangular subareas AMB, CMD, AMC, and BMD, where M

is the intersection of the lines AD and BC (see Fig. 4.13b). The ordering

principle of the periodicity regions inside each subarea is similar but based on

di�erent combinations of symbolic pairs. Let us consider the subarea AMB,

where symbolic sequences are based on three pairs L0R0, L+R0, and L0R−.

The cycle of the smallest period six is OL0R0L+R0L0R− (see also Fig. 4.14

where the area Q is shown magni�ed). The respective periodicity region be-

gins a sequence of regions accumulating towards the point M . For the sake

of brevity, let us call them central regions. Their ordering correspond to the

period incrementing bifurcation structure with periods 4n+2, n ≥ 1, and the

neighbour regions overlap pairwise. On the other hand, the related symbolic

sequences are L0R0(L+R0)
n(L0R−)

n, which di�er a bit from what one typ-

ically observes in bifurcation structures of such kind. Symbolic sequences of

cycles involved in the period incrementing structure are expected to be given

as σ1σ
n
2 with some primary σ1 and σ2. Here instead, there are three primary

sequences σ1 = L0R0, σ3 = L+R0, and σ4 = L0R− that are concatenated
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according to the rule σ1σ
n
3σ

n
4 .

As the next step, we describe two groups of regions distributed along the

line AB at both sides of PL0R0L+R0L0R−
. At �rst, let us focus on the larger

regions associated with periods 6 + 2m, m ≥ 1. We call them regions of the

�rst tier. For increasing fd (decreasing fc), the related symbolic sequences

are ρm := L0R−L0R0(L+R0)
m+1 (with ρ0 := L0R−L0R0L+R0), so that

the regions Pρm, m ≥ 0 represent the part of the period adding structure

of the �rst complexity level. Between any two (disjoint) neighbour regions

Pρm and Pρm+1
there exist regions of the second complexity level related to

symbolic sequences ρmρ
k
m+1 and ρkmρm+1, k ≥ 1. And between any two

neighbour regions of the second complexity level there are regions of the

third complexity level, and so on ad in�nitum. Thus, the ordering of the

regions located to the left of PL0R0L+R0L0R−
(for increasing fd and decreasing

fc) corresponds to the period adding structure built on the sequences τ1 =

L0R−L0R0 and τ2 = L+R0, related to the part of the basic regions Pτ1τ
m+1
2

,

m ≥ 0.

For decreasing fd (increasing fc), the regions are ordered according to

the same principle, that is, related to the basic regions Pτ1τ
m+1
2

, m ≥ 0 of

the period adding structure, but with τ1 = L0R0L+R0 and τ2 = L0R−.

Namely, the regions of the �rst tier are PL0R0L+R0(L0R−)m+1, and between any

two neighbour regions a respective period adding structure is observed.

Similarly, each central region PL0R0(L+R0)n(L0R−)n, n ≥ 2 induces

two sequences of regions, which we call the regions of tier n. For

increasing fd and decreasing fc, the related symbolic sequences are

(L0R−)
nL0R0(L+R0)

n+m, m ≥ 1, while for decreasing fd and increas-

ing fc they are L0R0(L+R0)
n(L0R−)

n+m. For example, to the left of

the region PL0R0(L+R0)2(L0R−)2, corresponding to period ten, there are regions

P(L0R−)2L0R0(L+R0)m+2, and to the right of it there are PL0R0(L+R0)2(L0R−)m+2. Be-

tween any two neighbour regions of tier n (associated with the same central

region and forming the �rst complexity level of the period adding structure),
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Figure 4.14: Magni�cation of the quadrangular area marked in Fig. 4.13b by dashed blue

line.

there are regions of higher complexity levels again organised according to

the period adding. Two neighbour regions of tiers n and n + 1 (associ-

ated with di�erent central regions) can overlap (as, e. g., P(L0R−)2L0R0(L+R0)3

and PL0R−L0R0(L+R0)2) and can be disjoint. In the latter case, between them

another period adding structure is observed. As, for instance, between

PL0R0(L+R0)2(L0R−)2 and PL0R−L0R0(L+R0)2 one observes the regions related to peri-

ods 18, 26, and 28. Or between P(L0R−)2L0R0(L+R0)3 and PL0R−L0R0(L+R0)3 there is

a region corresponding to a 22-cycle.

Let us now turn to the subarea CMD. The main organisation principle

of the periodicity regions is the same as in the subarea AMB, but now the

primary symbolic pairs are σ2 = L+R−, σ3 = L+R0, and σ4 = L0R−. The

central regions are PL+R−(L0R−)n(L+R0)n with n ≥ 2. Then there are regions of

tiers n, namely, P(L+R0)nL+R−(L0R−)n+m and PL+R−(L0R−)n(L+R0)n+m, n ≥ 1, m ≥ 1.

Note that the central region with n = 1 related to the 6-cycle is not visible,
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though the associated sequences of regions of the �rst tier are observable

(for instance, PL+R0L+R−(L0R−)2 and PL+R0L+R−(L0R−)3 associated with periods 8

and 10, respectively). Two neighbour regions belonging to di�erent tiers

can overlap or can be disjoint. In the latter case, as well as in case of two

neighbour regions belonging to the same tier, there exists a respective period

adding structure.

In the subarea AMC, all four primary pairs σ1 = L0R0, σ2 = L+R−,

σ3 = L+R0, and σ4 = L0R− are involved in formation of symbolic sequences.

The cycle with smallest period four is OL+R−L0R0
. The related region is the

�rst in the sequence of central regions PL+R−(L0R−)n−1L0R0(L+R0)n−1, n ≥ 1, which

accumulate towards the point M . The region OL+R−L0R0
also starts two se-

quences of regions of the �rst tier, associated with the symbolic sequences

L+R−L0R0(L+R0)
m, m ≥ 0 for decreasing fc and L0R0L+R−(L0R−)

m

for increasing fc. Similarly, any central region PL+R−(L0R−)n−1L0R0(L+R0)n−1,

n ≥ 2 starts two sequences of regions of tier n. Namely, for decreasing

fc, the regions PL+R−(L0R−)n−1L0R0(L+R0)n+m−1 and for increasing fc, the regions

PL0R0(L+R0)n−1L+R−(L0R−)n+m−1, m ≥ 0. Between any pair of neighbour regions

belonging to the same tier, as well as between any pair of disjoint neighbour

regions belonging to the adjacent tiers, a respective period adding structure

exists. The regions belonging to the adjacent tiers can also overlap.

In the subarea BMD, the bifurcation structure is based on only two pri-

mary pairs L0R− and L+R0. The central regions are P(L0R−)n(L+R0)n, n ≥ 1.

The regions of the �rst tier (associated with the region PL0R−L+R0
correspond-

ing to period four) are PL0R−(L+R0)m+1 and PL+R0(L0R−)m+1, m ≥ 0. The regions

of tier n are, respectively, P(L0R−)n(L+R0)n+m and P(L+R0)n(L0R−)n+m. As inside all

other subareas, two neighbour regions can overlap if they belong to di�erent

tiers. If they are disjoint (as always happens when they belong to the same

tier), a respective period adding structure is observed in between.

Proposition 4.38. In the parameter plane (fc, fd) of the map T consider the

quadrangular area Q with vertices in the points A = (a+ d2, 1), B = (1, b+
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d2), C = (a + d1, 1), and D = (1, b + d1), located between the regions PL0R0

and PL+R−
. Inside Q the symbolic sequences of the related cycles are based

on elementary sequences σ1 = L0R0, σ2 = L+R−, σ3 = L+R0, σ4 = L0R−.

For parameter values belonging to

� the subarea AMB, regions of the tier n ≥ 1 of the �rst complexity level

correspond to the symbolic sequences σ1σ
n
3σ

n+m
4 or σ1σ

n+m
3 σn4 , m ≥ 0;

� the subarea CMD, regions of the tier n ≥ 1 of the �rst complexity level

correspond to the symbolic sequences σ2σ
n
4σ

n+m
3 or σ2σ

n+m
4 σn3 , m ≥ 0;

� the subarea AMC, regions of the tier n ≥ 1 of the �rst complexity

level correspond to the symbolic sequences σ1σ
n
3σ2σ

n+m
4 or σ1σ

n+m
3 σ2σ

n
4 ,

m ≥ 0;

� the subarea BMD, regions of the tier n ≥ 1 of the �rst complexity level

correspond to the symbolic sequences σn3σ
n+m
4 or σn+m

3 σn4 , m ≥ 0.

The central regions with m = 0 accumulate to the pointM = AD∩BC. Two
neighbour regions of the same tier and the same complexity level are disjoint.

Two neighbour regions, belonging to the tiers n and n+1, can overlap or can

be disjoint. Between two disjoint neighbour regions there exist other regions

organised according to the period adding principle.

4.7. Modelling learning and teaching interaction by a

map with vanishing denominators

In the current section we consider, following [150, 151], a two-dimensional

map modelling an educational process, changing interaction between the

learner (or student) and the helper (or teacher), initially suggested in

[102, 103], which though lacks for deeper mathematical analysis. Formally

speaking, the educational goal can be considered as a stock of information

and skills K and a student can be represented by a certain amount of knowl-

edge A < K that he has already picked up. The process of learning is
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formalised as a �ow from the goal stock, K, to the individual stock, A. The

teacher continuously estimates the student's potential level of development,

P , that also must change as the student is learning.

Following the seminal works, we consider the two-dimensional map F :

R2 ∋ (A,P ) → F (A,P ) ∈ R2 de�ned by

F (A,P ) =
(
F1(A,P ), F2(A,P )

)
(4.93)

with

F1(A,P ) = A

[
1 +Ra(A,P )

(
1− A

P

)]
, (4.94)

F2(A,P ) = P

[
1 +Rp(A,P )

(
1− P

K

)]
, (4.95)

where functions Ra(A,P ) and Rp(A,P ) (change rates of the actual and the

potential developmental levels, respectively) are given by

Ra(A,P )
def
= Ra = ra −

∣∣∣∣PA −Oa

∣∣∣∣ ba(1− A

K

)
, (4.96a)

Rp(A,P )
def
= Rp = rp −

(
P

A
−Op

)
bp

(
1− P

K

)
. (4.96b)

We remark that due to modulus function in the expression for Ra the map

(4.94) is piecewise smooth. Hence, the phase space is divided into two regions;

namely, D+ for that P/A > Oa and D− for that P/A < Oa, where the lines

P = OaA and A = 0 constitute the switching set.

Let us consider for sake of shortness the set of all parameters as a point

in a seven-dimensional space

µ = (ra, rp, ba, bp, Oa, Op, K) ∈ R7
+. (4.97)

For a certain representative of the map family (4.94) we then use the notation

Fµ.

Recall that from the application viewpoint, A is the actual developmental

level of the student, P is the potential developmental level, and K is the �nal

educational goal. It follows that the inequalities

A ≤ K, P ≤ K, A ≤ P (4.98)
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con�ne the feasible domain DF for the states of the system (4.94). The

boundary of DF is denoted ∂DF . Notice that if Oa > 1, then the feasible

domain DF is divided into two parts, that is, DF = (DF ∩D−)∪ (DF ∩D+).

Otherwise, it is completely contained inside D+.

The domain DF constitutes quite a limited area in the R2 space, and

moreover, DF is not invariant under Fµ. It is important then to distinguish

between feasible orbits, which completely belong to DF , and non-feasible

ones, which eventually leave the feasible domain. Although from applied

context we have to restrict our studies to the orbits located completely in-

side DF , we consider larger part of the phase space. The main reason is that,

in general, dynamic phenomena occurring outside DF may in�uence also the

feasible part of the phase space. For example, suppose that some homo-

clinic bifurcation occurs outside DF and this changes the complete structure

of basins, including those related to attractors belonging to DF . In other

words, considering orbits that are located outside DF may shed light on the

feasible dynamics of map (4.94). And this way we also obtain a better un-

derstanding of the map dynamics in cases in which some of the conditions

in (4.98) are relaxed. Moreover, in some cases violation of (4.98) can be

explained in applied context. For instance, A > P means that the actual

student's developmental level is greater than the potential level estimated by

the teacher, that is, the student already knows what he is expected to learn.

Generally speaking, in the real learning process this may happen.

In the following, as parameter K denotes the �nal educational goal repre-

sented by the stock of information and skills, it is not restrictive to normalise

K to unity (or assume any other positive value).

Lemma 4.39. Any two maps from the family (4.94), Fµ1
and Fµ2

, with

two di�erent values K1 and K2, respectively, and the other parameters being

identical are topologically conjugate.



223

Proof. Consider the homeomorphism

h(A,P ) =

(
K1

K2
A,
K1

K2
P

)
.

It holds that Fµ1
◦ h = h ◦ Fµ2

.

Without loss of generality we can assume that the set of parameters be-

longs to the six-dimensional hyperplane µ ∈ R6
+ × {K = 1}.

One of the particular characteristics of the map Fµ is that both its compo-

nents assume the form of a rational function. Indeed, (4.94) can be rewritten

in the following form:

F1(A,P ) =
N1(A,P )

D1(A,P )

=
A(|A|P + (ra|A| − |OaA− P |ba(1− A))(P − A))

|A|P
, (4.99a)

F2(A,P ) =
N2(A,P )

D2(A,P )

=
P (A+ (rpA− (P −OpA)bp(1− P ))(1− P ))

A
. (4.99b)

Clearly, at points belonging to the set δs
def
= {(A,P ) : A = 0} ∪ {(A,P ) :

P = 0}, at least one of the denominators D1(A,P ) or D2(A,P ) vanishes.

Hence, the set δs represents the set of nonde�nition of Fµ. Maps of similar

kind are called maps with vanishing denominator and have been studied by

many researchers (see, e. g., [46, 49, 51, 201, 234] to cite a few). Particular

feature of such maps is possibility of having focal points and associated prefo-

cal sets/curves (recall the De�nitions 4.1, 4.2). Due to contact between phase

curves and these prefocal sets or a set of nonde�nition, certain bifurcations

can occur, which are peculiar for maps with denominator.

Consider a focal point Q of F . For any smooth simple arc γ(τ) = (γ1(τ),

γ2(τ)) from the De�nition 4.1, its both components can be represented as

Taylor series:

γ1(τ) = ξ0 + ξ1τ + ξ2τ
2 + . . . , (4.100a)
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γ2(τ) = η0 + η1τ + η2τ
2 + . . . (4.100b)

If a focal point is simple, then there exists a one-to-one correspondence be-

tween the slope m = η1/ξ1 of a curve γ(τ) at this focal point and the limit

point limτ→0 Fµ(γ(τ)). In case of a nonsimple focal point this generically

does not hold.

Theorem 4.40. Consider a map Fµ with µ ∈ R6
+ × {K = 1}. The points

SP0 = SP0(0, 0), SP1 = SP1(0, 1), and SPa = SPa(1 − ra/(Oaba), 0) are

focal points with the respective prefocal sets

δSP0
= {(A,P ) : A = 0} ∪ {(A,P ) : P = 0} ≡ δs, (4.101)

δSP1
= {(A,P ) : A = −ba}, and (4.102)

δSPa
= {(A,P ) : P = 0} ⊂ δs. (4.103)

Proof. At �rst, we consider the points with A = 0 and arbitrary P and

consider arcs γ(τ) through this point implying ξ0 = 0, η0 = P . The function

F1(0, P ) assumes uncertainty 0/0, while F2(0, P ) = −P 2bp(1− P )2/0. If

P ̸= 0, 1, the limit of Fµ(γ(τ)) with τ → 0 is (−baP sgn(P ),∞), where ∞
means either +∞ or −∞ depending on whether limit is taken from the left

or from the right, respectively. Hence, the point (0, P ), P ̸= 0, 1, is not a

focal point.

