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Awnorariga

Birnaiuenko O.0. 'eomerpuyni Ta ajaredbpaidHi BJacTUBOCTI be3auc-
nepciiinoro piBHauuga Hwu>xauka. — Kpasidikamiiina naykoBa mpailisi Ha

1paBax pyKoOIUCY.

Huceprartiisi Ha 37100yTTsI cTyIeHs JokTopa, (dimocodil 3a cremniajibHICTIO

111 Maremaruka. — [ncruryr maremaruku HAH Vkpainu, Kuis, 2024.

Y jucepTarniil BUKOHAHO DO3IIUPEHUi cuMeTpiitHuit anasis (JIiicHoro cu-

METPUYHOrO MOTEHIaIBLHOr0) Gesucnepciiinoro piBusHust Huknuka

Uty = (UzeUay)z + (Uaylyy )y, (1)

sKe TaKOXX Has3uBaloTh Oezjuctepciiinum piBustHHsAM Huknnka—HoBikoBa—
Becenmoa abo HapiTh Oe3nucnepciitnuM piBugnusgMm HopikoBa—Becenmosa. e
PIBHSIHHS € Oe3IUCIePCIiHIM aHAJIOrOM JIfiCHOrO CUMETPUIHOIO IIOTEHITIa b
HOTO piBHsIHHSA Huxknuka. Y HaBejieHiil OBHIN Ha3Bl piBHAHHS aTpUOyT “JI1iii-
cHe” o3Havag, 10 1 He3aJeXKHl, 1 3aJIexKH] 3MIHHI y pIBHsSIHHI € Jificuumu. Bu-
6ip 6a30BOTO 10JIs JIJIsd 3MIHHUX € BaXKJIMBUM, OCKIJIbKU BiJI HbOI'O 3aJ1€2KATh
Py TOYKOBUX Ta KOHTAKTHUX CUMETPIl PIBHSHHSI.

Y miteparypi € 6arato cnpob JgociKenHs piBastHEs (1) y paMkax cume-
TpiiHOrO aHaJIi3y JudepeHIiaJbHIX PIBHAHD, aJie Il CIIpoOu 3a3BUYaii HEBJla-
Jii, OCKLJIbKM OTPUMaHI Pe3y/bTaTu He € MOBHUMK abo0 JIocTOBipHUMU. Tomy
OyJI0 BaKJINBO BUKOHATH CHUMETPIHUI aHaJi3 0e31MCIepCIitHOr0 PiBHIHHS
Hmxnnka mpaBuibHO, BHIEPIIHO i ONTUMAJJIbLHO, 3aCTOCOBYIOUH IMUPOKUI Ha-
Oip cyyacHMX METOJIIB CUMETPIHHOIO aHaJli3y Ta BUKOPUCTOBYIOUU KOPEKTHY
TEPMIHOJIOTIIO.

Pazom i3 piBasaHAM (1) TaK0XK pO3MIHYTO HOro HEJHIAHE MpeCTaBIIC

nug Jlakca

UgyUyy Uy
o= | Vs — == | UV — ———, vy = —— (2)



1 6e3rcepciiHmit BiIIOBI IHIK

pe = (h'p)a+ (W°p)y, hy=ps, hi=p, (3)

cuMeTpudHol cucremu HrkHuKa, KUl € 1TOTEHI1aJibHOIO CUCTEMOIO JIJIsi PiB-
HstaHs (1).

Y posmin 1 gocrimpkeno cumerpiiini BiaacruBocti piBasHHA (1) Ta cu-
crem (2) i (3). 3okpema, 3HaMIEHO TX MaKCHMaJIbHI asrebpu JiiTBCbKOT iHBapi-
AHTHOCTI @, g1, §dN, & TAKOXK MaKCUMAaJIbHY aJredpy g. KOHTAKTHUX CUMETpiii
piBugnHs (1). BuBdeno crpykrypy nux agrebp, 1o BKIOUAE MOOYIOBY J10-
CTATHIX JIJIs1 1I0/IAJIBIIOTO PO3IVIsi/ly HAOOPIB TX MeraijeaJsiiB, 0a30BUMU 3 sIKKX
€ X pagukaiu t, vy, tgy. OJUH 13 HeoOXiTHUX MeraijeaJiB ajaredpu g, He-
MOZKJIMBO 3HANTH CTaHJapPTHUMHU MeTojaMu. ToMy y aucepTallii po3po0sieHo
HOBUI METOJ, MOIIYKY MeraljeaJiiB, siKuil 1 BAKOPUCTAHO y IHOMY BUITQJIKY.
[TokazaHno, 1110 ajredpa g, € IepIiIrM IPOJIOBXKEHHAM ajaredpu ¢, a aaredpu g,
1 ggN — HPOJIOBXKEHHSAMU II€T 2K ajredpy BiJIIOBIJIHO Ha IICEBJIOIOTEHINA VU
Ta HabIp norenniaais (p, q).

3acTOCOBYIOUM OPUTIHAJIBLHY BEpCiio aarebpaldHoro MeTojly Ha OCHOBI Me-
raijieastiB, 00UNCIEHO IICEBIOrPY I TOUKOBUX cuMerpiit G, Gr,, GgN BLAIOBII-
1O st piBHstHHs (1) Ta cucrem (2), (3), a TakKoXK MCEBJOIPYITYy KOHTAKTHUX
cumerpiit G piBusuns (1). BusBuocs, mo HeoOxigHa ajqrebpaiina yMoBa,
sIKa, € OCHOBOIO MeTO/Iy, TOBHICTIO Bu3Hadae mcengorpyny G, a Tomy st
3aBeplieHHs 11 004uc/eHHs He 1MOTPIOHO BUKOPUCTOBYBATH IPAMUN METO/I.
[le mepmnii MpUKJIAJ TAKOro pojy B JjiTeparypi. OKpiM TOTO JI0BEJIEHO, IO
ncepgorpyna G MICTUTH PIBHO TPW HE3AJEXKHI JIUCKPETHI €JIEMEHTH, a TCEeB-
jgorpyna G, € mepimM npojioBxKeHHsim tceorpynu G. Obuncsientst mces;1o-
rpynu G, € mepimuM IpUKJIaJIoM 3aCTOCYBAHHSI Bepcil aJredpaitHoOro MeToLy
Ha OCHOBI MeraijieaJiiB JIJisi 3HAXOJI>KEHH s TICEBJIONPY TN KOHTAKTHUX CUMETPIii
JidepeniiiajibHoro piBusinis. Ha BijMiny Biji HellepepBHUX TOUYKOBUX CUME-
Tpiil He BCi AUCKPETHI TOYKOBI cuMeTpil piBHSHHS (1) MOXKHA TPOJOBXKUTH HA
cucremy (2). Anrebpaiuni wacruan obunciennd ncepporpyn Gy, i Ggn cxoxi

Ha TX BLANOBIIHUK Jjist riceBporpynu (G, aje, OCKLIbKEU Psiji OOMEXKEHb JIJIst



KOMIIOHEHT TOYKOBUX [€PETBOPEHb CUMETPIl He MOXKHA OTPUMATH B paMKax
aJIredpaiTHOro0 METO/LY, TO TYT POJIb [PSIMOIO METO/LY CTa€ CyTTEBIIIO0 (0Co-
omBo s niceBporpynu (GgN), HiXK y mporieci mody 0By mceaorpymu G.