Let us check whether SP0 = SP0(0, 0) and SP1 = SP1(0, 1) are the focal

points. Note that now also the function F2(0, P ) assumes uncertainty 0/0.

For SP0, clearly, ξ0 = η0 = 0. First, we suppose that ξ1 ̸= 0 and η1 ̸= 0. The

limit is then limτ→0 Fµ(γ(τ)) = (0, 0) regardless of the arc γ(τ). It means

that the focal point SP0 belongs to its prefocal set δSP0
. It also implies that

whatever is the slope m = η1/ξ1 of γ(τ) at SP0, the image Fµ(γ(τ)) always

intersects δSP0
at the same point, namely, SP0 itself. In a certain sense the

focal point SP0 plays a role similar to that of a �xed point of Fµ. However,

the set δSP0
contains also other points. Indeed, if we put ξ1 = 0, η1 ̸= 0 then

lim
τ→0

Fµ(γ(τ)) =

(
0,−η

2
1bp
ξ2

)
,
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while if η1 = 0, ξ1 ̸= 0 then

lim
τ→0

Fµ(γ(τ)) =

(
±ξ21(ra ±Oaba)

η2
, 0

)
,

where `+' and `−' are chosen depending on the signs of A and (P − OaA).

Hence, the prefocal set

δSP0
= {(A,P ) : A = 0} ∪ {(A,P ) : P = 0},

which coincides with the set of nonde�nition δs. Note that, the derivatives

NiA = NiP = DiP = D1A = 0, i = 1, 2, D2A = 1, and therefore, the focal

point SP0 is nonsimple.

Similarly, we get that the prefocal set of SP1 is

δSP1
= {(A,P ) : A = −ba}.

For SP1 there holds NiP = DiP = 0, i = 1, 2, and this focal point is

nonsimple as well.

Finally, F1(A,P ) also assumes uncertainty 0/0, if A = 1 − ra/(Oaba)

and P = 0, while F2(A,P ) is �nite. The prefocal set of the focal point

SPa = SPa(1− ra/(Oaba), 0) is the line

δSPa
= {(A,P ) : P = 0} ⊂ δs.

The point SPa is simple provided that ra ̸= Oaba. If ra = Oaba then

SPa ≡ SP0. The point SPa belongs to its prefocal set δSPa
, similarly to

SP0. However, there exists only one slope m = η1/ξ1 for which the image

Fµ(γ(τ)) intersects δSPa
at SPa, since SPa is simple.

Theorem 4.41. Consider a map Fµ with µ ∈ R6
+ × {K = 1}. It can have

from two to eleven coexisting �xed points:

� the points E1(1, 1) and E2(A
−
I,1, 1) always exist, where

A−
I,1 =

1

2

BI +
1

Oa
−

√(
BI +

1

Oa

)2

− 4

Oa

 , (4.104)

BI = 1 +
ra
Oaba

; (4.105)
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� the pair E3(A
−
II,1, 1) and E4(A

+
II,1, 1) with

A±
II,1 =

1

2

BII +
1

Oa
±

√(
BII +

1

Oa

)2

− 4

Oa

 (4.106)

BII = 1− ra
Oaba

. (4.107)

exists for
ra
ba
<
(
1−

√
Oa

)2
,

Oa > 1.
or

ra
ba
>
(
1 +

√
Oa

)2
. (4.108)

� the point E5(Ad, Ad) with

Ad = 1 +
rp

bp(Op − 1)
(4.109)

exists for almost any parameter values except for the set {µ : Op = 1};

� the triple E6, E7, E8 (not necessarily existent) is obtained from

a1A
3 + a2A

2 + a3A+ a4 = 0, P =
A2 −BIA

A− 1
Oa (4.110)

with

a1 = Oa(Oa −Op),

a2 =
rp
bp

+ (Op −Oa)(2Oa + 1) +
ra
ba
(Op − 2Oa),

a3 = (Oa −Op)(Oa + 2) +
ra
ba

(
1 +

ra
ba

+ 2Oa −Op

)
− 2

rp
bp
,

a4 = Op −Oa +
rp
bp

− ra
ba
;

(4.111)

� the triple E9, E10, E11 (not necessarily existent) is obtained from the
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same expressions as in (4.110) but with

a1 = Oa(Oa −Op),

a2 =
rp
bp

+ (Op −Oa)(2Oa + 1) +
ra
ba
(2Oa −Op),

a3 = (Oa −Op)(Oa + 2) +
ra
ba

(
ra
ba

− 1 +Op − 2Oa

)
− 2

rp
bp
,

a4 = Op −Oa +
rp
bp

+
ra
ba
.

(4.112)

and BI replaced by BII.

Proof. Fixed points of the map Fµ can be de�ned by solving the following

equations:A = A

(
1 +Ra ·

(
1− A

P

))
,

P = P (1 +Rp · (1− P )) .

(4.113)

This is equivalent to f1(A,P )
def
= ARa ·

(
1− A

P

)
= 0 ,

f2(A,P )
def
= PRp · (1− P ) = 0 .

(4.114a)

(4.114b)

Each of the equations (4.114) de�nes a geometrical locus of points in the

(A,P )-plane. Every intersection of the two loci of points is a (potential)

�xed point of (4.94). We use the word �potential� here because some of inter-

sections may correspond to focal points, as for instance, the point SP0(0, 0).

From (4.114a) the function f1 of the two variables A and P equals zero

when one of the following holds:

P = A, ARa(A,P ) = 0. (4.115)

The values A = 0 are omitted since they correspond to the set of nonde�-

nition δs as seen above. Let us solve the remaining equation Ra(A,P ) = 0.

Expanding the modulus we get two di�erent equations:

P

A
−Oa =

ra
ba(1− A)

and
P

A
−Oa = − ra

ba(1− A)
,
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where one has to require A < 1. This implies the following two functions

P =
−ra −Oaba + baOaA

ba(1− A)
A =

A2 −BIA

A− 1
Oa := PI(A), (4.116a)

P =
−ra +Oaba − baOaA

ba(1− A)
A =

A2 −BIIA

A− 1
Oa := PII(A) (4.116b)

with BI and BII de�ned in (4.105) and (4.107), respectively. In general, both

equations (4.116a) and (4.116b) de�ne curves in the (A,P )-plane consisting

of two branches each (one for A < 1 and the other for A > 1): PL
I , P

R
I and

PL
II , P

R
II However, only branches PL

I and PL
II reduce Ra(A,P ) to zero.

Note that the curve P = PL
I (A) is strictly increasing and have two asymp-

totes: A = 1 and P = OaA − ra/ba. As for P = PL
II (A), it has a local

maximum at

A = 1−
√

ra
baOa

def
= Amax

II , PII(A
max
II ) = Oa · (Amax

II )2. (4.117)

Obviously, Amax
II < 1 for any parameter values. Additionally, if ra < baOa

then Amax
II > 0, otherwise Amax

II < 0. The function P = PL
II (A) also has two

asymptotes: A = 1 and P = OaA+ ra/ba.

For the sake of shortness, we omit the upper indices L writing simply

PI(A) and PII(A), except for the cases where it is necessary to distinguish

between the two di�erent branches.

From (4.114b) the function f2 equals zero when one of the following holds:

P = 0, P = 1, Rp(A,P ) = 0, (4.118)

where the �rst line P = 0 belongs to the set of nonde�nition δs as discussed

above. The last equation of (4.118) is equivalent to

P =
1 +OpA±

√
(1−OpA)2 − 4A

rp
bp

2
def
= P±(A), A ̸= 0. (4.119)

Note that the curves P±(A) are de�ned only for those values of A which

guarantee positive discriminant

(1−OpA)
2 − 4A

rp
bp

≥ 0.
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Solving this inequality gives A < A−
lim or A > A+

lim with

A±
lim =

bpOp + 2rp ± 2
√
bpOprp + r2p

bpO2
p

. (4.120)

Both A−
lim, A

+
lim are always positive and may be less or greater than one. Each

curve P−(A) and P+(A) consists of two branches, one de�ned for A ≤ A−
lim

(denoted PL
−(A) and P

L
+(A), resp.) and the other for A ≥ A+

lim (PR
− (A) and

PR
+ (A), resp.). Both curves have also two asymptotes:

L1 =

{
(A,P ) : P = 1 +

rp
bpOp

}
, (4.121)

L2 =

{
(A,P ) : P = OpA− rp

bpOp

}
. (4.122)

The �xed points of the map Fµ are found as intersections of f1(A,P ) =

0 (4.114a) and f2(A,P ) = 0 (4.114b). As one can surmise, the branches of

f1(A,P ) = 0 and f2(A,P ) = 0 may cross at several points, whose number

changes depending on the parameter values. And they always intersect at

the point SP0(0, 0), which is a focal point.

Consider the intersections of f1 = 0 with P = 1. First of all, there is

always a �xed point E1(1, 1) (being the intersection of P = A and P = 1),

which is the desired target state from application viewpoint. For determining

the points of intersection of P = PI(A) and P = 1 we solve

PI(A) =
A2 −BIA

A− 1
Oa = 1, (4.123)

where BI is de�ned in (4.105), which gives two solutions A±
I,1 with A

−
I,1 given

in (4.104) and A+
I,1 being the same but with the opposite sign at the square

root. They are real whenever the discriminant ∆ is not negative:

∆ =

(
BI +

1

Oa

)2

− 4

Oa
≥ 0.

Adding the term ±4ra/baO
2
a to the left-hand side of the last inequality gives
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∆ = 1 +
r2a
b2aO

2
a

+
1

O2
a

+
2ra
baOa

+
2

Oa
+

2ra
baO2

a

± 4ra
baO2

a

=

(
1 +

ra
baOa

− 1

Oa

)2

+
4ra
baO2

a

≥ 0.

The latter always holds since ra > 0, ba > 0. Moreover, the inequality is

always strict. It means that the two solutions A±
I,1 are always real and

A−
I,1 < 1, A+

I,1 > 1.

Clearly A−
I,1 is the intersection point of P = PL

I (A) and P = 1, while A+
I,1 is

the intersection of P = PR
I (A) and P = 1. Hence, only A−

I,1 is related to the

�xed point, since only branch PL
I reduces Ra(A,P ) to zero. We additionally

remark that A−
I,1 > 0 because P = PI(A) is increasing and

PI(0) = 0, lim
A→1−

PI(A) = ∞.

The �xed point E2 = E2(A
−
I,1, 1) ∈ DF , or more precisely, E2 ∈ ∂DF .

Similarly, the points of intersection of P = PII(A) with P = 1 are ob-

tained from

PII(A) =
A2 −BIIA

A− 1
Oa = 1, (4.124)

where BII is given in (4.107), and thus, the �xed points E3,4(A
±
II,1, 1) are ob-

tained. Again, the solutions A±
II,1 (4.106) are real whenever the discriminant

∆ =

(
BII +

1

Oa

)2

− 4

Oa
≥ 0, (4.125)

but in contrast to the case of PI(A) = 1, now the opposite inequality (∆ < 0)

is possible. This happens when(
1−

√
Oa

)2
<
ra
ba
<
(
1 +

√
Oa

)2
. (4.126)

For the related parameter values both A±
II,1 are complex, and E3,4 do not

exist. When ∆ is positive, A±
II,1 are distinct real numbers. However, it does
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not immediately imply that the �xed points E3,4 exist. Indeed, recall that the

expression (4.116b) de�nes two branches: PL
II (A) for A < 1 and PR

II (A) for

A > 1, but the right branch PR
II does not reduce f1(A,P ) to zero. Formally,

if A±
II,1 > 1, then the points E3,4 are intersections of P = PR

II (A) and P = 1,

but they are not �xed points of Fµ. In case where A±
II,1 < 1 the �xed points

E3,4 are intersections of P = PL
II (A) and P = 1.

To derive the region of parameter values for that the points E3,4 exist, we

recall that PII(A) has a local maximum

max
A

PII(A) =

(√
ra
ba

−
√
Oa

)2

:= Pmax
II

attained at Amax
II given in (4.117). Then we have to require that

(1) the opposite to (4.125) holds (∆ > 0) and

(2) Pmax
II > 1.

The condition (1) is nothing else but

ra
ba
<
(
1−

√
Oa

)2
or

ra
ba
>
(
1 +

√
Oa

)2
.

The condition (2) is equivalent to
√
ra
ba
<

√
Oa − 1,√

ra
ba
>

√
Oa + 1

⇔




ra
ba
< (

√
Oa − 1)2,

Oa > 1,
ra
ba
> (

√
Oa + 1)2.

Combining both conditions together implies
ra
ba
<
(
1−

√
Oa

)2
,

Oa > 1.
or

ra
ba
>
(
1 +

√
Oa

)2
. (4.127)

The location of A±
II,1 trivially holds from the respective condition (4.127).
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Consider now the intersection of f1 = 0 and P = P±(A). For P = A and

P = P−(A) we solve

P−(A) =
1 +OpA−

√
(1−OpA)2 − 4A

rp
bp

2
= A, (4.128)

which is equivalent to

1 +OpA− 2A =

√
(1−OpA)2 − 4A

rp
bp
.

This gives two solutions: A = 0 and A = Ad (4.109). The solution A = 0

corresponds to the focal point SP0 and always exists, while A = Ad exists

only provided that

∆|Ad
= (1−OpAd)

2 − 4Ad
rp
bp

≥ 0, (4.129)

and 1 +OpAd − 2Ad ≥ 0. (4.130)

The �rst inequality (4.129) can be rewritten as

∆|Ad
=

(
Op − 2

Op − 1
· rp
bp

+Op − 1

)2

≥ 0,

which is always true. The second inequality (4.130) is equivalent to
Op − 2

Op − 1
< 0,

rp ≤
bp(Op − 1)2

2−Op

or


Op − 2

Op − 1
> 0,

rp ≥
bp(Op − 1)2

2−Op

or Op = 2. (4.131)

If (4.131) is obeyed, the map Fµ has a �xed point E5 = E5(Ad, Ad).

Let us emphasise the particular case when the equality rp =
bp(Op−1)2

2−Op

holds. It immediately implies that 0 < Op < 2, since for Op ≥ 2 the value

of rp either falls outside the considered region for parameters or is in�nite

(for Op = 2). Moreover, depending on whether 0 < Op < 1 or 1 < Op < 2,

the solution of (4.128) is either Ad = A−
lim or Ad = A+

lim (with A±
lim de�ned

in (4.120)).
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For the intersection of P = A with P = P+(A) there is

P+(A) =
1 +OpA+

√
(1−OpA)2 − 4A

rp
bp

2
= A

having the only solution A = Ad de�ned in (4.109). Though Ad has to satisfy

2Ad − 1−OpAd > 0, (4.132)

which is just the opposite to (4.130). Hence, the inequality (4.132) is equiv-

alent to the opposite of (4.131):
2−Op

bp(Op − 1)
< 0,

rp ≤
bp(Op − 1)2

2−Op

or


2−Op

bp(Op − 1)
> 0,

rp ≥
bp(Op − 1)2

2−Op
.

(4.133)

This means that the two conditions (4.133) and (4.131) are complementary.

And the �xed point E5 exists for any parameter values, except for the case

when Op = 1 implying Ad = ±∞. However, E5 is located on either P =

P−(A) or P = P+(A), which depends on the parameters.