Y 3B’s13Ky 13 3a3HAUEHOI0 0COOJIMBICTIO 3aCTOCYBAHHS aJredPaTIHOIO Me-
1oy J10 piBHsiHHs (1) 1 jyist rambioro po3ymiHHs MACPYHTs [[OIO METO/LY,
IepeBIpPEeHo, UM CKIHYeHHOBUMIpPHI mHijiajaredpu §1 1 §o ajaredpu @, siki Hpupo-
JIHUM IMHOM BUHUKAIOTH Y MPoIieci obuucients ncesaorpynu (G, BUSHATIAOThH
Jinpeomopdizmu, 110 CcTadlI3yIOTh 110 ajredbpy uu i1 1epiie 1npojOBKEHHS.
Ile mocaijizKeHH sl aJi0 HeClo/liBaHl pe3yJibTaTu. J0Kpema, mijaaredbpa So BH-
3Havae jirudeomopdizmu, 1o cTabiyiizyoTh ajaredpy @, Tojl sK mijaaredpa §; i
HaBIThH 1ijlaaredpa §1, siKa, € HIPUPOJHUM POBIIUPEHHSAM 111/1aJire0PUu §1 OJHUM
BEKTOPHUM IIOJIEM 3 ¢, HE MAlOTDh II€l BJIACTUBOCTI. A mepIie IPOSOBXKeH-
Hsl PO3IIUPEHHS TMiaJredpu §o TPhOMa JIHINHO HE3aJeXKHUMU BEKTOPHUMMU
HOJIAMHU 3 g, 11O € nijiairebpoio aarebpu ge = @(1), BusHadae judeomopdi-
3MHU BIIIIOBIJIHOTO IIPOCTOPY CTPYMEHIB IEPIIOro IMOPSJIKY, SIK1 CTabLII3yI0Th
aJiredpy ge. Kpim Toro, 1e JIoC/aijPKeHHsi MICTUTh aJibTepHATUBHY 100YI0BY
ncesjorpyn G i G Ha OCHOBI HPpUMITUBHOI Bepcii asiredpaiaHoro mero,ry. Biji-
HOBIJIHI OOYMC/ICHHSI € HabaraTo CKJIa IHIIINMU, HI2K IIPU BUKOPUCTAHHI Bepcil
aJiredpaiuHOro MeTojly Ha OCHOBI MeraijeaJii, 1110 3arajioM OoOI'PYyHTOBYE i1
BUKOPUCTAHHSI.

Onucano Bci gudepeniiajbHl PIBHIHHS TPETHOIO HOPSJIKY 3 TPbOMa, He-
3aJIEKHUMW 3MIHHUMM, siKi iHBapiaHTHI BIIHOCHO aJiredpn ¢. 3HaiIeHO TTOB-
Huil HaOIp reoMerpuyuHux BJIaCTUBOCTEH piBHsiHHst (1), 110 BUOKPEMJIIOIOTH
fioro 3 ychoro Kjacy judepenniajJbHIX PIBHAHD 13 YaCTUHHUMU IIOX1THAMMU
TPETHOTO MOPSAJIKY 3 TPHOMa He3aaeKHUME 3MiHHME. OKPiM iHBapiaHTHOCTI
BIJIHOCHO aJireOpu @ BiH BKJIIOUAE HASIBHICTH XapaKTepPUCTUK 3aKOHIB 30epe-
KeHHA 1, Uy, 1 uy,. e noeanye obepueny 3ajady rpynosol Kiacudixalii Ta
obepHeHy 3a/ia4dy PO 3aKOHU 30eperKEHHs.

Y po3iiai 2 BUUEPIHO BUBUEHO JITBCHKI peayKIil piBHsHHs (1) i mobyto-

BAHO IIMPOKI ciM'T ii0oro iHBaplaHTHUX PO3B’sA3KiB.



Briepriie npejicraBieHo TouHUN popMasiizoBaHUl OMTUC TTOBHOT ONTUMI30-
BAHOI TPOIE/ly Py JITBCHKOI PEJIYKIIIl Y BUIAJKY CUCTEMU PIBHSHDL 13 YaCTUH-
HAMU OXITHAMH 3 TPhOMa He3aJe:KHUMU 3MIHHIMHA, PEJIEBAHTHOMY JIJIsI PiB-
Hstams (1).

BukopucroByouu pesysbratu po3jiiay 1, npokgacu@dikoBaHO OJHO- Ta
JIBOBUMIpHI mijiajrebpu ajreOpu @ 1 OJHOBUMIpHI mijajrebpu aJjredpu gr,
3 TouHICTIO 710 G- 1 (G1,-eKBIBaJIEHTHOCTI, BiIMOBIIHO. 3aMiCTh CTaHIaPTHOTO
1JIXOJLY, IO TPYHTYETHC Ha 3HAXOJRKEHH] 1 BAKOPUCTAHH] BHYTPIIIHIX aBTO-
MopizmiB anredp JIi, posrignyTo jito mncesporpynu GG Ha ajredpy ¢, AKy
3HAIEHO Yepe3 IMiIHATTS BEKTOPHUX TIOJIIB 3 g ejleMeHTamu ncesgorpynu G.
[eit crioci® Oijibi 3pydHM Jijist OOUUC/IEHDb Y BUIIAJIKY HECKIHUEHHOBUMIPHUX
asiredp JIi. Kpim Toro, npu kijacudikariii mijaaredp BiH JO3BOJISIE BPAaXOBY-
BaTHW HE TIILKU HETEePepPBHI, a i JUCKPETHI MEPETBOPEHHS TOTKOBOI CUMETPIT
piBHsirts (1), 10 Jla€ MOKJIMBICTH CKOPOTUTH BIJ[IIOBLIHI OLTUMAJIbHI CIIACK K
mijaareop.

[TobyoBaHi crircku miajaredp CTBOPUJIM OCHOBY J1jisi €peKTHUBHOIO Ta BU-
YEPIHOIO BMKOHAHHST JITBCHKOT peyKIii piBusinbs (1) 10 judepeniianbaux
PIBHSAHD 13 YaCTUHHUMH IMOXITHUMH 3 JBOMa He3aJe:KHUMH 3MIHHAMU Ta JI0
3BUYARHUX JI(PEPEeHIaIbHUX PIBHSIHb.

[liy yac BuKOHaHHs LpOLEAYPU JHIBCHKOT pejykiii Jiyisi piBHsinust (1)
BIIEpIIIe BUSIBJICHO JIEKLJIbKa IIKABUX sIBUII. 30KpeMa, PeJIyKOBaHI PIBHIHHSI
yCIaJKOBYIOTh HE BCl TlapaMeTpy BIAMOBIIHUX CIMeil HeeKBIBAJEHTHWX TTi/I-
ayireop. ['paHuduHuM JJist 1bOIO SIBUINA, € BUIIQJIOK, KOJIM BCl HEEKBIBAJEHTHI
nijlaareOpu 3 ciM’l, HaBITH IapaMeTPU30BAHOI JIOBILHUME (DYHKIISAMH, 33
HaJIEXKHOIO BUOOPY aH3alliB BIJIOBIJIAI0TH TOMY CaMOMY PeyKOBaHOMY piB-
HsIHHTIO. [HIIMM 1IPOSIBOM LIBOI'O $IBUINA € MOXKJIMBICTH BIJIOOparKeHHsi KJI1acy
pe/IyKOBAHUX PIBHSAHD Y CBiil MJIKJAC, IKMi Ma€ MEHIY KIJIbKICTH ITapaMe-
TpiB. Jleski ekBiBaJieHTHI JIBOBUMIpHI TijlajreOpu ajredpu g 3 HEHYJIbOBUM
OTHOBUMIDHUM TEPETUHOM 1HIYKYIOTH HEeeKBIBaJEHTHI OJITHOBUMIPHI TiTaJre-

Opu MakcuMaJibHOI ajredpu JiiiBCbKOI iHBapiaHTHOCTI peJlyKOBAHOIO Jiude-



PEHIIaJLHOTO PIBHIHHS 3 YJACTUHHUMHU TOXITHUMU, TKEe OTPUMAHE JIITBCHKOIO
peyKIi€eio 1o neperuny. Ajredpa g BKJIJAEThCs B ajredpy g, 4epes npojioB-
»KEHHsI BEKTOPHUX IT0JIIB 3 aJIreOpu g Ha IICEBIONOTEHIIA U, a TOMY Oy/ib-sIKa,
JiiBebKa pejyKiiist pisastiis (1) Mae BIAMOBIIHUK cepeJ| JiTBChbKUX PeJLyKIiiif
cucremu (2), ajie Takuil BLANOBIIHUK 3araJioM HE €MHUIl HABITh 3 TOYHICTIO
0 Gr-ekBiBajsieHTHOCTI. TakoK, Ha BIJIMIHY BiJ JIIBCHKUX CHUMETpIii IPOCTI
Ta OYeBM/IHI JMCKPETHI TOYKOBI cumeTpil piBHsiHHs (1) — HaBiTh 3a ONTH-
MaJIbHOI'O BUOOPY aH3alllB — MOXKYThb 1HJIYKYBaTU CKJIa/HI Ta HETpUBIaJ/bHI
JINCKPETHI TOYKOBI CUMEeTPIl BIIOBIIHNX peyKOBAHUX PIBHSHD.

Briepiiie 064nc/ieHO TPyl TOYKOBUX CHUMETPINi peJIyKOBAHUX PIBHSIHb,
BKJIIOYHO 3 1X JIMCKPETHUMU TOYKOBUMU CUMETPIsIMU, 1 B yCIX BUIIQJIKAX Iie-
peBIpEHO, 4u € 11l cuMeTpil abo nmpuxoBaHuMU, ab0 iHayKoBaHUMU. OCKIIbKM
OUIBIIICTH PO3IVISTHYTUX PEJYyKOBAaHUX PIBHsSIHB € JJOCUTh I'POMI3JIKUMU, Pi3Hi
Bepcil ajiredOpaldHoOro MeTojy Habararo epeKTUBHIIN jijis TAaKUX 00YKUC/ICHbD,
HiXK Tpsamuii MeTo 1. Kpim Toro, seski peiykoBati piBHSHH 1711 piBHsTHHS (1)
He € MaKcnMaIbHOro panry. OTxKe, 3a3HaveHni aHAJII3 PeAyKOBAHNX PIBHSHD
€, 30KpeMa, IepIlIuM B JITepaTypl siBHUM 1 CUCTEMATUYHUM JIOC/1JKEHHSM
JIIBCHKUX Ta 3arajbHUX TOUYKOBUX CUMETpiil JudepeHIiaJbHuX PIBHAHD, SKI
HE € MaKCUMaJIbHOTO paHry. BiH Takox ryinOIimit, Hixk #oro aHaJioru y 6ijib-
1ocTi podiT y rajysi KJacM4HOIO I'PYIIOBOIO aHaJII3y: 3aCTOCOBAHO IIUPIINL
HaOIp METOJIB 1 TEeXHIK, PO3B’sA3aHO HE3BUUHO BEJIMKY YACTKY PEJ/IyKOBAHHUX
PIBHSIHL 1 CHUCTEMATHYHINIE BUBYEHO MPUXOBAHI CUMETPIl BUXIJIHOTO PIBHS-
HHsi. Jljist iHTerpyBaHHs Ta 3HAXO/PKEHHS TOUYHUX PO3B A3KIB JICAKUX PeJLy-
KOBAHWX 3BUYANHUX JudepeHIiaJbHuX PiBHAHD Jjist piBHsAHH:A (1) 3asydeHo
BLMOBITHI JHTBCHKI peyKIlii cucremu (2). Y pesysbrari mupoki ciM’i HOBUX
iHBapiaHTHUX PO3B’si3KiB piBHsitHs (1) 1100YI0BAHO y SIBHOMY BUIJIsiJIl B T€p-
MiHaX ejleMeHTapHuX (GYHKIH, dynknii Jlambepra Ta rinmepreoMeTpuuHuX
dyHKIIi, a TakoxK y mapamerpudHiit abo HesBHIM popmax. [JogarkoBo noka-
3aHO, 1110 JITBCHKI peiyKIiii piBHsHH (1) 10 aareOpaidHuX PIBHSIHB HE JAIOTH

HOBHUX PO3B’SI3KIB I[bOI'O PIBHSIHHS IIOPIBHSHO 3 y2Ke 100y I0BaHUMH.



Ockinbku Oyyb-sika dyHKIiis purisy u = w(t, ) + w(t,y), mo Bigmo-
BIJIA€ aJIMTUBHOMY DO3JJICHHIO 3MIHHUX & Ta Y, € PO3B’si3KOM piBHstHHs (1),
Take PO3/iJIeHHA 3MIHHUX TPHUBIaJbHE JJIs1 IHOTO PIBHAHHSA. TOMY s ITOITY-
Ky HeJIIBChbKUX PO3B’si3KiB piBHsiHHs (1), sIKi y3araibHIOOTh Jestki Horo iH-
BapiaHTHI PO3B’sI3KU, 3aCTOCOBAHO MYJILTUILIIKATUBHE PO3/ILJICHHS 3MIHHUX T
Ta Y, aH3all i sKoro Mae Burisg u = @(t, x)Y(t,y) 3 v, # 01, # 0.
Orpumani pesysbraTi OKa3yloTh, M0 Iie Oiabiie po3B’si3KiB piBHsHHs (1) B
Jlesikiii 3aMKHeH1# (hopMi MOKHA, 1100y 1yBaTH, BUKOPUCTOBYIOUM 1HII METO/IU

cUMeTPiiiHOro aHaji3y audepeHiaJbHIX PIBHIHD.

Kuro4uoBi ciioBa: Ge3jucnepciiine piBasinas Huxkuanka, aaredbpa JiiBCHKOT
1HBaplaHTHOCTI, TICEBJOTPYIIa TOUKOBUX CUMETPIi, MCeBIOrpyna KOHTAKTHIX
CUMETPIii, JINCKpeTHa CUMeTpis, MeraijieaJi, JIIBCbKI peayKIiil, IHBaplaHTHI
PO3B’I3KU, MPUXOBaHI cuMeTpil, HesiHiifiHe npejcrapienns Jlakca, 6e3juc-

nepciiiaa cucreMa HmKH1UKa, MyJTbTHILTIKATHBHE PO3/ILJICHHS 3MIHHUX.



Abstract

Vinnichenko O.0. Geometric and algebraic properties of disper-
sionless Nizhnik equation. — Qualifying scientific work on the rights

of the manuscript.

Thesis for the degree of Doctor of Philosophy, speciality 111 Mathe-
matics. — Institute of Mathematics of NAS of Ukraine, Kyiv, 2024.

In the thesis, we carried out extended symmetry analysis of the (real

symmetric potential) dispersionless Nizhnik equation

Uty = (UzaUay)x + (Uaylyy )y, (1)

which is also called as the dispersionless Nizhnik—Novikov—Veselov equa-
tion or even the dispersionless Novikov—Veselov equation. This equation
is the dispersionless counterpart of the real symmetric potential Nizhnik
equation. In the presented full name of the equation, the attribute “real”
means that both the independent and dependent variables in the equation
are real. The choice of the basic field for the variables is important since
the point and contact symmetry groups of the equation depend on it.

In the literature, there are many attempts to study the equation (1)
within the framework of symmetry analysis of differential equations. How-
ever, they are usually unsuccessful since the obtained results are not com-
plete or reliable. Therefore, it had been important for one to perform the
symmetry analysis of the dispersionless Nizhnik equation correctly and op-
timally, applying a wide set of modern methods of symmetry analysis and
using suitable terminology.

Simultaneously with the equation (1), we considered its nonlinear rep-

resentation Lax representation

1 3 uiy UgyUyy Ugy
Ve =7 | Uy — 3 + UpzVy — y Uy = — ) (2)
3 v Uy Uy
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and the dispersionless counterpart

bt = (hlp)x + (h2p)y7 hgll = Pz h?: = Py (3)

of the symmetric Nizhnik system.

In Chapter 1, we studied symmetry properties of the equation (1) and
the systems (2) and (3). In particular, we found their maximal Lie invari-
ance algebras g, gr, and gqn and the maximal contact-symmetry algebra g,
of the equation (1).

The structure of these algebras was studied, which includes constructing
the sets of their megaideals that are sufficient for further consideration,
and the basic among their megaideals are their radicals ¢, tf, and tqn. One
of the required megaideals of g;, cannot be found by standard methods.
Therefore, we developed a new method of constructing megaideals, which
was used in this case. In addition, the algebra g. is the first prolongation
of the algebra g, and the algebras g;, and gqn are prolongations of g to the
pseudopotential v and to the tuple of potentials (p, ¢), respectively.

Applying an original megaideal-based version of the algebraic method,
we computed the point-symmetry pseudogroups G, Gy, and Ggy of the
equation (1) and the systems (2) and (3), respectively, as well as the
contact-symmetry pseudogroup G, of the equation (1). It turned out that
the necessary algebraic condition, which is the base of the method, com-
pletely defines the pseudogroup G, and therefore there is no need to use
the direct method for completing the computation. This is the first exam-
ple of this kind in the literature. In addition, we proved that the pseu-
dogroup G contains exactly three independent discrete elements, and the
pseudogroup G. is the first prolongation of G. The computation of the
pseudogroup G. is the first example of applying the megaideal-based ver-
sion of the algebraic method to finding the contact-symmetry pseudogroup
of a differential equation. Unlike continuous point symmetries, not all
discrete point symmetries of the equation (1) can be extended to the sys-

tem (2). The algebraic parts of the computations of the pseudogroups Gp,
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and Ggn are quite similar to their counterpart for the pseudogroup G. At
the same time, since a number of restrictions for the components of point
symmetry transformations cannot be derived within the framework of the
algebraic method, the role of the direct method becomes more significant
here (especially for the pseudogroup Ggx) than in the course of construct-
ing the pseudogroup G.