For P = PI(A) with P = P−(A) we obtain the equality

PI(A) = P−(A) ⇔ 1 +OpA−

2

(
−ra
ba

−Oa +OaA

)
A

A− 1
=

√
(1−OpA)2 − 4A

rp
bp
, (4.134)

which immediately separates into A = 0 and the cubic polynomial of A given

in (4.110), (4.111). This polynomial always has three roots denoted as A1
I,cub,

A2
I,cub, A

3
I,cub, among which there must be at least one real root. Suppose that

A1
I,cub is always real.

We also remark that for raising to the square both sides of (4.134) one

has to guarantee that

1 +OpA− 2

(
−ra
ba

−Oa +OaA

)
A

A− 1
≥ 0. (4.135)
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Thus, every Ai
I,cub also has to satisfy (4.135). Let us denote

E6 = E6(A
1
I,cub, P

1
I,cub), E7 = E7(A

2
I,cub, P

2
I,cub), E8 = E8(A

3
I,cub, P

3
I,cub). Then

P i
I,cub, i = 1, 3, are the values of PI(A) at A

i
I,cub. Note that even if the cubic

equation (4.110) always has at least one real root A1
I,cub, it does not imply

that E6 always exists. Indeed, if A
1
I,cub > 1, then the point (A1

I,cub, P
1
I,cub) is

the intersection of P = PR
I (A) and P = P−(A), and hence, it is not a �xed

point of Fµ, since only branch PL
II reduces Ra(A,P ) to zero. The same is

true for FP7,8, which exist provided that A2,3
I,cub are real and less than one.

The intersection points of PI(A) with P+(A) are obtained from the cubic

equation (4.110) with coe�cients de�ned in (4.111) (the same equation as

for the intersection of PI(A) with P−(A)). The only di�erence is that now

every solution of (4.110) has to satisfy the inequality

1 +OpA− 2

(
−ra
ba

−Oa +OaA

)
A

A− 1
≤ 0 (4.136)

having the opposite sign with respect to (4.135). The same �xed points E6,7,8

can be obtained.

For the intersection of P = PII(A) with P = P−(A), the equality

PII(A) = P−(A) ⇔ 1 +OpA−

2

(
ra
ba

−Oa +OaA

)
A

A− 1
=

√
(1−OpA)2 − 4A

rp
bp

(4.137)

immediately separates into A = 0 and the cubic polynomial of the form

(4.110) but with coe�cients given in (4.112). The roots of the polynomial

are referred to as Ai
II,cub, i = 1, 3, with supposing that A1

II,cub is always real.

Each Ai
II,cub has to satisfy the inequality

1 +OpA− 2

(
ra
ba

−Oa +OaA

)
A

A− 1
≥ 0. (4.138)

so that to guarantee validity of raising to square (4.137). The points denoted

as E9 = E9(A
1
II,cub, P

1
II,cub), E10 = E10(A

2
II,cub, P

2
II,cub), E11 = E11(A

3
II,cub,
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cP 3
II,cub) are �xed points of Fµ provided that Ai

II,cub are real and A
i
II,cub < 1

by the same reason as for FP6,7,8.

Similarly, equating PII(A) to P+(A) implies the same cubic polynomial

as equating PII(A) to P−(A) giving the roots A
i
II,cub, i = 1, 3. However, now

they have to satisfy inequality opposite to (4.138), that is,

1 +OpA− 2

(
ra
ba

−Oa +OaA

)
A

A− 1
≤ 0. (4.139)

Since the map Fµ is piecewise smooth, the Jacobian matrix for an arbi-

trary point (A,P ) is de�ned di�erently depending on whether (A,P ) ∈ D−

(P/A < Oa) or (A,P ) ∈ D+ (P/A > Oa). However, in particular cases these

two matrices coincide.

Theorem 4.42. Concerning the stability of �xed points of the map Fµ, the

following statements hold:

� The �xed point E1 is (i) a stable node if both ra, rp < 2; (ii) a saddle if

either ra > 2 or rp > 2; (iii) an unstable node if both ra, rp > 2.

� The �xed point E2 is (i) a saddle if rp < 2; (ii) an unstable node if

rp > 2.

� The �xed points E3,4 (if existent) are (i) a stable node and a saddle,

resp., if rp < 2; (ii) a saddle and an unstable node, resp., if rp > 2.

Proof. The Jacobian matrix for the �xed point E1 is de�ned as

J(E1) =

(
1− ra ra

0 1− rp

)
(4.140)

regardless of whether E1 ∈ D− or E1 ∈ D+ (which depends on Oa). Eigen-

values of J(E1) are ν1(E1) = 1− ra and ν2(E1) = 1− rp. The corresponding

eigenvectors are v1 = (1, 0) and v2 = (ra/(ra − rp), 1). Clearly, whenever

ra, rp ∈ (0, 2), the point E1 is asymptotically stable. Both eigenvalues are
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real and ra, rp are strictly positive. Thus, the only bifurcation due to that

E1 can lose its stability is the �ip bifurcation (at ra = 2 or rp = 2).

We remark, that the singularity arises when ra = rp. In this case there

is only one eigenvector v1 related to the eigenvalue ν1 of the multiplicity 2.

This implies that if the �xed point E1 is stable, namely, ra ∈ (0, 2), then

every orbit attracted to E1 is asymptotically tangent to the line P = 1 in

the neighbourhood of E1.

The �xed point E2(A
−
I,1, 1) is always located inside D+, that is, 1/A

−
I,1 >

Oa. Indeed,

1 = PI(A
−
I,1) =

(
A−

I,1

)2
−BIA

−
I,1

A−
I,1 − 1

Oa > OaA
−
I,1 ⇔

(
A−

I,1

)2 − BIA
−
I,1 <

(
A−

I,1

)2 − A−
I,1 ⇔ − ra

baOa
A−

I,1 < 0

and the latter inequality is always true (recall that 0 < A−
I,1 < 1). The

related Jacobian matrix is then computed as

J(E2) =

(
J11 J12

0 1− rp

)
, (4.141)

where

J11 =
(
ba(1−Oa) + ra

)
A−

I,1 − ba(1−Oa) + ra + 1,

J12 = −baOa

(
A−

I,1

)3
+ (baOa + ra)

(
A−

I,1

)2
+ baA

−
I,1 − ba.

(4.142)

The eigenvalues of E2 are

ν1(E2) = J11, ν2(E2) = 1− rp. (4.143)

The related eigenvectors are

v1 = (1, 0), v2 =

(
J12

1− rp − J11
, 1

)
. (4.144)

Both eigenvalues of E2 are real and the second is also strictly less than one.

Hence, the only possible bifurcation in the direction v2 is the �ip bifurcation
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(at rp = 2). It can be further shown that the other eigenvalue is always

ν1 = J11 > 1. Hence, the point E2 is either the saddle or the unstable node.

If it is the saddle, then it becomes the unstable node when rp = 2 giving

rise to a saddle 2-cycle with one point located above the line P = 1 and the

other point below this line. Moreover, this �ip bifurcation is the only local

bifurcation that E2 can undergo.

Let us show that the �xed points E3(A
−
II,1, 1) and E4(A

+
II,1, 1) are always

located in D−. Recall that these two points exist when (4.127) holds. If the

�rst condition of (4.127) is true, then Amax
II > 0 and

dPII

dA

∣∣∣∣
A=0

= Oa −
ra
ba

⇒ 1 <
dPII

dA

∣∣∣∣
A=0

< Oa.

The derivative dPII(A)/dA clearly decreases to zero on the interval [0, Amax
II ]

and then becomes negative on (Amax
II , 1). It means that

PII(A) < OaA for 0 < A < 1 ⇒ E3,4 ∈ D−.

On the other hand, if the second condition of (4.127) holds, then

dPII

dA

∣∣∣∣
A=0

= Oa −
ra
ba
< −2

√
Oa − 1 < 0.

This implies that

A±
II,1 < 0 ⇒ E3,4 ∈ D−.

The Jacobi matrix for E3 is

J(E3) =

(
J11 J12

0 1− rp

)
, (4.145)

where

J11 = −3baOa

(
A−

II,1

)2
+ (4baOa + 2ba − 2ra)A

−
II,1 − 2ba − baOa + ra + 1,

J12 = baOa

(
A−

II,1

)3
+ (ra − baOa)

(
A−

II,1

)2 − baA
−
II,1 + ba. (4.146)
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For obtaining similar expressions for E4 one has to replace A−
II,1 with A

+
II,1

in (4.146). The eigenvalues of E3 (and similarly of E4) are

ν1(E3) = J11, ν2(E3) = 1− rp. (4.147)

The related eigenvectors are

v1 = (1, 0), v2 =

(
J12

1− rp − J11
, 1

)
. (4.148)

Let us check which bifurcations can appear in the direction v1. For that

we make certain transformations in the expression for J11:

J11− 1 =

(
BII +

1

Oa
− 2

)√(
BII +

1

Oa

)2

− 4

Oa
−
(
BII +

1

Oa

)2

− 4

Oa
.

The latter equals zero if
(
BII +

1

Oa

)2

− 4

Oa
= 0,(

BII +
1

Oa
− 2

)2

=

(
BII +

1

Oa

)2

− 4

Oa
,

⇔


ra
ba

=
(
1±

√
Oa

)2
,

ra
baOa

= 0.

Notice that for ra/ba =
(
1−

√
Oa

)2
with 0 < Oa < 1 the branch P =

PL
II (A) is tangent to the line P = 1, and hence, the points E3,4 do not exist.

Consequently,

ν1(E3) = J11 = 1 ⇔




ra
ba

=
(
1−

√
Oa

)2
,

Oa > 1,

ra
ba

=
(
1 +

√
Oa

)2
.

(4.149)

When (4.149) holds, the point E3 (together with E4) appears due to the fold

bifurcation. Moreover, for
ra
ba
<
(
1−

√
Oa

)2
,

Oa > 1
or

ra
ba
>
(
1 +

√
Oa

)2
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the eigenvalues are

ν1(E3) < 1 and ν1(E4) > 1.

If additionally rp < 2, then E3 is the stable node, while E4 is the saddle.

Otherwise, E3 is the saddle and E4 is the unstable node. It can be also

shown that there is always ν1(E3) > −1. Thus, E3 cannot undergo a �ip

bifurcation in the v1 direction.

The second eigenvalue for both points is always ν2 < 1, and the only

possible bifurcation in the direction v2 is the �ip bifurcation (at rp = 2).

Notice that this bifurcation occurs for both points simultaneously.

As for the �xed point E5(Ad, Ad), it is located inside D− (D+) if Oa > 1

(Oa < 1). In both cases its Jacobi matrix has in general all four non-zero

elements:

J±(E5) =

(
1− ra ± rpba(Oa−1)

bp(Op−1) ra ∓ rpba(Oa−1)
bp(Op−1)

r2p
bp(Op−1)2 1 + rp +

r2p(Op−2)

bp(Op−1)2

)
. (4.150)

The eigenvalues of J±(E5) may be complex numbers. It happens when(
2− ra ±

rpba(Oa − 1)

bp(Op − 1)
+ rp +

r2p(Op − 2)

bp(Op − 1)2

)2

−4 det J±(E5) < 0. (4.151)

In such a case it is possible for this point to undergo a Neimark�Sacker

bifurcation. However, the left-hand side of (4.151) is too cumbersome to

study analytically how di�erent parameters in�uence its sign.

The expressions for Ei, i = 6, 11, are also too complicated to study their

stability properties analytically.

Below we present two examples of phase plane of the map Fµ for di�erent

parameter sets. Both examples show the complexity of the dynamics and,

even when restricting the phase plane to values relevant for the application,

coexistence of di�erent attractors.

Let us �x the parameter point µ1 with ra = 0.03, rp = 0.01, ba = bp =

0.1, Oa = 3, Op = 1.5. For such parameter values, the application target
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�xed point E1 is a stable node. Fig. 4.15a shows a phase plane of the map

Fµ1
, where di�erent colours correspond to attractors of di�erent period or

divergence. Namely, some orbits are attracted to a �xed point (pink and

brown colours), some to an 8-cycle O8 (violet colour), some converge to a 35-

cycle O35 (orange colour), while the others are divergent (grey colour). The

cycles O8 and O35 are located outside the feasible domain DF . Hence, the

orbits having initial conditions inside the respective regions are non-feasible

and should be excluded from consideration in the applied context.

Let us consider the orbits convergent to the �xed points in more detail.

We notice that for the mentioned parameter values there exist seven �xed

points: Ei, i = 1, 6, and i = 9. All these �xed points, except for FP5, belong

to the feasible domain (to its interior or its boundary ∂DF). The points E1

and E3 are stable nodes, the points E2, E4, E5, and E9 are saddles, the point

E6 is an unstable node. In Fig. 4.15a basins of attraction of E1 and E3 are

shown by pink and brown colours, respectively, and some of their boundaries

are marked by blue curves, which are stable sets of the four saddles.

The intersection of the basin of attraction of the application target point

FP1 and the feasible domain DF is relatively small for the chosen parameter

values. However, from the form of the immediate basin of FP1 one can

conclude that for the learning process to be e�ective, the initial value of

the actual developmental level A must be su�ciently high regardless of the

initial potential developmental level P . As has been already mentioned,

evaluation of the current learner's knowledge level is a complicated task often

requiring time and usage of multiple techniques. Therefore, in reality it

can sometimes happen that the potential developmental level is estimated

incorrectly and there is P < A. Though if initial A is large enough, the orbit

eventually enters the feasible domain DF converging to the desired point

FP1. In Fig. 4.15a two orbits with di�erent initial conditions, one being

outside and the other one located inside DF , are shown by cyan and black

lines, respectively.
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As for the orbits whose initial points are located in the yellow region, they

asymptotically approach the focal point SP0. Recall that SP0 belongs to its

prefocal set δSP0
. Moreover, if coe�cients ξ1 and η1 in Taylor series (4.100)

are di�erent from zero, the image of the respective arc γ(τ) intersects δSP0

exactly at SP0 regardless of the slope m = η1/ξ1. And hence, SP0 may play

a role similar to that of an attracting �xed point. The basin of attraction

of SP0 contains elements characteristic for maps with denominator, as one

can see in Fig. 4.15b. In particular, let us consider the part of this basin

with three vertices in the points Q1, Q2 and SP0, denoted as B0. The points

Q1 and Q2 are the intersections of the respective basin boundaries with the

prefocal set δSP1
, and hence, are both focalized into SP1 by one of the inverses

of Fµ1
. Due to this there exists a crescent between the two focal points, SP0

and SP1, denoted as B−1
0,1 in Fig. 4.15b, such that Fµ1

(B−1
0,1) = B0. Clearly

there also exist an in�nite sequence of preimages of B−1
0,1, each having a form

of crescent between SP0 and a respective preimage of SP1. For instance, one

can notice the region B−2
0,1,1 between SP0 and SP

−1
1,1 , where Fµ1

(SP−1
1,1 ) = SP1

and Fµ1
(B−2

0,1,1) = B−1
0,1.

For further details on characteristic basin structures occurring for maps

with vanishing denominator see [46, 49, 51].

In the second example we �x the parameter point µ2 with ra = 0.098,

rp = 0.09, ba = bp = 0.1, Oa = 0.2, Op = 0.11. All in all, there are seven

�xed points: two stable nodes E1 and E5, four saddles E2, E7,8,9, and an

unstable focus E6. In addition, there are two non-periodic invariant sets.

Figure 4.15c shows basins of di�erent attractors in the (A,P ) phase plane.

Blue points correspond to initial conditions whose orbits are attracted to

E1, the basin of E5 (which is non-feasible though) is plotted brown, orange

region is related to the chaotic attractor Q located at the line P = 1, and

the points coloured pink have orbits ending up at the invariant closed curve

Γ (shown violet). Grey region corresponds to divergence.