In connection with the indicated peculiarity of applying the algebraic
method to the equation (1) and for a deeper understanding of the back-
ground of this method, we checked whether the finite-dimensional subal-
gebras s and sy of the algebra g, which naturally arise in the course of the
above computation of GG, define the diffeomorphisms stabilizing this algebra
or its first prolongation. This study gave unexpected results. In particular,
the subalgebra s, defines the diffeomorphisms that stabilize g, whereas the
subalgebra s; and even the subalgebra s, which is the natural extension of
the subalgebra s; by a vector field from g, do not have this property. Sim-
ilarly, the first prolongation of the extension of the subalgebra s, by three
linearly independent vector fields from g, which is a subalgebra of the alge-
bra g. = g(1), defines the diffeomorphisms of the corresponding first-order
jet space that stabilize g.. Moreover, this study contains the alternative
construction of the pseudogroups G and G based on the primitive version
of the algebraic method. The corresponding computations are much more
complicated than those in the course of using the megaideal-based version
of the algebraic method, which justifies the application of the latter version
in general.

We described all the third-order partial differential equations in three
independent variables that are invariant with respect to the algebra g. We
also find a set of geometric properties of the equation (1) that singles out it
from the entire class of third-order partial differential equations with three
independent variables. In addition to the invariance with respect to the

algebra g, it includes the presence of the conservation-law characteristics 1,
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Uz, and uy,. This combines an inverse group classification problem with
an inverse problem on conservation laws.

In Chapter 2, the Lie reductions of the equation (1) are exhaustively
studied and the wide families of its invariant solutions are constructed.

We presented for the first time a precise and formalized description of
the complete optimized Lie reduction procedure in the case of a system
of partial differential equations with three independent variables, which is
relevant to the equation (1).

Using the results of Chapter 1, we classified one- and two-dimensional
subalgebras of the algebra g and one-dimensional subalgebras of the al-
gebra gr, up to the G- and Grp-equivalences, respectively. Instead of the
standard approach, which is based on finding and using inner automor-
phisms of Lie algebras, we considered the action of the pseudogroup G on
the algebra g, which was found by pushing forward vector fields from g
by elements of the pseudogroup . This method is more convenient for
computing in the case of infinite-dimensional Lie algebras. In addition, in
the course of classifying subalgebras, it allows one to take into account not
only continuous, but also discrete point symmetry transformations of the
equation (1), which makes it possible to reduce the corresponding optimal
lists of subalgebras.

The constructed lists of subalgebras created a basis for efficiently and
exhaustively carrying out Lie reductions of the equation (1) to partial dif-
ferential equations with two independent variables and to ordinary differ-
ential equations.

When performing the Lie reduction procedure for the equation (1), we
observed for the first time several interesting phenomena. In particular,
the reduced equations inherit not all the parameters of the correspond-
ing families of inequivalent subalgebras. The utmost for this phenomenon
is the case when all inequivalent subalgebras from a family even param-

eterized by arbitrary functions correspond, under an appropriate choice
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of ansatzes, to the same reduced equation. Another display of this phe-
nomenon is the possibility of mapping a class of reduced equations to its
subclass, which has a less number of parameters. Some equivalent two-
dimensional subalgebras of the algebra g with a nonzero one-dimensional
intersection induce inequivalent one-dimensional subalgebras of the maxi-
mal Lie invariance algebra of a reduced partial differential equation that is
obtained by the Lie reduction with respect to the intersection. The alge-
bra g is embedded in the algebra gr, via prolonging the vector fields from g
to the pseudopotential v, and thus any Lie reduction of the equation (1) has
a counterpart among Lie reductions of the system (2) but such a counter-
part is in general not unique even up to the Gp-equivalence. Moreover, in
contrast to Lie symmetries, simple and obvious discrete point symmetries
of the equation (1), even under the optimal choice of ansatzes, can induce
complicated and nontrivial discrete point symmetries of the corresponding
reduced equations.

We computed for the first time the point symmetry groups of reduced
equations, including their discrete point symmetries, and it was checked in
all the cases whether these symmetries are hidden or induced. Since most of
the obtained reduced equations for the equation (1) are quite cumbersome,
various versions of the algebraic method are much more efficient in the
course of the above computation than the direct method. In addition,
some of these reduced equations are not of maximal rank. Therefore, the
mentioned analysis of reduced equations is, in particular, the first explicit
and systematic study of Lie and general point symmetries of differential
equations that are not of maximal rank. It is also deeper than its analogues
in most papers in the field of classical group analysis: we applied a wider
set of methods and techniques, solved an unusually large proportion of
reduced equations, and more systematically studied the hidden symmetries
of the original equation. For integrating and finding exact solutions of some

reduced ordinary differential equations for the equation (1), we involved the
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corresponding Lie reductions of the system (2). As a result, we constructed
wide families of new invariant solutions of the equation (1) in explicit form
in terms of elementary, Lambert and hypergeometric functions as well as
in parametric or implicit form. In addition, we showed that Lie reductions
of the equation (1) to algebraic equations give no new solutions of this
equation as compared to the already constructed ones.

Since any function of the form v = w(t, z) + w(t, y), which corresponds
to the additive separation of the variables x and y, is a solution of the
equation (1), this separation of variables is trivial for (1). Therefore, to look
for non-Lie solutions of the equation (1) that generalize some of its invariant
solutions, we used the multiplicative separation of the variables x and y, the
ansatz for which has the form u = ¢(¢, x)y(t,y) with ¢, # 0 and ¢, # 0.
The obtained results show that more closed-form solutions of (1) can be

constructed using other tools of symmetry analysis of differential equations.

Key words: dispersionless Nizhnik equation, Lie invariance algebra,
point-symmetry pseudogroup, contact-symmetry pseudogroup, discrete
symmetry, megaideal, Lie reduction, invariant solutions, hidden symme-
tries, nonlinear Lax representation, dispersionless Nizhnik system, multi-

plicative separation of variables.
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Introduction

Relevance of research topic. It is difficult to overestimate the im-
portance of symmetry in life and science. In particular, symmetries are the
fundamentals of various physical disciplines, including classical and quan-
tum mechanics, relativity and particle physics. Symmetries of systems of
differential equations allow one to compute exact solutions and conserva-
tion laws of these systems, and they can provide important information
about whether the system under study can be integrated.

In the nineteenth century, the Norwegian mathematician Sophus Lie
began to investigate continuous groups of transformations that are pos-
sessed by systems of differential equations as their symmetry groups. Thus,
symmetry analysis of differential equations was established as a field of
mathematics [79-84]. Lie created much of the theory of continuous point
symmetries called now Lie symmetries as well as continuous contact sym-
metries and used it in his studies of geometry and differential equations.
The research of Lie was continued by E. Noether, E.J. Cartan, L. Eisen-
hart, L.V. Ovsiannikov, W. Miller Jr., P. Winternitz, W.I. Fushchych,
A.M. Vinogradov, N.H. Ibragimov, P.J. Olver, G.W. Bluman, S. Kumei,
P.E. Hydon, S. Anco, their collaborators, followers and pupils as well as
many other scientists, see, e.g., [16,17,20,21,29-33,40,48,50-52, 56,63, 65,
91,96,97,103] and references therein. It is also worth to separately note the
significant contribution of the Ukrainian school of group analysis of differ-
ential equations to the development of the field. This school was founded by
W.I. Fushchych and includes a number of well-known and internationally
recognized researches such as A.G. Nikitin, W.M. Shtelen, R.Z. Zhdanov,
[.LM. Tsyfra, M.I. Serov, V.I. Lahno, R.M. Cherniha, R.O. Popovych,
V.M. Boyko, I.A. Yehorchenko, O.0O. Vaneeva and M.O. Nesterenko, as

well as their pupils, see, for instance, [1,3,9-13]. A number of new
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concepts and methods were proposed and improved, in particular, con-
ditional symmetry [55], @-conditional symmetry [51,132], reduction op-
erators and reduction modules [35, 76, 107], normalized classes of differ-
ential equations (27,36, 71,72, 100, 106, 112, 115], equivalence groupoids
classes of systems of differential equations [38,78,99,108], the megaideal-
based algebraic method [26,27,46,47,85,100], the method of furcate split-
ting [2,93,101, 113, 114], the method of mappings between classes of dif-
ferential equations [102, 123], the conditional, extended and generalized
extended equivalence groups [26,106,112], and etc.