We remark further that the basin of E1 is separated from the others by
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Figure 4.15: Phase space of F revealing basins of di�erent attractors with grey mark-

ing divergent orbits. (a, b) The parameters are ra = 0.03, rp = 0.01, ba = 0.1, bp =

0.1, Oa = 3, Op = 1.5. Pink and brown are related, respectively, to the stable nodes

E1 and E3; yellow corresponds to the focal point SP0; violet and orange are associ-

ated, respectively, with O8 and O35 (both located outside ∂DF). (c) The parameters are

ra = 0.098, rp = 0.09, ba = 0.1, bp = 0.1, Oa = 0.2, Op = 0.11. Light-blue and brown

are related, respectively, to the stable nodes E1 and E5 (located outside ∂DF); orange

corresponds to the chaotic attractor Q ⊂ {(A,P ) : P = 1}; pink is associated with the

closed invariant curve Γ.

the stable set of the saddle E2. Note that in comparison with the previous

example, for the current parameter set the part of basin of FP1 located

inside the feasible domainDF is essentially larger. However, the initial actual

developmental level A again must not fall below a certain value in order to

achieve the �nal educational goal K = 1. In case when the initial A is too

small, or the original evaluation of the current learner's knowledge level is

too far from the reality, that is, initial P is too far below the initial A, the

learning is not e�ective. Indeed, such an orbit either eventually leaves the

feasible domain DF or is attracted to an invariant curve Γ. This curve Γ can

be interpreted as a cyclic learning process in which the student achieving a

certain developmental level gives up (for instance, gets bored of the subject)

and gradually loses the skills acquired. At some point he/she starts �ghting

the educational goal anew, but eventually gives up again.

Note also that the focal points SP0 and SP1 are involved as well into for-

mation of the basin structures, typical for maps with vanishing denominator,
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such as lobes and crescents. For example, the basin of Q consists of multiple

lobes issuing from SP0, forming a structure which resembles a fan centred at

SP0. And the parts of the basin of in�nity (divergent orbits) located between

these lobes have form of crescents.

Finally, the points E7,8,9 are located in the third quadrant of the plane and

fall outside both, the feasible domain DF and the area plotted in Fig. 4.15c.
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Chapter 5

Piecewise smooth maps of higher dimensions:

Asymptotic solutions and their bifurcations

The current Chapter is devoted to studying several families of higher-

dimensional piecewise smooth maps that model an oligopoly market. These

models were suggested by a famous Swedish economist T�onu Puu as an an-

swer to the so-called Theocaris�Cournot problem, when the market is desta-

bilised with increasing the number of competitors. Due to high dimensional-

ity of the maps considered here, the combination of analytical methods and

numerical experiments is widely used below.

5.1. A brief historical note: oligopolistic competition

models

Economics textbooks consider three stylised market situations, perfect com-

petition, monopoly, and oligopoly. In perfect competition the �rms are

very small and numerous, so they cannot perceivably in�uence market price

through their supply; neither can their competitors, so it does not need to

be concerned about their reactions. In monopoly there is just one supplier

who knows the consumers' demand function, and it deliberately limits its

supply, thereby being able to charge a monopoly price in such a way as to

maximise monopoly pro�t. Oligopoly, the case of few rather big competi-

tors, is an intermediate case, which analytically is more complex than either

perfect competition or monopoly. This is because the oligopolist takes in
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account how it, like the monopolist, a�ects market price, but also how the

competitors react back on its own moves. This market situation was �rst

formalised by French mathematician Augustin Cournot in 1838 [75].

There followed a sizeable literature on oligopoly with many developments

which we will not trace here. The general idea was that with an increase in

the number of competitors the monopoly, over oligopoly, would ultimately

transform into a competitive market. However, with the current models,

assuming linear demand functions and constant marginal costs, Theocharis

in 1959 [232] pointed out that when the number of competitors exceeded the

small number of three, the Cournot equilibrium would be destabilised. This

became known as the �Theocharis Problem�, though it was stated under more

general assumptions 20 years earlier by Palander [164].

In this research we will assume not a linear, but a hyperbola shaped

demand function. However, the same destabilisation was shown to occur

in this model; only the bound for destabilisation was pushed from three to

four competitors (see [2, 5]). The cause for destabilisation in both cases

obviously was the assumption of constant marginal costs. In the scenario of

increasing competition described above, it is implicit that the more numerous

the competitors are, the smaller they will be. However, a �rm producing with

constant marginal cost, i. e., under constant returns to scale, is potentially

in�nitely large as it can increase any tiny pro�t margin without bound by

increasing the scale of operation. That the addition of in�nite sized �rms

will destabilise equilibrium is, however, neither very interesting, nor very

surprising.

A �rst attempt to deal with the issue can be found in [211], where a

given total capacity of the branch is supposed to be split in equal shares

between the �rms. In this way the �rms automatically become smaller the

more numerous they are. Of course, it was necessary to skip the constant

returns to scale and to assume a production function incorporating capacity

limits. The conclusion from this study was that the destabilisation did not
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necessarily occur any longer. Oligopoly could in fact transform smoothly into

a competitive market without any destabilisation.

However, the model still just assumed an exogenous change of the number

of competitors and automatically their capacities. A new start was taken in

[210], where the �rms were assume to enter the market one by one, choosing

their capacity through investing in a capital equipment according to current

market conditions, and replacing the capital when it was worn out. This

made the market evolution endogenous.

5.2. A 2n-dimensional nonautonomous map

Let us consider an abstract market with n, n ≥ 2, competitors (or agents)

all producing the same good, as it was done in [182�187, 212]. At a �xed

time period, the supply of the i-th competitor (the produced good amount)

is denoted as qi and the whole production set is then represented by a vector

q = (q1, q2, . . . , qn) ∈ Rn
+. To produce qi, the agent uses a certain amount of

capital ki and the set of capitals is denoted as k = (k1, k2, . . . , kn) ∈ Rn
+. We

suppose that at each time period the competitors are able to learn the current

total production volume and have �na��ve� expectations, which means that

they assume the others will produce the same amount in future. Possessing

this information, the i-th competitor decides about future production size by

maximising their pro�ts taking for granted that the residual supply (the sum

of quantities produced by the rivals):

R+ ∋ Qi(q) =: Qi =

j=n∑
j=1,j ̸=i

qj (5.1)

will remain unchanged. The agents should also take into account that the

capital has �nite lifetime (or durability) T , assumed here to be constant and

indi�erent of i. It means that every T time periods every capital ki has to

be renewed.
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Skipping technical details, we report that the evolution of the market is

de�ned by a 2n-dimensional nonautonomous map Φ : Z+×R2n
+ ∋ (t,q,k) →

(q′,k′) ∈ R2n
+ , where Φ = (Φ1,Φ2, . . . ,Φ2n) with the components

q′i = Φi(t,q,k) =

{
Fw,ε(Qi, ki), σm(i, t) ̸= 0,

Gw,r,ε(Qi), σm(i, t) = 0,
(5.2a)

k′i = Φn+i(t,q,k) =

{
ki, σm(i, t) ̸= 0,(
1 +

√
w
r

)
Gw,r,ε(Qi), σm(i, t) = 0,

(5.2b)

for i = 1, n. The function σm : N× Z+ → Z+

σm(i, t) = (t−mi) mod T (5.3)

de�nes time periods at that the respective capital is worn out and these

periods are diversi�ed among agents depending on the parameter m ∈ Z+,

while T ∈ N is the �xed capital durability. If m = 0, all competitors renew

their capitals synchronously. The function Fw,ε : R+ × R+ → R+

Fw,ε(Q, k) =


k

√
Q
w −Q

k +
√

Q
w

=: fw(Q, k), Q ≤ 1

w
,

ε, Q >
1

w
,

(5.4)

with the parameter w ∈ R, w > 0, denoting the wage rate, represents the

optimal production size for the �xed value of capital and is referred to as the

�short run� function. And the function Gw,r,ε : R+ → R+

Gw,r,ε(Q) =


√
Q√

r+
√
w
−Q =: gw,r(Q), Q ≤ 1

(
√
r+

√
w)2
,

ε, Q > 1
(
√
r+

√
w)2
,

(5.5)

with the parameter r ∈ R, r > 0, denoting the capital rent, is called the �long

run� function and is used at the moment when the capital has to be renewed.

The parameter ε ∈ R+ represents a tiny stand-by output, which is supplied

in case of nonpro�table production instead of closing down completely. If
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ε = 0, the functions Fw,ε and Gw,r,ε are nonsmooth but continuous, while for

ε > 0 they both have a point of discontinuity at Q = 1
w and Q = 1

(
√
r+

√
w)2

,

respectively, since fw(
1
w , k) = gw,r

(
1

(
√
r+

√
w)2

)
= 0.

From the application viewpoint the balanced market is attained at the

so-called Cournot equilibrium, when all competitors are equal in size and

possibilities, and therefore, all produce the same amount denoted as q∗. From

q∗ = gw,r((n− 1)q∗) =

√
(n− 1)q∗√
r +

√
w

− (n− 1)q∗,

assuming q∗ ̸= 0, one obtains

q∗ =
n− 1

(
√
r +

√
w)2n2

. (5.6a)

Substituting (5.6a) into

q = fw((n− 1)q, k)

and solving for k implies

k∗ =

(
1 +

√
w

r

)
q∗ =

n− 1

n2
√
r(
√
r +

√
w)
. (5.6b)

Clearly, the values q∗ and k∗ de�ne a �xed point of Φ.

In general, concerning the �xed points of the map Φ, we can formulate

the following

Lemma 5.1. The map Φ has at most three �xed points:

E∗ = (q∗,k∗) = (q∗, . . . , q∗︸ ︷︷ ︸
n

, k∗, . . . , k∗︸ ︷︷ ︸
n

), (5.7)

E0 = (0, 0, . . . , 0︸ ︷︷ ︸
2n

), (5.8)

Eε = (qε, qε, . . . , qε︸ ︷︷ ︸
n

, kε, kε, . . . , kε︸ ︷︷ ︸
n

), (5.9)

where

qε = ε, kε =

(
1 +

√
w

r

)
ε. (5.10)

The points E∗ and E0 always exist, while the point Eε exists if either
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� (n− 1)εw > 1 or

� (n−1)εw < 1, (n−1)ε(
√
r+

√
w)2 > 1, and

√
r
√
n− 1 = n

√
w(

√
r+

√
w)

√
ε.

Proof. By derivation of q∗ and k∗, the point E∗ is a �xed point of Φ. For

qi = 0, i = 1, n, there is Qi = 0 and Fw,ε(0, k) = Gw,r,ε(0) = 0 for any

k ∈ R, which implies that E0 is always a �xed point.

For an arbitrary �xed point there must hold

qi = Gw,r,ε(Qi) = Fw,ε(Qi, ki),

ki =

(
1 +

√
w

r

)
Gw,r,ε(Qi), i = 1, n. (5.11)

At �rst suppose that Qi <
1

(
√
r+

√
w)2

< 1
w for all i = 1, n. Then the �rst

equality of (5.11) implies

qi = Qtot − cQ2
tot, i = 1, n, where Qtot =

n∑
i=1

qi. (5.12)

Summing up (5.12) over i gives the quadratic equation of Qtot, from which

one gets

Qtot = 0 or Qtot =
n− 1

n(
√
r +

√
w)
. (5.13)

The �rst solution corresponds to E0, while the second implies E∗.

Let us now consider the case when for some i there is Qi >
1√

r+
√
w
. Not

losing generality, we assume that it happens for i > n − l, for some l < n.

Then the equation (5.12) holds for i ≤ n − l, while for i > n − l, there is

qi = ε. Summing up all equations for qi again gives a quadratic equation of

Qtot:

(
√
r +

√
w)2(n− l)Q2

tot − (n− l + 1)Qtot − lε = 0. (5.14)

Solving (5.14), gives only one positive solution

Qtot =
n− l + 1 +

√
(n− l + 1)2 + 4(

√
r +

√
w)2εl(n− l)

2(
√
r +

√
w)2(n− l)

. (5.15)
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Substituting (5.15) into (5.12) implies for i = 1, n− l

qi =
(n− l)2 − (

√
(n− l + 1)2 + 4(

√
r +

√
w)2εl(n− l) + 1)2

4(
√
r +

√
w)2(n− l)2

< 0, (5.16)

The last case is when Qi >
1√

r+
√
w
for all 1 ≤ i ≤ n, which implies

qi = ε = qε, and hence, Qi = (n− 1)ε and ki =
(
1 +

√
w
r

)
ε = kε. First we

suppose that (n− 1)εw < 1. For the point Eε to be the �xed point we must

require that Fw,ε((n − 1)qε, kε) = ε, which implies the particular relation

between the parameters
√
r
√
n− 1 = n

√
w(

√
r+

√
w)

√
ε. If (n−1)εw > 1,

then Qi >
1
w for all i, and Eε is the �xed point of Φ.

Remark 5.2. In case when ε = 0, the �xed points E0 and Eε coincide.

Since the map Φ is nonautonomous, to study the stability of a �xed point

one has to consider a �nite composition of T respective functions Φ(t,q,k),

t = t0, t0 + T − 1, for some t0 ∈ Z+. Indeed, due to the form of the function

σm (5.3), at each t ∈ Z+ there can exist a set of indices It = {i1, i2, . . . , iK}
with 0 ≤ K ≤ n such that σm(t, ij) = 0, j = 1, K. If K = 0, then It = ∅
and σm(t, i) ̸= 0 for all i = 1, n. Since for each pair of coordinates (qi, ki),

the switching from the short run (Fw,ε and the identity function) to the long

run (Gw,r,ε and
(
1 +

√
w
r

)
Gw,r,ε) appears every T steps, the set of indices

It changes periodically with the same period. Hence, the composition of

T consequent iterates of Φ is enough to obtain the stability condition for

an arbitrary �xed point Ē(q̄, k̄) with q̄ = (q̄1, . . . , q̄n), k̄ = (k̄1, . . . , k̄n).

Namely, one has to compute the eigenvalues of the matrix product

DΦ(q̄, k̄, t0 + T − 1) ·DΦ(q̄, k̄, t− 0+ T − 2) · . . . ·DΦ(q̄, k̄, t0), (5.17)

where DΦ denotes the Jacobian matrix of Φ.
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In the case It = ∅, the Jacobian matrix is given by

DΦ(q̄, k̄, t) =: J∅ =



0 a12 . . . a1n d1 0 . . . 0

a21 0 . . . a2n 0 d2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1 an2 . . . 0 0 0 . . . dn

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 1


, (5.18)

where

aij =
∂F (Q̄i, k̄i)

∂qj
= −

k̄i

(
Q̄i

√
w + 2k̄iw

√
Q̄i − k̄i

√
w
)

2
(√

Q̄i + k̄
√
w
)2√

Q̄i

, j ̸= i

di =
∂F (Q̄i, k̄i)

∂ki
=
Q̄i

(
1−

√
Q̄iw

)
(√

Q̄i + k̄i
√
w
)2 , i = 1, n.

(5.19)

Suppose It = {i1, . . . , ij, . . . , iK}, K ≤ n, that is, σm(t, ij) = 0, j = 1, K.

The action of the map Φ for the coordinate qij switches from the short run

function Fw,ε to the long run function Gw,r,ε, and for kij from the identity

function to
(
1 +

√
w
r

)
Gw,r,ε. The Jacobian matrix becomes

DΦ(q̄, k̄, t) =: JIt =

(
AIt DIt

BIt IIt

)
(5.20)

with

AIt =



0 a12 . . . a1(ij−1) a1ij a1(ij+1) . . . a1n

a21 0 . . . a2(ij−1) a2ij a2(ij+1) . . . a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bij1 bij2 . . . bij(ij−1) 0 bij(ij+1) . . . bijn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1 an2 . . . an(ij−1) anij an(ij+1) . . . 0


, (5.21)
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BIt =



0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µbij1 µbij2 . . . µbij(ij−1) 0 µbij(ij+1) . . . µbijn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0


, (5.22)

where µ = 1 +
√

w
r ,

DIt = diag{d1, d2, . . . , dij−1, 0, dij+1, . . . , dn}, (5.23)

and

IIt = diag{1, 1, . . . , 1, 0
ij
, 1, . . . , 1} (5.24)

where aij and di are given by (5.19) and

bij =
∂G(Q̄i)

∂qj
=

1

2
√
cQ̄i

− 1, j = 1, n, j ̸= i. (5.25)

In other words, the matrix JIt is obtained from J∅ by replacing the rows ij

and n+ ij, j = 1, K with(
bij1 bij2 . . . bij(ij−1) 0 bij(ij+1) . . . bijn 0 0 . . . 0

)
and(

µbij1 µbij2 . . . µbij(ij−1) 0 µbij(ij+1) . . . µbijn 0 0 . . . 0
)
,
(5.26)

Then for the appropriate T successive iterates of the map Φ starting from

the time t0, the Jacobian matrix takes the form

JItL · JtL−tL−1−1
∅ · . . . JIt2 · J

t2−t1−1
∅ · JIt1 · J

t1−t0
∅ (5.27)

with Itj ∩ Itl = ∅, j ̸= l, ∪L
j=1Itj = {1, 2, . . . , n}, L ≤ N , tL = t0 + T − 1.

Lemma 5.3. The �xed point E0 cannot be stable.
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Proof. In general, the coe�cients aij, bij and di at E0 are unde�ned. Let us

take qi = O(δ), ki = O(δ) and consider δ → 0+, then we have

lim
δ→0+

aij = 0 and lim
δ→0+

di = 1, i, j = 1, n, i ̸= j.

However, there is

lim
δ→0+

bij = ∞, i, j = 1, n, i ̸= j.

Consider t such that It = {i0}. The limit of the product J∅|δ→0 · JIt|δ→0 for

some 1 ≤ i0 ≤ n results in

(
B̃It IIt
B̃It IIt

)
with B̃It =



0 0 . . . 0
i0

0 0 . . . 0

0 0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∞ ∞ . . . ∞ 0 ∞ . . . ∞
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0

 i0
.

Due to the form of the matrix above, the orbit of the map Φ linearised at

E0 becomes unbounded in all directions. The same conclusion follows if for

some t the set of indices It contains more than one element.

Remark 5.4. In case ε > 0, if the �xed point Eε exists, it is superstable,

since its Jacobian matrix is a zero matrix.

Note that the points E0 and Eε are not interesting from the application

viewpoint, since their economic interpretations correspond to a completely

empty and an almost empty market, respectively.

Let us consider the �xed point E∗ and recall that it is associated with

the economic Cournot equilibrium, which means that all competitors in the

market are completely equal (in possibilities and size). Hence, it is impor-

tant to derive the stability conditions for E∗. The elements of the Jacobian
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matrices for all i = 1, n, j = 1, n attain the following form

aij = − n− 2

2
(√

r
wn+ 1

)
(n− 1)

=: a,

di =
rn

w
(√

r
wn+ 1

) (√
r
w + 1

) =: d, and

bij = − n− 2

2(n− 1)
=

(√
r

w
n+ 1

)
a =: b.

(5.28)

Taking into account the forms of the Jacobian matrices J∅ (5.18) and

JIt (5.20)�(5.24), we surmise that the stability of the �xed point E
∗ depends

essentially on the value of the capital lifetime T . The simplest cases are

obtained when T takes limit values, i. e., T = 1 and T → ∞. The former

case implies σm(i, t) = 0, i = 1, n, t ∈ Z+, whatever the parameter m is. It

corresponds to using only the long run function Gw,r,ε and was considered in

[210, 211]. In particular, the following result has been proved:

Proposition 5.5 (Puu). In the long run dynamics, the Cournot equilibrium

is destabilised if n > 4.

In terms of the map Φ this result can be formulated as

Corollary 5.6. Consider the map Φ with T = 1. Whatever the other pa-

rameters are, the �xed point E∗ is stable if n < 4, neutrally stable if n = 4,

and unstable if n > 4.

The other limit case T → ∞ implies σm(i, t) ̸= 0, i = 1, n, t ∈ Z+,

whatever the parameter m is, and is associated with using only the short run

function Fw,ε.

Theorem 5.7. Consider the map Φ with T → ∞. The �xed point E∗ is

stable if n ≤ 4 or n > 4 and w(n− 4)2 < 4n2r.

Proof. Since at every iteration only the short run function Fw,ε is used, the

Jacobian matrix is always J∅. It is a block upper triangular matrix, and

hence, its eigenvalues are the union of eigenvalues of two diagonal blocks.

The lower diagonal block is the identity matrix resulting in the eigenvalues
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νi = 1, i = n+ 1, 2n. The eigenvalues of the upper block are νi = −a,
i = 1, n− 1, and νn = (n− 1)a, where a is given in (5.28).

Due to using only the function Fw,ε, the last n coordinates never change,

i. e., once set ki = k∗, i = 1, n, remain as such forever. Therefore, the �xed

point E∗ can be only neutrally stable. Let us check the stability with respect

to the �rst n coordinates.

For n = 2, there is a = 0, while a < 0 for n > 2. The former case

immediately implies stability of E∗. Suppose n > 2 and consider the multiple

eigenvalue νi = −a. We must require that −a < 1. In fact, even stronger

inequality −a < 1
2 holds, since

1 +
r

w
n > 1 ⇒ 1

1 + r
wn

< 1 and
n− 2

n− 1
< 1.

For the remaining eigenvalue νn = (n− 1)a < 0, there must hold

νn = − n− 2

2
(√

r
wn+ 1

) > −1. (5.29)

By transformation of (5.29), for n ≤ 4 we get

2n
r

w
> 0 ≥ n− 4 ⇒ νn > −1.

For n > 4, we obtain the relation for r and w in the form

2n
√
r > (n− 4)

√
w,

which guarantees νn > −1.

Now, we assume T = 2, which is more realistic from the application

viewpoint. In case of odd m, regardless of its value, at each moment t there

are multiple coordinates that make a jump from the short to the long run,

namely, those having odd an even indices alternatingly.

Theorem 5.8. Consider the map Φ de�ned in (5.2), (5.3) with T = 2 and

an odd m. The �xed point E∗

� is stable for all r > 0, w > 0 if n ≤ 4;
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� is stable for w ≤ 100r if n = 5;

� is stable for w ≤ 36r if n = 6;

� is unstable if n ≥ 7.

Proof. For the �xed pointE∗ its Jacobian matrix is of the form Ĵ = Jodd·Jeven,
where the i-th row of the matrix Jodd is

Joddij =



b, i = 1, n, i is odd, j = 1, n, j ̸= i,(
1 +

√
w
r

)
b, i = n+ 1, 2n, i is odd, j = 1, n, j ̸= i− n,

a, i = 1, n, i is even, j = 1, n, j ̸= i,

d, i = 1, n, i is even, j = n+ i,

1, i = n+ 1, 2n, i is even, j = i,

0, otherwise,

(5.30)

and the i-th row of the matrix Jeven is

Jevenij =



b, i = 1, n, i is even, j = 1, n, j ̸= i,(
1 +

√
w
r

)
b, i = n+ 1, 2n, i is even, j = 1, n, j ̸= i− n,

a, i = 1, n, i is odd, j = 1, n, j ̸= i,

d, i = 1, n, i is odd, j = n+ i,

1, i = n+ 1, 2n, i is odd, j = i,

0, otherwise.

(5.31)

Here a, d, and b are given by (5.28).

Let us �nd the eigenvalues of the matrix Ĵ explicitly. First, it is easy to

show that there will be ν1 = ν2 = . . . = νn = 0 and νn+1 = . . . = ν2n−2 =

b(a−
(
1 +

√
w
r

)
d). To �nd the last two eigenvalues we use the fact that

i=2n∑
i=1

νi = tr Ĵ,

i=2n∑
i=1

j=2n∑
j=i+1

νiνj =
i=2n∑
i=1

j=2n∑
j=i+1

Ĵ
(
i j
i j

)
,

(5.32)
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where Ĵ
(
i j
i j

)
are the principal second order minors of Ĵ, namely, in notation

Ĵ = {Ĵij}2ni,j=1,

Ĵ
(
i j
i j

)
= det

(
Ĵii Ĵij

Ĵji Ĵjj

)
.

Solving the system (5.32) for ν2n−1, ν2n we get that

ν2n−1,2n = x±√
y,

For the sake of shortness, we introduce the notation α =
√

w
r , and obtain

for an even n = 2s, s ∈ N,

x =
(s− 1)2(2s4 + 4(α− 2)s3 + 2(α2 − 4α + 2)s2 − 2α(α− 2)s+ α2)

(2s− 1)2(2s+ α)2
,

y =
4s2(s− 1)4(s+ α)2

(2s− 1)4(2s+ α)4

(
s4 + 2(α− 4)s3 + (α2 − 8α + 4)s2

− 2α(α− 2)s+ α2
)

and for an odd n = 2s+ 1

x =
(2s− 1)2

32s2(2s+ 1 + α)2

(
4s4 + 8(α− 1)s3 + (4α2 − 4α− 11)s2

− (2α + 3)s+ α(α + 1)
)
,

y =
(2s− 1)2(2s+ 1)2

322s4(2s+ 1 + α)4

(
16s8 + 32(2α− 2)s7 + 8(12α2 − 36α− 15)s6

+ 16(4α3 − 20α2 − 12α + 3)s5 + (16α4 − 160α3 − 32α2 + 176α + 121)s4

− 2(16α4 − 32α3 − 84α2− 66α− 29)s3

+ (24α4 + 32α3 + 6α2 + 6α + 9)s2 − 2α(α + 1)(4α2 + 6α + 3)s

+ α2(α + 1)2
)
.

It is easy to show that for any α > 0 and s ∈ N, there is 0 < b(a −(
1 +

√
w
r

)
d) < 1. Hence, there remains the inequality

max{|x±√
y|} < 1. (5.33)
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Solving (5.33) directly for s is not possible. However, it is possible to show

that for n = 2s, s ≥ 6 and n = 2s+ 1, s ≥ 5, there is

∂x(s, α)

∂s
> 0 and x(s, 0) > 1. (5.34)

Similarly, for n = 2s, s ≥ 8 and n = 2s+ 1, s ≥ 7, there is

∂y(s, α)

∂s
> 0 and y(s, 0) > 0. (5.35)

Combining (5.34) and (5.35) one can see that |x +
√
y| > 1 for n ≥ 15.

The remaining values of n are considered directly, and by this we obtain the

statement of the Theorem.

As follows from (5.35), there is y(s, α) < 0 for s and α being small

enough. It means that for these values the �xed point E∗ is a focus. If E∗ is

an unstable focus, in its neighbourhood an attracting invariant curve Γ can

exist. This is depicted in Figs. 5.1. As one can see, for smaller α = 1.2 (see

the panel a) Γ is smooth. With increasing α the curve Γ starts having smooth

oscillations in its shape (see the panel b). And �nally Γ disappears and

an attractor becomes chaotic (see the panel c). These transformations are

rather similar to those, described in Secs. 4.2 and 4.3, for the two-dimensional

case, when a �xed point loses stability due to a supercritical Neimark�Sacker

bifurcation. Also in the current higher-dimensional case, such evolution of

the attractor is related to the critical set CS.

Even if the map Φ is nonautonomous, both functions Fw,ε and Gw,r,ε,

de�ning its components, have one unimodal branch with a local maximum

and one �at branch given by ε. The set CS−1 in this case is de�ned by the

extrema of fw and gw,r and the sets of discontinuity given by
1
w and 1

(
√
r+

√
w)2

.

Namely,

CS−1 = ∪n
i=1 {(q,k) : Qi = Qe(ki)}

⋃
∪n
i=1

{
(q,k) : Qi =

1

4(
√
r +

√
w)2

}⋃
∪n
i=1

{
(q,k) : qi =

1

w

}
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⋃
∪n
i=1

{
(q,k) : qi =

1

(
√
r +

√
w)2

}
, (5.36)

where

Qe(ki) = 2(
√
kiw −

√
kiw + 1)ki

√
kiw + ki (5.37)

is the point of maximum of fw(Q, ki) over Q. Then the critical set is

CS = Φ(CS−1) = ∪n
i=1

{
(q,k) : qi = fw

(
Qe(ki), ki

)}⋃
∪n
i=1

{
(q,k) : qi =

1

4(
√
r +

√
w)2

}⋃
∪n
i=1 {(q,k) : qi = 0}⋃

∪n
i=1 {(q,k) : qi = ε} . (5.38)

Recall that for a border subset given by points of discontinuity, one obtains

points of the critical set by taking two �rst rank images using di�erent de-

terminations of the map at both sides of this border subset.

In Fig. 5.1b, one can see that the invariant curve Γ is tangent to the

part of CS de�ned by q2 = ε (this also means that Γ has intersection with

the respective part of CS−1). With increasing α further, the slope of Γ at

the intersection point with CS−1 may become collinear to the eingenvector

corresponding to zero eigenvalue of Γ, implying Γ being nonsmooth. Later

due to a homoclinic tangle the invariant curve Γ transforms to the chaotic

attractor, visible in Fig. 5.1c.

Figure 5.1: The section (q1, q2) of the phase space of Φ for T = 2 and n = 7. The other

parameters are ε = 10−6, r = 0.25, and (a) w = 0.3 (α = 1.2); (b) w = 0.5 (α = 2); (c)

w = 1.25 (α = 5).



260

5.3. A 3n-dimensional map having a �at part

We again consider an abstract market with n competitors, each being de�ned

by two variable quantities, the output qi and the capital ki. However, now

we take into account the fact that the capital lifetime is, in reality, not

constant and usually depends on how heavily the respective equipment is

being utilised. To this aim, for each competitor we introduce an additional

variable Ti ∈ R, representing the remaining time during which the old capital
is still usable (in other words, the current individual lifetime of the capital)

[170, 174, 189]. At each iteration we allow this variable to decrease according

to a certain law and to indicate the reinvestment moment when becoming

negative.

In such a way, the state space becomes 3n-dimensional with the state

vector (q,k,T) ∈ R2n
+ ×R, q = (q1, q2, . . . , qn) ∈ Rn

+, k = (k1, k2, . . . , kn) ∈
Rn

+, T = (T1, T2, . . . , Tn) ∈ Rn. The evolution of the so constructed market

model is described by a 3n-dimensional map Φ : R2n
+ × R ∋ (q,k,T) →

(q′,k′,T′) ∈ R2n
+ × R, where Φ = (Φ1,Φ2, . . . ,Φ3n) with the components:

q′i = Φi(q,k,T) =

{
Fw,ε(Qi, ki), Ti > 0,

Gw,r,ε(Qi), Ti ≤ 0,
(5.39a)

k′i = Φn+i(q,k,T) =

{
ki, Ti > 0,(
1 +

√
w
r

)
Gw,r,ε(Qi), Ti ≤ 0,

(5.39b)

T ′
i = Φ2n+i(q,k,T) =

 Ti − κqi−
√
r√

r+
√
w
ki, Ti > 0,

T0, Ti ≤ 0,
(5.39c)

for i = 1, n. The functions Fw,ε and Gw,r,ε are de�ned in (5.4) and (5.5),

respectively, Qi is given by (5.1), the new parameter T0 ∈ N denotes the

global durability of the capital, the base κ ∈ R, κ ≥ 1, while w, r, and ε are

as before.