Lie symmetries are the simplest objects related to a system L of dif-
ferential equations in the context of group analysis of differential equa-
tions. They constitute the identity component Giq of the point-symmetry
(pseudo)group G of L, which is called the Lie symmetry (pseudo)group
of L. The infinitesimal counterpart of Giq is the maximal Lie invariance
algebra g of L consisting of the Lie-symmetry vector fields of £ or, in
other words, the generators of (local) one-parameter subgroups of G. The
method for computing the (pseudo)group Gjq is quite algorithmic and was
originally suggested by S. Lie. Within the Lie infinitesimal approach, find-
ing Gjq reduces to finding g, and the latter is based on the infinitesimal
invariance criterion. The application of this criterion leads to the system
of determining equations for the components of Lie-symmetry vector fields
of the system L, which is a linear overdetermined system of partial differ-
ential equations and can thus often be completely integrated. Due to its
algorithmic nature and realizability, the procedure of deriving such systems
and solving them can be implemented using symbolic computations, and
there are a number of specialized packages for this purpose in various com-
puter algebra systems [24,41,43,58,128]. Nevertheless, at least a part of
these packages sometimes miss a part of Lie symmetries, produce incorrect
Lie symmetries or are even not able to derive the corresponding system

of determining equations, and the situation becomes worse in the course
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of studying a class of systems of differential equations instead of a single
system. When the algebra g is computed, the (pseudo)group Giq can be
constructed by solving the Lie equations with elements of g and compos-
ing the obtained one-parameter subgroups. In spite of the clarity of the
approach, accurately finding Gjq from g is in general a nontrivial problem,
see the discussion on Lie symmetries of the (1+1)-dimensional linear heat
equation in [72].

In addition, it is important to study Lie reductions, which give the
main way to use Lie symmetries for finding exact solutions of partial dif-
ferential equations [30, 32, 33,96, 103]. Since the Lie invariance algebras
of models considered in mathematical physics are usually wide enough,
it is also the most universal way for constructing exact solutions of such
models in general, especially, of nonlinear ones. Many papers devoted
to this subject were published for several last decades but correct and
comprehensive studies of Lie reductions and the corresponding reduced
systems for specific systems of partial differential equations are rather ex-
ceptional, especially in the case of more than two independent variables,
see, e.g., [21,42,44, 53,54, 70,71, 85, 88, 96, 105, 123], the result collec-
tions [16,17,20] and references therein for particular examples. The last
claim is also relevant for the (real symmetric potential) dispersionless Nizh-
nik equation. Its classical symmetry analysis was initiated in [92], but the
obtained results are neither correct nor exhaustive. This is why this anal-
ysis was still the important and interesting mathematical problem to be

solved, and the present thesis is devoted to its solution.

Relation with academic programs, plans, themes, grants. The
thesis was carried out at the Department of Mathematical Physics of In-
stitute of Mathematics of National Academy of Sciences of Ukraine as
a part of the research project “Symmetry and Integrability of Equations
of Modern Mathematical Physics” (2020-2024, state registration number
0120U100173).
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Purpose and objectives of research. The purpose of the thesis is
to perform the extended classical symmetric analysis of the dispersionless
Nizhnik equation and to study its geometric and algebraic properties.

The research object is the dispersionless Nizhnik equation jointly with
its nonlinear Lax representation and the dispersionless counterpart of the
symmetric Nizhnik system.

The research subject is given by the point- and contact-symmetry pseu-
dogroups of the dispersionless Nizhnik equation, the point-symmetry pseu-
dogroups of the corresponding nonlinear Lax representation and of the dis-
persionless counterpart of the symmetric Nizhnik system, the classification
of one- and two-dimensional subalgebras of the maximal Lie invariance al-
gebra of the dispersionless Nizhnik equation, the Lie reductions and the
exact solutions of the real dispersionless Nizhnik equation.

Research methods. In addition to well-known methods of the theory of
Lie algebras and differential equations, we used the Lie infinitesimal ap-
proach, both versions (the automorphism- and the megaideal-based ones)
of the algebraic method of constructing the point-symmetry (pseudo)group
of a system of differential equations, the characteristic method for con-
structing conservation laws of systems of differential equations, an opti-
mized version of the Lie reduction method and the multiplicative separa-

tion of variables.

Scientific novelty of the obtained results. The main results that
determine the scientific novelty of the thesis and are submitted for its

defense are the following:

1. Applying an original megaideal-based version of the algebraic method,
we computed the point-symmetry pseudogroups of the dispersionless
Nizhnik equation, the corresponding nonlinear Lax representation and

the dispersionless counterpart of the symmetric Nizhnik system.

2. Using the same method, we also constructed the contact-symmetry

pseudogroup of the dispersionless Nizhnik equation, and this is the
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first usage of the megaideal-based version of the algebraic method for

such a construction for a differential equation.

. It was shown that the necessary algebraic condition completely defines
the point-symmetry pseudogroup of the dispersionless Nizhnik equa-
tion. This gave the first example of a system of differential equations

with this property in the literature.

. We checked whether the subalgebras of the maximal Lie invariance al-
gebra of the dispersionless Nizhnik equation that naturally arise in the
course of the above computations define the diffeomorphisms stabiliz-

ing this algebra or its first prolongation.

. We constructed all the third-order partial differential equations in three
independent variables that admit the same Lie invariance algebra as
that the dispersionless Nizhnik equation. We found a set of geometric

properties of this equation that exhaustively defines it.

. The one- and two-dimensional subalgebras of the maximal Lie invari-
ance algebra of the dispersionless Nizhnik equation are exhaustively
classified, which led to the complete classification of Lie reductions of

this equation.

. Lie and point symmetries of the derived reduced equations are compre-
hensively studied, including the analysis of which of them correspond
to hidden symmetries of the original equation. The point symmetry
groups of reduced equations, in particular those that are not of max-
imal rank, were computed for the first time, including their discrete

point symmetries.

. The wide families of new exact invariant solutions of the dispersionless
Nizhnik equation are constructed in closed form in terms of elemen-
tary, Lambert and hypergeometric functions as well as in parametric

or implicit form.
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9. Multiplicative separation of variables was used for illustrative construc-

tion of non-invariant solutions of the dispersionless Nizhnik equation.

Practical significance of the obtained results. The thesis is the-
oretical in its essence. The obtained results are new. They can be used
in further studies of various differential equations of mathematical physics

that arise in real-world applications.

Personal contribution of the PhD candidate. The results pre-
sented in the thesis were obtained by the PhD candidate independently.
In the co-authored papers [39, 127], R.O. Popovych was responsible for
determining the research direction and posing the problems to be stud-
ied, verifying the obtained results and the proofreading of the papers was
entrusted to V.M. Boyko.

Approbation of the thesis results. The main results of the thesis

were reported and discussed at:

e Seminar of Department of Mathematical Physics of Institute of Mathe-
matics of National Academy of Sciences of Ukraine (Kyiv, 2022-2024);

e International Symposium “Symmetry and Integrability of Equations
of Mathematical Physics” (Kyiv, Institute of Mathematics of NAS of
Ukraine, 2022);

e International Conference of Young Mathematicians (Kyiv, Institute
of Mathematics of NAS of Ukraine, 2023);

e Workshop CDSS (Complex Dynamical Systems in the Science): the-
ory, mathematical modelling, computing and application (Kyiv, Insti-
tute of Mathematics of NAS of Ukraine, 2023);

e Seminar of Young Scientists (Kyiv, Institute of Mathematics of NAS
of Ukraine, 2024);

e XII All-Ukrainian Scientific Conference of Young Mathematicians
(Kyiv, National University of Kyiv Mohyla Academy, 2024);
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e Conference of Young Mathematicians “Pidstryhach readings — 2024”
(Lviv, Pidstryhach Institute for Applied Problems of Mechanics and
Mathematics of NAS of Ukraine, 2024);

e International Scientific Online Conference “Algebraic and Geometric
Methods of Analysis” (Odesa, Odesa National University of Technol-
ogy, 2024);

e Bogolyubov Kyiv Conference “Problems of Theoretical and Mathe-
matical Physics” (Kyiv, Institute of Mathematics of NAS of Ukraine,
2024).

Publications. The results of the thesis were published in nine scien-
tific publications, two of them [39,127] are in journals from Q1 (according
to the classification of SCImago Journal & Country Rank) that together
are equated to four publications. Seven publications [4-8,125,126] are ab-
stracts of PhD candidate’s talks at international and all-Ukrainian scientific

conferences and workshops.