The value qopti :=
√
r√

r+
√
w
ki is the optimal output in the following sense: as

long as the competitor produces less than qopti , it would be advantageous to
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choose a lower amount of capital, while if more than qopti is produced, it would

be bene�cial to choose a higher amount of capital. Then the expression for

changing Ti in (5.39c) means that if the current output of the i-th competitor

qi is equal to the optimal output q
opt
i , then the capital durability Ti decreases

by one. If qi < qopti then Ti decreases slower and if qi > qopti then Ti decreases

quicker. In other words, the more intensively an agent uses their capital

equipment, the quicker it depreciates. As soon as Ti ≤ 0, it indicates that

the capital has been worn out and the reinvestment is needed. Note also

that in practice we always consider Ti ≤ T0, since the values Ti > T0 are

non-feasible from the application viewpoint. Moreover, once having become

less than T0, the coordinate Ti cannot exceed T0 any more.

First we notice that the parameter w only scales the parameter space.

Lemma 5.9. The map Φ is topologically conjugate to the map Φ̃ : R2n
+ ×

Rn ∋ (q,k,T) → (q′,k′,T′) ∈ R2n
+ × Rn, Φ̃ = (Φ̃1, Φ̃2, . . . , Φ̃3n) such that

for i = 1, n

q′i = Φi(q,k,T) =

{
F1,ε̃(Qi, ki), Ti > 0,

G1,r̃,ε̃(Qi), Ti ≤ 0,
(5.40a)

k′i = Φn+i(q,k,T) =

 ki, Ti > 0,(
1 +

√
1
r̃

)
G1,r̃,ε̃(Qi), Ti ≤ 0,

(5.40b)

T ′
i = Φ2n+i(q,k,T) =

 Ti − κ̃qi−
√
r̃√

r̃+1
ki, Ti > 0,

T0, Ti ≤ 0,
(5.40c)

where r̃ = r
w , ε̃ = wε, κ̃ = κ

1
w .

Proof. Consider the homeomorphism h : R3n → R3n de�ned as

h(q,k,T) =

(
1

w
q,

1

w
k,T

)
. (5.41)
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Having regard to

k

w

√
Q

w2
− Q

w√
Q

w2
+ k

w

≡ 1

w

(
k

√
Q−Q√
Q+ k

)

and (√
Q

(
√
r +

√
w)w

− Q

w

)
≡ 1

w

(√
wQ√
r +

√
w

−Q

)
,

we conclude that

Fw,ε

(
Q

w
,
k

w

)
≡ 1

w
F1,wε(Q, k) and Gw,r,ε

(
Q

w

)
≡ 1

w
G1, rw ,wε(Q). (5.42)

The equation (5.42) implies for i = 1, 2n

Φi ◦ h (q,k,T) = h ◦ Φ̃i(q,k,T). (5.43)

For the last n coordinates we notice that

q

w
−

√
r√

r +
√
w

k

w
≡ 1

w

(
q −

√
r̃√

r̃ +
√
1
k

)
,

which implies (5.43) also for i = 2n+ 1, 3n.

Remark 5.10. The map Φ̃ can be also obtained from Φ by setting w = 1.

For the sake of notation simplicity, without loss of generality, everywhere

below we consider the original map Φ but with the �xed w = 1.

One of the peculiarities of the map Φ is that it can not have any �xed

points. Indeed, due to the form of the function de�ning the evolution of Ti,

i = 1, n, the last n coordinates continue to change. For a generic orbit, Ti

change non-regularly. However, for particular values of qi and ki, i = 1, n,

the vector T changes periodically.

Lemma 5.11. Consider the map Φ de�ned in (5.2) with w = 1 and

consider a point P ∗ = (q∗,k∗,T) with q∗ = (q1, . . . , qn) = (q∗, . . . , q∗),
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k∗ = (k1, . . . , kn) = (k∗, . . . , k∗), where q∗, k∗ are given in (5.6), and

T = (T1, . . . , Tn) such that Ti ∈ N, Ti ≤ T0, i = 1, n. Every such point

is periodic with the period T0 + 1.

Proof. As k∗ =
(
1 + 1√

r

)
q∗, if qi = q∗ and ki = k∗, then the exponent

in (5.39c) equals zero for i = 1, n. Thus, each Ti decreases exactly by one

at every iteration. It means that Ti assumes exactly T0 + 1 values, which

implies the statement of the Lemma.

The Lemma 5.11 implies that for the map Φ there exist n di�erent (T0+

1)-cycles corresponding to the economic Cournot equilibrium. Below we

refer to these cycles as CE-cycles. Their stability properties depend on how

much synchronised the competitors are in performing the renewal of their

capitals (i. e., how many competitors switch from the short run to the long

run function at the same moment). Such a synchrony can be formalised

through de�ning the so-called reinvestment synchronisation manifolds.

De�nition 5.12. Let us consider sets of indices Ij = {ij1, i
j
2, . . . , i

j
lj
}, ijk ∈

{1, 2, . . . , n} := I, k = 1, lj, j = 1,m, m < n, such that Ij ∩Ik = ∅, j ̸= k,

and ∪m
j=1Ij = I,

∑m
j=1 lj = n. The manifold

MI1,I2,...,Im = {(q,k,T) : Ti11 = Ti12 = · · · = Ti1l1
,

Ti21 = Ti22 = · · · = Ti2l2
, . . . , Tim1 = Tim2 = · · · = Timlm} (5.44)

induced by Ij is called the reinvestment synchronisation manifold.

Since the map Φ is qualitatively invariant with respect to the ar-

bitrary renumbering of the elements of the three state vectors, namely,

asymptotic dynamics of the maps Φ(q1, . . . , qn, k1, . . . , kn, T1, . . . , Tn) and

Φ(qi1, . . . , qin, ki1, . . . , kin, Ti1, . . . , Tin), where {i1, . . . , in} is some permuta-

tion of the set {1, . . . , n}, is qualitatively the same. Therefore, it is enough

to consider reinvestment synchronisation manifolds given by

T1 = . . . = TK1
, TK1+1 = . . . = TK2

, . . . , TKm−1+1 = . . . = Tn, (5.45)
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with m < n and some K1 < K2 < . . . < Km−1. The case m = n corresponds

to a point with all Ti's being di�erent.

The simplest reinvestment synchronisation manifold corresponds to m =

1, when all Ti's are equal. The respective CE-cycle then belongs to the

manifold

MC = {(q,k,T) : q1 = . . . = qn, k1 = . . . = kn, T1 = . . . = Tn}, (5.46)

which we call the full synchronisation manifold. The manifoldMC is, clearly,

invariant under the action of Φ. The dynamics of Φ restricted toMC can be

reduced to a three-dimensional map Ψ : R2
+ ×R ∋ (q, k, T ) →

(
Ψ1(q, k, T ),

Ψ2(q, k, T ), Ψ3(q, k, T )
)
∈ R2

+ × R de�ned as follows

Ψ1(q, k, T ) =

 F1,ε((n− 1)q, k), T > 0,

G1,r,ε((n− 1)q), T ≤ 0,

Ψ2(q, k, T ) =


k, T > 0,(
1 +

1√
r

)
G1,r,ε((n− 1)q), T ≤ 0,

Ψ3(q, k, T ) =

 T − κq−
√
r√

r+1
k, T > 0,

T0, T ≤ 0.

(5.47)

The characteristic feature of the map Ψ (5.47) is presence of the ��at

branch� de�ned by the plane Πε = {(q, k, T ) : q = ε}. In case when there

exists an absorbing area that does not include points from Πε, the asymptotic

dynamics of Ψ is de�ned by unimodal branches F1 (5.4) and G1,r (5.5) only.

The related bifurcation sequences have much in common with those observed

in a the class of unimodal maps. In particular, for a unimodal map, with

changing its bifurcation parameter so that the maximum value of the map

smoothly increases, one can observe periodic windows appearing according

to Sharkovsky ordering. Though, for the map Ψ, due to the form of its third

component Ψ3, every period from this ordering must be multiplied by T0+1.
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If the trapping area includes a part of the plane Πε, the bifurcation structure

of the related parameter space will be completely di�erent.

Lemma 5.13. The domain

Π =

[
0,

1

4(1 +
√
r)2

]
×
[
0,

1

4
√
r(1 +

√
r)

]
× [−κ

1
4(1+

√
r)2 , T0] (5.48)

is the absorbing area for the map Ψ. If n ≤ 5, then Π ∩ Πε = ∅.

Proof. First we notice that

lim
k→∞

max
q∈R+

F1,ε((n− 1)q, k) = +∞ (5.49)

and for k1 > k2 there is

max
q∈R+

F1,ε((n− 1)q, k1) > max
q∈R+

F1,ε((n− 1)q, k2).

On the other hand,

max
q∈R+

G1,r,ε((n− 1)q) =
1

4(1 +
√
r)2

. (5.50)

It means that the value of k does not exceed

k ≤ 1

4
√
r(1 +

√
r)

=: kmax. (5.51)

Hence, the value of q does not exceed

q ≤ max
q∈R+,k∈[0,kmax]

F1,ε((n− 1)q, k) =
1

4(1 +
√
r)2

=: qmax. (5.52)

Finally, if T ≤ T0 it can not exceed T0 and it also can not fall below −κqmax.

For n ≤ 5, there is

(n− 1)q ≤ 1

4(1 +
√
r)2

< 1, (5.53)

and, at each iteration of Ψ, for both functions F1,ε and G1,r,ε only the uni-

modal branch is used.
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If n ≥ 6, the condition (5.53) does not hold, and therefore some orbits

may have points on the plane Πε. In Fig. 5.2a a typical one-dimensional

bifurcation diagram for the map Ψ (5.47) is plotted with n = 6 and T0 = 2

(the panel b is a magni�cation of the rectangular area outlined in the panel

a, the panel c contains further magni�cation of the region outlined in b).

The numbers at the top of the graph denote periods of the underlying cycles.

As one can see, the bifurcation structure is self-similar and has in�nitely

many �spider-like� nodes, more and more of which show up when zooming.

These patterns consist of the cycles which appear and disappear through a

border collision bifurcation and all have a point belonging to the plane Πε.

As expected, every period is a multiple of T0 + 1 = 3 but the principle,

Figure 5.2: One-dimensional bifurcation diagram for the map Φ with T0 = 2, ε = 0.0001,

κ = 1. The graph (b) shows a magni�cation of the rectangle outlined in (a), and (c)

presents the further magni�cation of the area outlined in (b).

according to which period changes with the varying parameter, is not so

obvious. From Figs. 5.2, it is seen that on one side of each �spider-node� the

cycle periods are odd, and on the other side they are even, more precisely,

3 · 2s and 3 · (2s + 1), s = 1, 2, . . .. However, it is also noticeable that

between any two nodes there is another one (in fact, in�nitely many ones),

and therefore the sequences of odd and even periods are highly intermingled.

As a result, it is di�cult to predict the asymptotic dynamics of the system,

as small changes in parameter values may cause abrupt modi�cation of the

map orbits.

In contrast to the full synchronisation one may also consider the case
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when the competitors form smaller groups�clusters�inside each of that the

renewal of capitals is synchronised. For that one needs to choose the ap-

propriate initial inactivity times T0, e. g., with T0
1 = (2, 4, 6, 8, 10, 12) or

T0
2 = (2, 4, 5, 7, 8, 10). In the �rst case, after a small number of iterates

we observe three groups of two synchronised �rms, while in the second one,

two groups of three synchronised �rms are formed. Hence, an initial condi-

tion may be taken already on the appropriate synchronisation manifold, like

T̃0
1 = (0, 0, 1, 1, 2, 2) and T̃0

2 = (0, 0, 0, 2, 2, 2).

The typical two-dimensional bifurcation diagrams in the (r, ε) parameter

plane, for n = 6, T0 = 2 and the two initial vectors T̃0
1 = (0, 0, 1, 1, 2, 2) and

T̃0
2 = (0, 0, 0, 2, 2, 2), are plotted in Figs. 5.3. Note, that the region related

to the Cournot equilibrium is denoted by 1, although the periodicity of this

solution is 3, because the coordinates Ti always change cyclically. As one

can see, for larger r-values the bifurcation scenarios in both cases are similar

and do not depend on ε, meaning that these solutions do not contain any

points on the �at part with Q = nε. On the contrary, for smaller r-values

the dynamics in Fig. 5.3a and in Fig. 5.3b are totally di�erent.

5.4. A 3n-dimensional map with an adaptive scheme

In this section we consider a 3n-dimensional map in which for updating the

�rst 2n-variables a so-called adaptation scheme is used [66, 67]. The state

point is (q,k,T), q = (q1, q2, . . . , qn) ∈ Rn
+, k = (k1, k2, . . . , kn) ∈ Rn

+, T =

(T1, T2, . . . , Tn) ∈ Rn
+, and a map Φ : R3n

+ ∋ (q,k,T) → (q′,k′,T′) ∈ R3n
+ ,
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Figure 5.3: Typical two-dimensional bifurcation diagrams in the (r, ε) parameter plane.

(a) T̃0
1 = (0, 0, 1, 1, 2, 2); (b) T̃0

2 = (0, 0, 0, 2, 2, 2). n = 6, T0 = 2.

where Φ = (Φ1,Φ2, . . . ,Φ3n) with the components de�ned as:

q′i = Φi(q,k,T) =

 Fw,θ(qi, Qi, ki), Ti > 0,

Gw,r,θ(qi, Qi), Ti ≤ 0,

k′i = Φn+i(q,k,T) =

 ki, Ti > 0,(
1 +

√
w
r

)
Gw,r,θ(Qi), Ti ≤ 0,

T ′
i = Φ2n+i(q,k,T) =

 Ti − κqi−(1+
√

w
r )ki, Ti > 0,

T0, Ti ≤ 0,

i = 1, n, (5.54)

where Qi is given by (5.1), the functions Fw,θ(q,Q, k) and Gw,r,θ(q,Q) are

Fw,θ (q,Q, k) :=

 θfw(Q, k) + (1− θ) q, Q ≤ 1
w ,

(1− θ) q, Q > 1
w .

(5.55)
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Gw,r,θ(q,Q) =

 θgw,r(Q) + (1− θ) q, Q ≤ 1
c ,

(1− θ) q, Q > 1
c ,

(5.56)

the global capital lifetime T0 ∈ N, the adaptation parameter θ ∈ (0, 1), and

the other parameters are as before.

By the arguments similar to those expressed in the proof of the

Lemma 5.9, we can show that Φ given in (5.54)�(5.56) is topologically conju-

gate to the map with setting w = 1. And this fact allows for economic inter-

pretation. Indeed, the capital rent r and the wage rate w, due to de�nition

of the model, are not independent, and it is only their ratio that in�uences

the asymptotic solutions. As capital is our only �xed input, labour is our

only variable input, the price ratio r/w represents just the �xed to variable

input unit cost which is constant over time.

As it is shown below, asymptotic dynamics of the map Φ (in particular,

the stability of the Cournot equilibrium market state) depends crucially on

how much synchronous the competitors are in decision to renew their capitals.

In other words, it is essential how many competitors make the investment

(choose long run branch Gw,r,θ) in each time period. However, one should

keep in mind that the last variables Ti, i = 1, n, denoting the remaining

capital lifetimes change, in general, in a non-regular way according to (5.54).

Hence, the number of reinvesting �rms may also change non-regularly. To

formalise this we de�ne a sequence of integers

nI := (n1, n2, . . . , nt, . . .), 0 ≤ nt ≤ n, t = 1, 2, . . . , (5.57)

such that n1 �rms use the long run branch (5.56) in the period t = 1, n2 of

them are in the long run for t = 2, and so on. The value nt = 0 means that

all �rms use the short run branch (5.55).

For instance, let n = 6, T0 = 5, and suppose all the �rms synchronise

their reinvestment periods putting T 0
i = T 0

j = 0, i ̸= j. Then in the �rst

time period t = 1 the number of reinvesting �rms is n1 = n = 6, while for
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consecutive T0 = 5 periods they are n2 = . . . = n6 = 0. Therefore we get

nI = (6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, . . .), where between two successive sixes

there are always �ve zeros. In other words, the sequence nI consists of a

repeated pattern (6, 0, 0, 0, 0, 0).

In such a case, when nI = (nl, . . . , nm, nl, . . . , nm, . . .) with a repeated

sub-sequence (nl, . . . , nm) we put, for sake of shortness, nI = (nl, . . . , nm)

and refer to the related orbit as an orbit of type (nl, . . . , nm) or simply

(nl, . . . , nm)-orbit. For the example given right above the orbit is of type

(6, 0, 0, 0, 0, 0).

Moreover, since the sequence (nl, . . . , nm) is repeated endlessly, the types

(nl+1, nl+2, . . . , nm, nl) and (nl, . . . , nm) are considered to be equivalent.

Thus, the orbit of type (6, 0, 0, 0, 0, 0) is also of type (0, 6, 0, 0, 0, 0), or of

type (0, 0, 6, 0, 0, 0), etc. Similarly, the orbit of type (4, 0, 2, 0, 0, 0) is also of

type (0, 2, 0, 0, 0, 4), or of type (2, 0, 0, 0, 4, 0), etc. On the contrary, the orbit

of type (4, 0, 0, 2, 0, 0) is not equivalent to the orbit of type (4, 0, 2, 0, 0, 0).

Note also that if κ = 1 then the remaining lifetimes Ti, i = 1, n, de-

crease exactly by one in every period while being positive and are reset to

T0 when becoming zero. This implies that the last n variables of Φ (the

vector T) change all the time periodically with the period T0 + 1. Hence,

the parameter value κ = 1 is particular, because the initial values T 0
i de-

�ne immediately the type of the related orbit. For instance, let n = 6,

T0 = 2, T0 = (2, 1, 1, 1, 2, 1). Then the vector of remaining capital life-

times T will jump cyclically between three di�erent vectors (1, 0, 0, 0, 1, 0),

(0, 2, 2, 2, 0, 2), and (2, 1, 1, 1, 2, 1). The resulting orbit is, clearly, of the type

(4, 2, 0), regardless to how qi and ki change with time.

One should, however, keep in mind that in general case the sequence nI

is non periodic. For instance, if the orbit is chaotic.

Let us denote the set of parameters of the map Φ as P = {r, θ, κ, T0, n}.
As the �rst step in analysing asymptotic dynamics of the orbits of Φ, we

consider the case where all the �rms start production at the same time and
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at the same level, i. e., , T 0
i = 0, q0i = q0, k0i = k0, i = 1, n. The manifold

∆ := {q1 = . . . = qn = q, k1 = . . . = kn = k, T1 = . . . = Tn = T} (5.58)

is invariant under the action of the map Φ, and we can study the dynamics

of Φ reduced to ∆. The restriction of Φ to ∆ is the map Ψ : R3 → R3 which

is de�ned as (q′, k′, T ′) = Ψ ((q, k, T )) with

q′ =

{
Fw,θ(q, (n− 1)q, k), T > 0,

Gw,r,θ(q, (n− 1)q), T ≤ 0,

k′ =

{
k, T > 0,(

1 +
√

w
r

)
Gw,r,θ(q, (n− 1)q), T ≤ 0,

T ′ =

{
T − κq−(1+

√
w
r )k T > 0,

T0, T ≤ 0,

(5.59)

where Fw,θ given by (5.55) is related to the short run branch of Ψ, while

Gw,r,θ given by (5.56) corresponds to the long run branch.

Consider a point (q∗, k∗, T ) where q∗ and k∗ are de�ned in (5.6a)

and (5.6b), respectively, and T ≤ T0 is taken arbitrarily. Due to de�ni-

tion, under action of Ψ the �rst two variables are �xed as q∗ and k∗, while

the last variable T still continue to change at each iteration. Moreover, since

k∗ =
(
1 +

√
w
r

)
q∗, the di�erence q∗ −

(
1 +

√
w
r

)
k∗ equals zero, and there-

fore at each iteration the value of T decreases exactly by one. This implies

that for any T ≤ T0 the point (q
∗, k∗, T ) is (T0 + 1)-periodic. Indeed, over

T0 consecutive periods (while T > 0) the short run branch of Ψ is applied,

and in the T0 + 1 period the long run branch of Ψ is used.

To derive the local stability condition for the point (q∗, k∗, T ) inside the

set ∆ we compute the related Jacobian matrices for the short and long run

branches, respectively,

JS =

 a11 a12 0

0 1 0

a31 a32 1

 and JL =

 b11 0 0

b21 0 0

0 0 0

 ,
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where

a11 = 1− nθ(1 + 2
√
r)

2 + 2n
√
r
, a12 =

nθr

1 + (n+ 1)
√
r + nr

, a31 = − lnκ,

a32 = −
(
1 +

√
w

r

)
a31, b11 = 1− θ

n

2
, b21 =

(
1 +

√
w

r

)
b11.

The resulting matrix product over T0 + 1 consecutive iterations is

JST̂ · JL =

 d11 0 0

d21 0 0

0 0 0


and therefore, the only non-zero eigenvalue is d11, which can be computed as

d11 = aT0
11b11 + a12b21

(
1 + a11 + a211 + . . .+ aT0−1

11

)
= aT0

11b11 +

(
1 +

√
w

r

)
a12b11

1− aT0
11

1− a11
.

The point (q∗, k∗, T ) with T ≤ T0 is locally asymptotically stable provided

that |d11| < 1 (where d11 depends on T0, r, θ and n).

When turning back to the original 3n-dimensional map Φ, the point

(q∗, k∗, T ) corresponds to p∗
T = (q∗

n,k
∗
n,T), where

q∗
n := (q∗, . . . , q∗︸ ︷︷ ︸

n

), k∗
n := (k∗, . . . , k∗︸ ︷︷ ︸

n

), T = (T, . . . , T︸ ︷︷ ︸
n

). (5.60)

The orbit (p∗
0,p

∗
T0
,p∗

T0−1, . . .) is, clearly, of the type (n, 0, . . . , 0) where the

number of zeros is T0. The point p∗
T is associated with the Cournot equi-

librium market state in case where all �rms synchronise their investment

periods. Its local stability is de�ned by the eigenvalues {νi}3ni=1 of the related

Jacobi matrix, among which 2n are equal zero, νi = 0, i = n+1, . . . , 3n. As

for the remaining eigenvalues, the �rst of them is ν1 = d11 and shows whether

p∗ is locally stable with respect to perturbations inside ∆. The eigenvector

related to ν1 is of the form

v1 = (1, . . . , 1︸ ︷︷ ︸
n

, a, . . . , a︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

),



273

Figure 5.4: Stability regions in the (θ, r) parameter plane for the Cournot equilibrium p∗

with (a) T0 = 5, (b) T0 = 20. Solid, dashed, and dash-dotted lines show the boundaries

corresponding to the number of �rms n = 5, n = 6, and n = 15, respectively. The

associated regions are shaded with di�erently slanted lines.

where a ∈ R depends on T0, r, θ, n. The remaining n−1 non-zero eigenvalues

νi, i = 2, n, show whether p∗ is locally stable with respect to perturbations

in the directions which are transverse to ∆. Each of them is related to the

eigenvector of the form

vi = (1, 0 . . . , 0,

i︷︸︸︷
−1 , 0 . . . , 0︸ ︷︷ ︸
n

, b, 0 . . . , 0,

n+i︷︸︸︷
−b , 0 . . . , 0︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

),

where b ∈ R depends on T0, r, θ, n. The value of νi is then derived as

νi = ν⊥ :=
2(n− 1)− θn

2(n− 1)(2n
√
r − 2

√
r + 1)

×

((
1− θ +

θ(n− 2)

2(n− 1)(n
√
r + 1)

)T0

+ 2(n− 1)
√
r

)
, i = 2, n.

For any 0 < θ < 1, r > 0, n ≥ 1, T0 > 0 there holds 0 < ν⊥ < 1. Hence, the

point p∗ is locally asymptotically stable provided that |d11| < 1.



274

Fig. 5.4 shows the stability region for p∗ in the (θ, r) parameter plane, that

is, the region where |d11| < 1, for the number of �rms n = 5, 6, 15 and T0 =

5, 20. As one can see, with increasing n the region shrinks, while changing T0

does not have remarkable in�uence. These plots allow to conclude that for

the map Ψ, Theocaris problem is resolved to a certain extent. One can see

that there is no more exact threshold for the number of competing �rms at

which Cournot equilibrium loses its stability. Moreover, the related stability

region is always present in the parameter space, although this region becomes

smaller with increasing the market size. Hence, by choosing the appropriate

parameter values one can always get that almost all orbits are attracted to

Cournot equilibrium.

It should be also mentioned that for T0 = 2s− 1 with s being a positive

integer, both equations d11 = −1 and d11 = 1 have solutions. In Fig. 5.4a the

upper boundaries of all regions correspond to d11 = −1, while at the lower

boundaries there holds d11 = 1. On the contrary, for T0 = 2s the equation

d11 = 1 does not have any solution. Thus, in Fig. 5.4b all stability region

boundaries are associated with d11 = −1.

Finally, note that for the map Φ, any point p̃∗ := (q∗
n,k

∗
n, T1, . . . , Tn)

with Ti ∈ {0, 1, . . . , T0}, i = 1, n, represents the Cournot equilibrium market

state. Moreover, this point is always T0 + 1 periodic, even if all Ti are

di�erent, and the related orbit is of the type (n1, n2, . . . , nT0+1) with ni ∈
{0, 1, . . . , T0}, i = 1, n,

∑T0+1
i=1 ni = n. As shown above, in case where Ti = Tj

for any i ̸= j, the local stability of the point p̃∗ can be studied in terms of

the reduced map Ψ given in (5.59). However, if there exists at least one pair

i, j such that Ti ̸= Tj, then the general formula for the largest eigenvalue

of the Jacobi matrix cannot be derived, and examining local stability of p̃∗

analytically is rather cumbersome.

To continue studying the role of each model parameter in general case we

need to make numerical simulations. We examine �rst behaviours of orbits

in case where all competitors synchronise, that is, we study the asymptotic
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dynamics of the 3-dimensional map Ψ given in (5.59). Then we focus on the

orbits of the 3n-dimensional map Φ de�ned in (5.54)�(5.56).

As the �rst step we �x the set of parameters P = {r, θ, κ = 1, T0 = 5, n =

6} and investigate how asymptotic dynamics of the map Ψ depends on r and

θ. As Fig. 5.4a suggests, for the chosen parameter values the stability region

for Cournot equilibrium extends up to θ ≈ 0.8. Hence, to uncover dynamics

distinct from a stable �xed point we have to consider θ > 0.8. Moreover,

when Cournot point loses stability the related eigenvalue becomes d11 = −1,

and after the bifurcation an attracting cycle of period 2(T0 + 1) (equal to

twelve for chosen P) exists. It can be further checked that for 0.8 ≲ θ ≲ 0.92

asymptotic dynamics of the map Ψ is related to the period doubling cascade

of the Cournot solution. Therefore we restrict our analysis by larger values

of θ to uncover more interesting dynamics.

Figure 5.5a shows a typical two-dimensional bifurcation diagram in (θ, r)

parameter plane, where regions related to periodic orbits are shaded green,

and their boundaries are shown in black. Several regions are marked with

numbers which indicate the period of the related orbit. As it can be seen,

all periods are multiples of T0 + 1 = 6 which is explained by the fact that

during T0 periods the short run branch is used while at the period T0 + 1

the long run branch is taken. Further, one may clearly distinguish here two

parameter domains, namely, for smaller r and for larger r, whose bifurcation

structures di�er remarkably. To understand the di�erence between these

two domains we plot in Figs. 5.5(b, c) one-dimensional bifurcation diagrams

versus changing parameter θ with r = 1 and r = 2. The numbers at the top

of each graph correspond to the periods of the shown orbits.

For the parameter values belonging to the domain with smaller r (see

Fig. 5.5b with r = 1), the value of q always belong to the range corresponding

to the non-linear branch of the related, short or long run, function. Namely,

for T > 0 (short run) the output is 0 < q < 1/(n− 1), while for T = 0 (long

run) it is 0 < q < 1/((1 +
√
r)2(n− 1)). Hence, asymptotically orbits of Ψ
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do not have points belonging to the linear branch (1− θ)q. This implies that
solutions of the map (5.59) are completely de�ned by the non-linear branches

of both, short and long run maps (Fw,θ andGw,r,θ, respectively). Each of these

non-linear branches is unimodal, thus one may expect to observe bifurcation

phenomena similar to those which characterise the class of unimodal maps,

although the map Ψ is three-dimensional, but not one-dimensional.

Figure 5.5: (a) Bifurcation structure of the (θ, r)-parameter plane of the map Ψ with

n = 6, T0 = 5, κ = 1. The periodicity regions are shaded green, while their boundaries are

plotted black. The numbers indicate the periods of the related orbits. (b), (c) Bifurcation

diagrams along the red arrows marked b, c in (a).

Resemblance to unimodal maps is revealed on the bifurcation diagram

shown in Fig. 5.5b. As it is known for a unimodal map, with changing its

parameter related to the maximum value of the map, periodic windows ap-
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pear in a certain order. This order is closely related to the so-called kneading

sequences, or symbolic sequences (also called U-sequences), as described, for

example, in [152] (see also [58]). For the map Ψ, with increasing the pa-

rameter θ the maximum value of functions θf((n − 1)q, k) + (1 − θ)q and

θg((n − 1)q) + (1 − θ)q, which represent the non-linear unimodal parts of

the short and long run branches of Ψ, respectively, increases as well. As it

was already mentioned, any periodic orbit has the period which is a multi-

ple of T0 + 1. As a consequence, the periodicity windows for Ψ appear in a

certain order that can be obtained from the order, in which they appear for

unimodal maps, by simply multiplying all periods to T0 + 1. For instance,

the period doubling bifurcation cascade 24 ⇒ 48 ⇒ 96 when divided by 6

corresponds to the part of a bifurcation cascade 4 ⇒ 8 ⇒ 16 of a �xed point

for a unimodal map. Similarly, the periodic window related to the period 36

is associated with the periodic window of the period 6 for a unimodal map.

On the contrary, for the larger values of r (see Fig. 5.5c with r = 2), the

orbits of Ψ have points belonging to the linear branch (1−θ)q. In the current
case it happens due to that for T = 0 (long run) some values of q exceed the

value of the border point 1/((1 +
√
r)2(n− 1)), and a part of the orbits occur

not due to �ip or fold, but due to border collision bifurcations [33, 227]. The

related one-dimensional bifurcation diagram has a special structure which

resembles to some extent the bifurcation structure described in [236]. This

reference considers properties of a piecewise smooth map consisting of the

nonlinear unimodal branch and the linear �at branch. As shown in the

mentioned reference a particular �spider-like� bifurcation structure appears

when asymptotic orbits have one point on the �at branch. Note, however,

that the map Ψ is of more complex form than the map studied in [236],

moreover, Ψ does not have any �at branch. Uncovering the mechanism of

formation of a bifurcation structure observed in Fig. 5.5c still requires further

investigation.