Structure and volume of thesis. The thesis contains annotations
in Ukrainian and English, a list of the author’s publications, acknowledg-
ments, contents, notations, an introduction, two chapters, a conclusion,
a list of references that contains 132 items and one appendix. The total
volume of the thesis is 171 pages, of which the list of references and the

appendix take 15 and 4 pages, respectively.
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Chapter 1

Point- and contact-symmetry pseudogroups

of dispersionless Nizhnik equation

The entire point-symmetry (resp. contact-symmetry) (pseudo)group G
of the system L cannot be constructed within the framework of the in-
finitesimal approach. Since finding g and then Gjq from g is a much sim-
pler problem than finding the entire (G, the latter problem can be assumed
to be equivalent to the construction of a complete set of discrete point
symmetry transformations of the system L that are independent up to
composing with each other and with continuous point symmetry transfor-
mations of £.1! The only universal tool for the above constructions is the
direct method based on the definition of point symmetry transformation
and the chain rule [27,71,72,100]. The technique of its usage is similar
to that of the infinitesimal method, see [66] for technical details of more
general computations of admissible (or form-preserving) transformations in
classes of systems of differential equations in the case of two independent
variables and one dependent variable. At the same time, the application
of the direct method to the system £ leads to a nonlinear overdetermined
system of partial differential equations for the components of point sym-
metry transformations, which is much more difficult to solve than its coun-

terpart for Lie symmetries. This is why a number of special techniques

1-1Often, such a complete set can be chosen to consist of simple discrete point symmetry transformations,
which can be guessed straightforwardly from the form of £. A quite common technique in the literature
is to consider a (pseudo)subgroup of G jointly generated by the elements of Giq and the guessed discrete
point symmetry transformations, and such a subgroup may coincide with the entire G. The problem is

to prove that this is the case or to find missed independent discrete point symmetry transformations.
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within the framework of the direct method were developed for simplify-
ing related computations, including switching between the original and
the transformed variables, mapping the system £ under study to a more
convenient one and preliminarily finding the equivalence (pseudo)group of
a normalized class of systems of differential equations that contains the
system L [27,36,71,72].

A more sophisticated and systematic method for this purpose was first
suggested by Hydon [60-63]. It works in the case when the maximal Lie
invariance algebra g of the system L is nonzero and finite-dimensional, and
it is based on the fact that the pushforward ®, of g by any element & of
the group G is an automorphism of g. Chosen a basis (Q?,...,Q") of g,
where n = dim g, this condition is equivalent to

n

d,.Q" = Zainj, 1=1,...,n,
j=1
where (a;i)ij=1,. n is the matrix of an automorphism of g in this basis.
Finding the general form of automorphism matrices and splitting the last
condition componentwise, one derives a system DE,(L) of determining
equations for the components of an arbitrary point symmetry transforma-
tion ® of L. The system DE, (L) is a linear and, if n > 1, overdetermined
system of partial differential equations but, in general, it does not define
the group G completely. After integrating this system, one should con-
tinue the computation within the framework of the direct method using
the derived expressions for components of ®, which essentially simplifies
the application of the direct method in total. Due to involving algebraic
conditions, we call the above procedure the algebraic method of construct-
ing the point-symmetry (pseudo)group of a system of differential equations.
The algebraic approach was extended in [27] to the case when the maxi-
mal Lie invariance algebra g is infinite-dimensional via replacing Hydon’s

condition with the weaker condition that ®,m C m for any megaideal m
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of g.12 To distinguish Hydon’s and our versions of the algebraic method
from each other, we shortly call them the automorphism-based and the
megaideal-based methods, respectively. In principle, one can use the prim-
itive version of the algebraic method that is based only on the condition
®,g C g and involves no knowledge of automorphisms or megaideals of g.
Nevertheless, the primitive version of the algebraic method leads to much
more cumbersome computations than its more sophisticated counterparts,
see discussions below.

Analogs of both these methods for finding equivalence (pseudo)groups
of classes of differential equations or, equivalently, their discrete equivalence
transformations were suggested in [26]. The automorphism-based method
was strengthened in [70] for the case of nonsolvable finite-dimensional
maximal Lie invariance algebras via effectively involving the Levi-Malcev
theorem and results on automorphisms of semisimple Lie algebras. The
megaideal-based method was developed and applied to several impor-
tant systems of differential equations [46,47,85,100]. An essential part
of this development was the invention of new techniques for construct-
ing megaideals of a Lie algebra without knowing its automorphism group,
which was initiated in [111] and continued in [26,27,46]. The megaideal-
and automorphism-based methods were combined in [46]. In the course
of computing the point-symmetry group of the Boiti-Leon—Pempinelli sys-
tem in [85], a special version of the megaideal-based method was suggested,
whose basic condition is ®,(m Ns) C m for a selected finite-dimensional
subalgebra s of g and any megaideal m of g from a constructed collection
of such megaideals, and this is the method that is applied below.

In the case of a system £ with one dependent variable, contact sym-

metries of £ can be studied analogously, see [61] for the corresponding

L2Recall that a megaideal m of a Lie algebra g is a linear subspace of g that is invariant with respect
to any transformation T from the automorphism group Aut(g) of g, Tm C m [26,111]. Another name
for m is a fully characteristic ideal of g [59, Exercise 14.1.1]. Since T~ € Aut(g) for any T € Aut(g),
simultaneously with the invariance condition Tm C m we also have T~1m C m and hence in fact Tm = m.

Each megaideal of g is an ideal and, moreover, a characteristic ideal of g.
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automorphism-based method. More specifically, let g. and G. denote the
contact Lie invariance algebra of the system £ and its contact-symmetry
(pseudo)group, respectively. One should first compute the algebra g.
within the framework of the infinitesimal approach and then use the condi-
tion that the pushforward of g. by any element ¥ of GG.. is an automorphism
of g.. In the course of this computation, the contact condition should
be taken into account as well, see item (ii) of the proof of Theorem 1.3
below. In a similar way, one can also compute the contact equivalence
(pseudo)group of a class of systems of differential equations with one de-
pendent variable.

The initial inspiration of the paper [39], which is the source of this
chapter, was to enhance results of [92] and, applying the original megaideal-
based version of the algebraic method from [85], to present a correct and
complete computation of the point- and contact-symmetry pseudogroups GG

and G, of the dispersionless counterpart

of the (real symmetric potential) Nizhnik equation for the (real) Nizhnik
system [94, Eq. (4)], which we call the dispersionless Nizhnik equation. It
explicitly appeared for the first time in an equivalent form in [67, Eq. (63)],
where it was called the dispersionless Nizhnik—Novikov—Veselov equation
due to [94, Eq. (4)] and the later paper [124, Eq. (5)]. It is also known
as the dispersionless Novikov—Veselov equation (see, e.g., [104, Eq. (5)]
and [92, Eq. (1)]). The proper Novikov—Veselov counterpart of (1.1) was
derived in [68, Eq. (30)] and [69, Eq. (32)] as a model of nonlinear geomet-
rical optics. More specifically, it is the equation for the refractive index
under the geometrical optics limit of the Maxwell equations for certain non-
linear media with slow variation along one axis and particular dependence

of the dielectric constant on frequency and fields.

Remark 1.1. The symmetric and asymmetric (potential) Nizhnik equa-

tions are obtained via introducing potentials in the symmetric and asym-
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metric cases of the system (4) from [94],

Wy = k1 Wepr + kowy,, + 3(v'w), + 3(v7w),, v; = kyw,, V2= kow,,

where both parameters k; and ks are nonzero or one (and only one) of them
is equal to zero and thus they are reduced by scale equivalence transforma-
tions to (k1, ko) = (1,1) or (k1, ko) = (1,0), respectively. The asymmetric
Nizhnik equation is also called the Boiti-Leon—-Manna—Pempinelli equation
due to [34]. Both the Nizhnik equations can be considered under the as-
sumptions that all the independent and dependent variables are either real
(the real Nizhnik equation) or complex (the complex Nizhnik equation)
or the unknown function is a complex-valued function of real independent
variables (the partially complexified Nizhnik equation). A specific version
of the symmetric Nizhnik equation, where the independent variables are
the complex conjugates of each other and the principal unknown function is
real, was given by Novikov and Veselov in [124, Eq. (5)]. The dispersionless

counterpart of the Novikov—Veselov system takes the form
v = (wo), + (wv);, w; = —3v,,

where z = z+iy, z = z—iy, 0. = 3(0,—10,), 0: = 5(0,+19,), w = w' +iw?,
and v, w! and w? are real-valued functions of the real variables (¢, x,y).
Introducing potentials reduces it to the equation
1
Auy = 5((uyy — Uy ) AUy + (UgyDu)y,

where Au = uz, 41y, and u is a real-valued function of (¢, z,y). The point
which fields (real or complex) are run by the independent and dependent
variables is often not specified in the literature but, in fact, it is essential in
the course of computing point and contact symmetries. In this chapter, we
study the real dispersionless Nizhnik equation, which is the dispersionless

counterpart of the real symmetric potential Nizhnik equation.

Although the correct descriptions of the pseudogroups G and G, are of

interest by themselves, the main value of these results is another. They
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give the first examples of using the algebraic method in the literature,
where the Hydon’s condition or its weakened version involving megaide-
als exhaustively define the corresponding point- and contact-symmetry
(pseudo)groups, making the direct parts of computing trivial. Moreover, in
the course of showing that the pseudogroup G coincides with the first pro-
longation of the pseudogroup G, we first apply the megaideal-based version
of the algebraic method to finding the contact-symmetry (pseudo)group of
a partial differential equation. To optimize the computation of the point-
symmetry pseudogroup Gi, of the nonlinear Lax representation (1.14) of
the equation (1.1), we invent a new technique for computing megaideals
of Lie algebras, which allows us to construct one more megaideal of the
maximal Lie invariance algebra gp, of (1.14) in addition to those that can
be found with known techniques.

For a deeper understanding of the background of the algebraic method,
we check whether the subalgebras of the maximal Lie invariance algebra g
of the equation (1.1) that naturally arise in the course of the above com-
putation of G define the diffeomorphisms stabilizing this algebra. The
same property is also studied for several subalgebras of the contact invari-
ance algebra g. of (1.1), which coincides with the first prolongation gy of
the algebra g. This study gives unexpected results and, moreover, contains
alternative constructions of the pseudogroups G and G. based on the prim-
itive version of the algebraic method. The corresponding computations are
much more complicated than those in the course of using the megaideal-
based method, which nicely justifies the application of the latter method
in general.

Since the maximal Lie invariance algebra g of the equation (1.1) com-
pletely defines its point-symmetry group G by means of the condition
d.g C g for any ¢ € G, the natural question is whether this algebra defines
the equation (1.1) itself as well. In other words, given a single third-order

partial differential equation possessing g as its Lie invariance algebra, does
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this equation necessarily coincide with the equation (1.1)? We show that
this is not the case but the answer becomes positive if the g-invariance is
supplemented with the condition of admitting the conservation-law char-
acteristics 1, u,, and u,,. This combines an inverse group classification
problem (see, e.g., [103, p. X], [97, pp. 191-199] and [109, Section I1.A])
with an inverse problem on conservation laws [110]. Therefore, we find
a nice set of geometric properties of the equation (1.1) that exhaustively
defines it, see [22,57,73,86,87,95,120,121] and references therein on similar
studies. Since g. = g(1), we can reformulate the corresponding assertion,
replacing Lie symmetries with contact ones. As a by-product, we describe
all the third-order partial differential equations in three independent vari-
ables that are invariant with respect to the algebra g.

The results of Chapter 1 were presented in the paper [39] and in the
abstracts of conference talks [4,5,8,125,126].

1.1. Structure of Lie invariance algebra

The maximal Lie invariance (pseudo)algebra g of the dispersionless

Nizhnik equation (1.1) is infinite-dimensional and is spanned by the vector
fields

D7) =10 + %Ttl‘@x + %Ttyay — 1—1871515(x‘3 + y?’)@u,
D*® = 20, + y0, + 3ud,,

P*(x) = X — 3x:2°0u,  PY(p) = pdy — 501y 0u,
R*(a) = ax0,, RY(B) =Py, Z(o)= 00y,

(1.2)

where 7, x, p, a, 8 and o run through the set of smooth functions of ¢,
cf. [92]. Moreover, the contact invariance (pseudo)algebra g. of the equa-
tion (1.1) coincides with the first prolongation gy of the algebra g, and gen-
eralized symmetries of this equation at least up to order five are exhausted,
modulo the equivalence of generalized symmetries, by its Lie symmetries.

We recomputed the algebra g as well as first computed the algebras g,
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and gqgn (see Sections 1.5 and 1.6) using the command Infinitesimals of the
built-in Maple package PDEtools and the packages DESOLV [41,128] and
Jets [24,89] for Maple; the latter package was also used for computing the
algebra g. and generalized symmetries of (1.1) up to order five.

Up to the antisymmetry of the Lie bracket, the nonzero commutation

relations between the vector fields (1.2) spanning g are exhausted by

[D'(r1), D'(r*)] = D'(r'77 — 7/ 7%),

8
=
I
g

x(TXt - %TtX),
()] = Py(TPt - %Ttp)a

(1.3)
(D, P*(x)] = —=P"(x), [D*PYp)l=—P"p),

(D%, R (a)] = —2R*(ar), [D° RY(B)] = —2R(B),
[D*, Z(0)] = =3Z(0),
[P*(x"), P*(x*)] = —=R*(x'x{ — x¢x%);
[PY(p"), PY(p*)] = =RY(p" p{ — py p?),
[P(x), R ()] = Z(xa), [PY(p), RY(B)] = Z(pB).
We find megaideals of the algebra g that will be used for computing the

point-symmetry pseudogroup G of the equation (1.1). The only megaideal

that is obvious in view of the above commutation relations is

mp = g/ - <Dt(7_)7PI(X)7Py(p)7RI(&)7Ry(5)7Z(U)>'

Here and throughout the thesis 3(s) and s’ denote the center and the derived
algebra of a subalgebra s of algebra g, respectively, s” = ('), §"” = (§")
and §° := [5,[s,5]]. More generally, s := s and the nth derived alge-
bra s(™ of s is recursively defined by s"*Y = (s} n € N,
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The computation of other megaideals of the algebra g is based on the

following assertion.

Lemma 1.2. The radical v of g coincides with

(D, P*(x), P'(p), R* (), R'(B), Z(0)).

Proof. Following the proof of Lemma 1 in [85], we denote the span from
lemma’s statement by s. To conclude that it coincides with the radical
of g, we prove that it is the maximal solvable ideal of g.

The commutation relations between the vector fields spanning g,
see (1.3), imply that s is an ideal of g. Since the fourth derived algebra 54
of s is equal to {0}, then the ideal s is solvable (of solvability rank four).

Now we show that the solvable ideal s of g is maximal in g. Let 51 be an
ideal of g properly containing s. This means that at least for one nonvan-
ishing value 7! of the parameter function 7, the corresponding vector field
D!(71) belongs to s1. Denote by I an interval in the domain of 71 such that
T1(t) # 0 for any t € I. We restrict all the parameter functions in g on the
interval I. Since §; is an ideal of g, the commutator [D!(7), D!(7!)] = D! (%)
with 7 := 77} — 77! belongs to s; for all 7 € C*°(I). If the function 7 runs
through C*(I), then, in view of the existence theorem for first-order linear
ordinary differential equations, the function 7 also runs through C*(I).
Therefore, 51 D (D'(7)) and thus the nth derived algebra s§”) of §; con-
tains (D'(7)) # {0} for any n € N as well, i.e., the ideal s1 is not solvable.

Hence the span s is maximal as a solvable ideal of g. ]

We set my := t. In view of properties of megaideals [26,111], it is easy

to construct several other megaideals of the algebra g,

my = my = my Nmg = (P*(x), PY(p), R"(a), R(B), Z(7)).
my :=my = (R*(a), RY(8), Z(0)),

m; = (my)® = 3(mg) = {Z(0)},

mg = 3(my) = <Z(1)>
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Overall, the algebra g contains the proper megaideal m; = g’ and the chain

of proper megaideals contained in its radical,

gRT=my P m3 D my L ms 2 M.

Each of them is essential when applying the algebraic method to con-
struct the point-symmetry pseudogroup of the dispersionless Nizhnik equa-
tion (1.1) in the sense that it is not the sum of other proper megaideals.
Note that in contrast to the megaideals m;, j = 1,...,6, the improper
nonzero megaideal, which is the algebra g itself, is not essential in this
sense since g = m; + my. Among the constructed proper megaideals, only
the megaideal mg is finite-dimensional and, moreover, it is one-dimensional.
It is clear that within the above elementary consideration, we cannot an-
swer the question of whether the megaideals m;, j = 1,...,6, exhaust the
entire set of proper megaideals of the (infinite-dimensional) algebra g.

Since g. = g(1) ~ ¢, all the above claims on the structure of the al-
gebra g are also relevant for the algebra g. after reformulating them for
the corresponding first prolongations, which are marked by the additional
subscript “(1)”.