As the next step we take the parameters P = {r = 1, θ, κ, T0 = 5, n = 6}
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and study how the bifurcation structure changes when κ > 1. In such a

case the remaining capital lifetime T may decrease by less or more than one

depending on how intensively capital k is used (the relation between q and k).

Hence, switching between the short and long run branches can be irregular.

In Fig. 5.6a a typical two-dimensional bifurcation diagram in the (θ, log10 κ)

parameter plane is plotted. The �rst notice is that for κ > 1 periods of

attracting cycles increase with respect to the case κ = 1. For instance, with

r = 1, θ = 0.93 and κ = 1 the asymptotic orbit is of period 12 (as it is seen

in Fig. 5.5a). On the other hand, from Fig. 5.6a it is clear that for κ > 1 the

period of the related orbit increases: �rst it becomes 13, then 14, then 15,

and so on. Similarly, for θ = 0.95 one observes a sharp jump from period 24

for κ = 1 to period 26 for κ > 1, and then period incrementing bifurcation

structure is revealed.

For larger values of θ things get more complicated. Fig. 5.6b shows the

enlargement of the rectangular area outlined red in Fig. 5.6a. Although the

period incrementing structure is still recognisable, but the regions related to

adjacent periods m and m + 1 are �shifted� with respect one to the other.

In addition, regions associated with certain periods are rather small. For

instance, the region related to the period 79 which is almost negligible, or the

one corresponding to 83 (which is only distinguishable in the inset showing

the enlargement of the area outlined red). Nonetheless, the main conclusion

which can be made is that with increasing κ the periods of orbits increase as

well.

Note also that the vertical axis corresponds to the logarithmic scale

log10 κ. The �rst abrupt change of the bifurcation structure happens when κ

increases over unity. The other changes, however, are observable for rather

large values of κ > 107.

Now we turn to asymptotic dynamics of the original 3n-dimensional map

Φ. The immediate question which appears is whether an orbit tends asymp-

totically to the set ∆ in case where initial values are chosen arbitrarily. In
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Figure 5.6: (a) Bifurcation structure of the (θ, κ)-parameter plane of the map Ψ with

n = 6, T0 = 5, r = 1. The periodicity regions are shaded green, while their boundaries

are plotted black. The numbers indicate the periods of the related orbits. In (b) the

region outlined red in (a) is shown enlarged.

other words, if the set ∆ is attractive transversally when the Cournot equi-

librium belonging to ∆ is unstable.

Recall that for κ = 1 the way in which the competitors synchronise

their investment periods is de�ned completely by the initial capital lifetimes

T 0
i . Hence, as soon as T 0

i = T 0
j this relation remains for ever. Moreover,

numerical simulation suggests that if Ti = Tj then after a �nite number of

periods there holds qi = qj and ki = kj. In particular, if T 0
1 = . . . = T 0

n then

after a while the related orbit is attracted to the set ∆. Hence, in case when

all initial capital lifetimes are equal and κ = 1 the asymptotic dynamics of

the map Φ is described by the map Ψ.

On the contrary, for κ > 1 the initial equality T 0
i = T 0

j does not neces-

sarily mean that i-th and j-th �rm retain their investment periods always

synchronised. Depending on the evolution of qi, qj, ki, kj the relation Ti = Tj

may be held or broken. Nevertheless, the similar e�ect as for κ = 1 is still

observed, namely, as soon as the �rms approximately synchronise their us-
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age of capitals Ti ≈ Tj, they tend to adjust as well their outputs qi ≈ qj,

clearly implying also similarity of the capitals ki ≈ kj. Then the orbit is

asymptotically attracted to a manifold

Mij = {(q,k,T) : qi = qj, ki = kj, Ti = Tj}, i ̸= j. (5.61)

Any manifold of the above form is invariant under the action of Φ for any

parameter set P . Namely, if at a certain time period the orbit is trapped by

a manifold Mij (or any intersection of several such kind manifolds) then it

stays there for ever. Clearly, when the orbit is attracted to some intersection

of manifolds (5.61), it means that the competitors clusterise. That is, they

form a few groups�clusters,� inside each of which the long run function is

chosen simultaneously. Denote the number of �rms in each cluster as ni,

i = 1,m, where m is the number of clusters. Then the related orbit is said to

be clusterised in type n1 : . . . : nm. Obviously, if all n �rms synchronise their

investment periods (full investment synchronisation) it means clusterisation

of type n.

To study orbits of the map Φ in general case we �x a certain parameter

set P = {r, θ, κ, T0, n}, but consider random initial conditions. The values

for outputs and capitals are taken as qi ∈ (0, qmax] and ki ∈ (0, kmax], while

the initial capital lifetimes are T 0
i ∈ [0, T0], i = 1, n. Since we investigate the

dynamics of Φ qualitatively, it is useful to introduce the following numbers:

Q̄ :=
1

m

m−1∑
j=0

n∑
i=1

qi(j), K̄ :=
1

m

m−1∑
j=0

n∑
i=1

ki(j), (5.62)

where {qi(j)}mj=0 and {ki(j)}mj=0, i = 1, n, represent samples of size m of

the time series of output and capital, respectively, for each individual �rm.

In other words, Q̄ is the mean total supply over m periods, while K̄ is the

mean total capital. Ergodic theory (see e. g., [244]) teaches us that the above
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averages Q̄ and K̄ converge almost everywhere to

lim
m→∞

Q̄ = lim
m→∞

1

m

m−1∑
j=0

n∑
i=1

qi(j) =

∫
[0,qmax]n×[0,kmax]n×Rn

n∑
i=1

qidµ,

lim
m→∞

K̄ = lim
m→∞

1

m

m−1∑
j=0

n∑
i=1

ki(j) =

∫
[0,qmax]n×[0,kmax]n×Rn

n∑
i=1

kidµ,

where µ is an invariant ergodic measure. We compute the numbers Q̄ and K̄

for a sample of L orbits for each parameter selection P = {r, θ, κ, T0, n}. As
one can expect that such ergodic measures will be either atomic (supported by

periodic orbits) or absolutely continuous with respect to Lebesgue measure,

the existence of di�erent values among these L sets implies the existence of

di�erent ergodic measures, and therefore the coexistence of di�erent metric

attractors [153].

Figure 5.7: Total means for (a) output Q̄ and (b) capital K̄ over L = 100 initial condition

sets versus θ. The other parameters are r = 1, κ = 50, T0 = 5, n = 6.

We �x the parameter set as P = {r = 1, θ, κ = 50, T0 = 5, n = 6},
and vary the parameter θ. In Fig. 5.7a,b we plot Q̄ and K̄, respectively,

over L = 100 initial conditions versus θ. The solid lines show the values of

Q∗, the total output, and nk∗, the total capital, at the Cournot equilibrium

market state. In this graph one can clearly distinguish two di�erent groups

of values for the means Q̄ and K̄. Hence, simulation suggests there exist at

least two metric attractors for each considered P .
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The values of Q̄ and K̄ located near the lines Q∗ and nk∗, correspond-

ingly, clearly reveal convergence to the Cournot equilibrium. However, al-

though producing the same amount of good q∗ at each time period, the �rms

do not invest in a synchronised way, that is, not all of them invest in the same

period. On the contrary, clustering of various types takes place, namely, the

competitors form a few groups, inside each of which reinvestment happens

simultaneously (while individual outputs are always qi = q∗, i = 1, n). Let

us consider for example the point marked e in Fig. 5.7a for θ = 0.969. This

point is a combination of asymptotic orbits, representing Cournot equilib-

rium, generated by 93 initial condition sets. Among them we observe all

possible clusterisation types, except for the full synchronisation, which can

appear for 6 �rms. For instance, some orbits are related to the case when

competitors form two groups with clustering type 3 : 3, or clustering type

4 : 2, or 5 : 1. There are some other orbits related to the case when competi-

tors form three groups associated with clustering types 2 : 2 : 2, or 3 : 2 : 1,

or 4 : 1 : 1. We observe as well situations when four or �ve groups are formed,

and even the case when all �rms are completely desynchronised, that is, ev-

ery �rm makes the investment in the time period di�erent from the others

(note that in such a case with T0 = 5 at each time period exactly one �rm

uses the long run branch).

Now we turn to the other group of Q̄, K̄ values visible in Figs. 5.7(a,

b), which are distant from the Cournot equilibrium state Q∗, nk∗, and are

plotted by �lled triangles. All of them correspond to the full synchronisation

of the competitors, that is, they are related to the orbits attracted to the

set ∆ (5.58). Clearly, these orbits reveal asymptotic dynamics of the map

Ψ (5.59). In Fig. 5.7c we plot time series for the total market output Q at

the point marked c in Fig. 5.7a, which corresponds to the orbit of period

52. In Fig. 5.7d time series for Q at the point marked d is shown, which is

associated with the chaotic orbit.

Similarly to the case of n = 6 �rms we consider the case of n = 10.
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Figure 5.8: (colour on-line) Total means for (a) output Q̄ and (b) capital K̄ over L = 100

initial condition sets versus θ. The other parameters are r = 2, κ = 50, T0 = 5, n = 10.

We �x the parameter set as P = {r = 2, θ, κ = 50, T0 = 5, n = 10}, and
again vary the parameter θ. In Fig. 5.8a,b we show the values Q̄ and K̄,

respectively, versus θ. Di�erent symbols are related to orbits with di�erent

number of clusters, namely, �lled triangles represent full synchronisation,

�lled circles are associated with the Cournot equilibrium (again related to

di�erent types of clusterisation, but not full synchronisation), and asterisks

correspond to other orbits which show clusterisation of various types (except

for the full synchronisation), but are distinct from the Cournot equilibrium.

The graphs plotted suggest that for each parameter set P there exist at least

three di�erent metric attractors, which belong to various invariant manifolds

being the unions of the synchronisation manifolds Mij of the form (5.61).

With deeper investigation we see that the �rms tend to form a few clusters.
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Conclusion

The thesis is devoted to studying properties of asymptotic solutions for

a wide range of piecewise smooth, in particular discontinuous, maps. We

have investigated periodic and chaotic attractors for these maps and exam-

ined various local and global aspects of their dynamics. In the course of this

research we have discovered some novel bifurcation phenomena and exhaus-

tively described several bifurcation structures, which were unknown before.

In particular, we have obtained the following results:

� For a family of one-dimensional piecewise linear continuous maps with

two boundary points, it has been shown that stable periodic orbits of any

period can exist depending on the parameter values. We have obtained

necessary and su�cient conditions for their stability. In the param-

eter space of such maps, we have described three distinct bifurcation

structures. Two of them represent the generalisations of already known

bifurcation structures, while the third one, has not been observed before

and involves not only periodic but also chaotic attractors. For the latter

su�cient conditions for their existence have been obtained.

� For a bimodal map family, such that their functions de�ning two out-

ermost branches pass through the origin, it has been shown that the

bifurcation structures related to periodic solutions are degenerate. We

have described the nature of this degeneracy and obtained the su�cient

conditions for existence of chaotic attractors.

� For a family of one-dimensional piecewise monotone discontinuous maps

with two discontinuity points, having the symmetry with respect to the
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origin, we have exhaustively described two distinct bifurcation struc-

tures related to chaotic attractors, for the case when a single absorbing

interval exists. Necessary and su�cient conditions have been obtained

for the existence of chaotic attractors having di�erent number of bands

and the bifurcations due to which these numbers change have been deter-

mined. We have also found parametric regions of coexistence of di�erent

chaotic attractors.

� In the parameter space of a family of one-dimensional piecewise in-

creasing asymmetric maps having two discontinuity points, a bifurcation

structure of new kind, related to chaotic attractors, has been discovered.

It has been proved that most of the bifurcation conditions, de�ning the

boundaries of the related chaoticity regions, were not associated with

any critical homoclinic orbits. Chaotic attractors of two di�erent con�g-

uration types have been shown to exist, and for both of them we obtain

explicit estimates for the maximum number of their bands.

� We have discovered two novel bifurcations of chaotic attractors, which

cannot be observed in one-dimensional piecewise monotone maps with

a single discontinuity points, only with multiple ones. These are exte-

rior and interior border collision bifurcations, which have been shown

to be not related to any homoclinic bifurcations of repelling periodic

points. We have obtained su�cient conditions for occurrence of both

bifurcations.

� For a family of one-dimensional piecewise monotone discontinuous maps

with more than two discontinuity points, a particular case of the exterior

border collision bifurcation has been investigated. For certain param-

eter constellations, this bifurcation implied a sudden expansion of the

attractor, due its collision with a chaotic repeller, located at the im-

mediate basin boundary of the attractor. We have shown that in the

codimension two case, this sudden expansion occurs immediately after
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the border collision.

� For certain smooth noninvertible maps, local asymptotic phenomena as-

sociated with a �ip and a Neimark�Sacker bifurcation of the �xed point

have been studied. We have described an atypical period-doubling bi-

furcation cascade in the neighbourhood of the parameter point, related

to changing the type of the �ip bifurcation. Two degenerate cases of the

Neimark�Sacker bifurcation have been also investigated. Global bifur-

cations associated with critical sets of di�erent ranks, inducing trans-

formations of attracting invariant curves have been analysed.

� For a family of two-dimensional piecewise smooth noninvertible contin-

uous maps, we have obtained su�cient conditions for existence of an

attracting closed invariant curve, consisting of parts of critical sets of

di�erent ranks. It has been shown that the restriction of the original

two-dimensional map to this curve is given by the one-dimensional �rst

return map, which had at least one kink point and at least one discon-

tinuity point.

� We have studied a family of three-dimensional piecewise smooth con-

tinuous maps, having a continuum of �xed points, all being located on

the border set. We have obtained su�cient conditions for the stability

of these �xed points and proved that for any initial point its orbit ei-

ther approached asymptotically one of these �xed points, or ended up

at the so-called �disequilibrium point�. For the latter the �rst two co-

ordinates remain unchanged, while the third one changes according to

the Ricker-like map.

� For a family of two-dimensional discontinuous maps, the su�cient and

necessary conditions for a continuity breaking bifurcation have been

obtained. We have shown that in the neighbourhood of the correspond-

ing parameter point of codimension two, the original two-dimensional

map can be approximated by a one-dimensional piecewise linear map
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de�ned in two partitions. We have also described three distinct bifur-

cation structures, associated with periodic solutions. In particular, we

have provided an exhaustive description of a novel bifurcation structure,

related to stable cycles of even periods.

� We have considered a family of two-dimensional noninvertible piecewise

smooth maps, characterised by vanishing denominators in both compo-

nents. We have found all focal points and the corresponding prefocal

sets. It has been proved that one of these focal points�the origin�

belongs to its prefocal set. For certain parameter constellations, it im-

plied that this focal point had a basin of attraction of positive measure.

� Several families of piecewise smooth maps that model an oligopoly mar-

ket have been investigated. In case when maps are nonautonomous, the

stability properties of �xed points have been examined and the su�cient

stability conditions for the Cournot equilibrium have been obtained. For

autonomous maps, we have proved that they could not have �xed points,

but only periodic solutions, periods of which were multiples of a certain

map parameter. We have considered a restriction of the original map

to the full synchronisation manifold, which was represented by a three-

dimensional piecewise smooth map. For this three-dimensional map we

have described several bifurcation scenarios depending on the parameter

values.
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