1.2. Point- and contact-symmetry pseudogroups

Theorem 1.3. (i) The point-symmetry pseudogroup G of the dispersionless

Nizhnik equation (1.1) is generated by the transformations of the form

P=T(t), &=CL”z+X%t), §=CT y+Y"t),
0= 3 _Ctht(3+ 3)_ (X02—|—Y02) 1.4
CTER TR Y T gt Y 4
t
+ Wt + W2(t)y + WO(t)

and the transformation §: t =t, T =y, § =z, @ = u. Here T, X°, Y°,
WO W and W2 are arbitrary smooth functions of t with Ty # 0, and C' is

an arbitrary nonzero constant.
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(i) The contact-symmetry pseudogroup G. of the dispersionless Nizh-
nik equation (1.1) coincides with the first prolongation G(1y of the pseu-
dogroup G.

Proof. (i) Since the maximal Lie invariance algebra g of the equation (1.1) is
infinite-dimensional, we compute the pseudogroup G using the modification
of the megaideal-based method that was suggested in [85]. The application
of this method to the equation (1.1) is based on the following observation.

If a point transformation ® in the space with the coordinates (¢, z,y, u),

®: (1,7,4,4) = (T,X,Y,U),

where (T, X, Y, U) is a tuple of smooth functions of (¢, z, y, u) with nonvan-
ishing Jacobian, is a point symmetry of the equation (1.1), then ®,m; C m;,
j=1,...,6. Here and in what follows ®, denotes the pushforward of vec-
tor fields by @, and z € {z,y}.

We choose the following linearly independent elements of g:

=Z(1), Q*:=2(t), Q:=FR(1),
= PA1), Q"= PH1), Q=D
Q= D'(1), Q= D'(1).
Since Q! € mg, Q% € ms, Q¥ € my, Q¥, Q% € m3, Q° € my and
Q", Q% € my, then
$,Q' = Z ( N, i=1,2,
2.Q7 = RI(@%) + R(57) + 2(57), =3,
©.Q" = P*(X*) + PY(p") + R*(a") + R(B")
+ Z(c"%), i=4,5,

T _ (1.5)
CIJ*QZ:)\’Db—%Px( )+Py( )+Rx( )+Ry(6)
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Here A% and ! are constants, the other parameters are smooth functions
of ¢, and 6152 # 0.

We will simultaneously present two slightly different proofs, respectively
using elements with ¢ € {1,...,6} or with 7 € {1,...,5,7,8}. For each rel-
evant ¢ and for each z € {x,y} whenever it is relevant, we expand the
corresponding equation from (1.5), split it componentwise and pull the re-
sult back by ®. We simplify the obtained constraints, taking into account
constraints derived in the same way for preceding values of ¢ and omitting
the constraints satisfied identically in view of other constraints.

Thus, for i = 1,2, we get

T,=X,=Y, =0, U,=¢&" tU,=d&T).
Since 6! # 0, this implies U = U'u + U°(t, ,y) with constant U! # 0 and
t = f(T) with f(f) := 6%(#)/c*. Differentiating the equality t = f(T') with
respect to t gives 1 = f;(T)T1;. Therefore, the derivative f; does not vanish,
and according to the inverse function theorem, we obtain that 7" = T'(t)

with T} # 0 since the Jacobian of ® does not vanish.

Using the same procedure for ¢ = 3 results in the equations
2U = &(T)X + B¥(T)Y +&%(T),
YU = a%(T)X + g¥(T)Y + 6%(T).

The matrix constituted by the coefficients of (X,Y") in the system (1.6) is

nondegenerate since otherwise this system would imply a nonidentity affine

(1.6)

constraint for (z,y) with coefficients depending at most on ¢. Solving the
system (1.6) with respect to (X,Y') leads to the representation
X=X+ X*ty+X%0), Y=Y'tr+Y*t)y+Y'),
where X'Y? — X2Y'! =£ 0 due to nonvanishing the Jacobian of ®. We will
also need the counterpart of this representation that is solved with respect
to (z,y),
r=X(t)X+X2)Y + X°%1),

3 ~ N (1.7)
y =Y ()X + Y)Y + Y1),
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where X'V2 — X2Y! £ 0 as well, and

Xl X2 Xt x2\ "
vioy2] "yl ye2

Instead of the equations from (1.5) with ¢ = 4,5, we first immediately
consider their combinations. More specifically, for each z we subtract the
equation with ¢ = 4 multiplied by ¢ from the equation with ¢ = 5 and with
the same z. In the obtained equations, we collect the u-components, pull
them back by @, substitute the expressions (1.7) for (z,y) into them and
then collect the coefficients of XY. The splitting with respect to (X,Y) is
allowed here due to the functional independence of £, X and Y. In view of
the inequality U' # 0, this leads to the equations X' X2 = Y1Y? = 0 or,
equivalently, XY = X2Y?2 = 0. Since X'Y2— X2Y'! £ 0, the latter equa-
tions imply that either X' = Y2 = 0or X2 = Y'! = 0. It is obvious that the
transformation J: { =t, 2 =y, § = x, @ = u, which just permutes x and y,
is a point symmetry of the equation (1.1). Composing the corresponding
point symmetries of the equation (1.1) with the transformation J reduces
the case X! = Y? =0 to the case X? = Y = 0. Therefore, without loss of
generality, we can assume in the rest of the proof that X? = Y! = 0 and
thus X'Y? #£ 0. In the @-components pulled back by ®, we can also collect

the coefficients of 2 and of y?, which leads to the equations
Ut = (X)("(T) — tx° (1)) = (Y*)*(p7(T) — tig" (T)).

Now we proceed with the equations from (1.5) with ¢ = 4,5 in the
usual way. Considering - and gy-components, we derive the equations
(T = XY XY(T) = XY, p%(T) = Y?, p(T) = tY?% Therefore,
(X1)? = (Y?)? = U'T}, and thus

X'=y?=F:=CT}*#0 and U'=C?

with constant C' := (U")'/3 # 0. The optimal way to obtain the rest of the



42

equations of this step,

F,
Ul = — %(Fx + XN 4 &% (T)(Fz + X°)
t
+ (T (Fy +Y°) +6*(T),
F,
Ul = — #(Fy + Y92 4 a%(T)(Fz + X°)
t

+ BY(T)(Fy +Y°) +%(T),

is to consider the @-components for i =4 and z € {z,y}. The compatibil-

ity condition of these equations is Uy, = U,),, giving A% = % Their joint

ya
integration implies the representation

F?F,
U’ = — — Yo 4 %) + W32 - Whay + Wi + Wha + W2y + W,
t
where W9, ..., W? are smooth functions of ¢ that are not constrained on
this step.

There are two ways for further computations.
The first way is to implement the standard procedure for ¢+ = 6, which

gives the equations

MN=1, 1) =-X° 5T =-Y"
g

W3 — XYT)F*=0, W'=0 and W°——p

> S(T)F* = 0.

and we do not need to use the megaideal m;.

The second way involves certain equations following from the equations
with i = 7,81in (1.5). The corresponding computation is a bit more compli-
cated than the above one and involves the megaideal m; instead of my. Nev-
ertheless, as shown below in Section 1.3, the subalgebra of g underlying this

way has a nicer property than the analogous subalgebra for the first way.
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Thus, up to composing with the transformation J, the transformation ¢
has the form (1.4) declared in the statement of the theorem. It is straight-
forward to check by the direct substitution that any point transformation
of this form is a point symmetry of the equation (1.1).

(ii) To prove the equality G. = G(1), we apply the same modification of
the megaideal-based method, where the maximal Lie invariance algebra g
is replaced with the contact invariance algebra g. = g(1), and the point

transformation & is replaced with a contact transformation
U (t,2,9,a,u, iz, a45) = (2', 27,2, U,U",U", UY). (1.8a)

In W, the tuple on the right-hand side is a tuple of smooth functions of
(t,x,y, u,ut, ug, uy) with nonvanishing Jacobian, which additionally satis-

fies the contact condition
(Zl + Zhu,)U" = U, + Uy, Z5U"=1U,,. (1.8b)

Here and in what follows the indices p and v run through the set {¢, z, y},
and we assume summation for repeated indices. If the transformation W is a
contact symmetry of the equation (1.1), then ¥,m ) € m;q), j=1,...,6,
where W, denotes the pushforward of contact vector fields by W. To the
counterpart of the collection of equations (1.5) for the contact case, we
apply the procedure that is completely analogous to that described af-
ter (1.5). From the equation with ¢ = 1, we in particular derive the
constraints Z# = 0. Then the equations with i = 2, (i,z) = (3,z) and
(4,2) = (3,y) imply the constraints Z} =0, Z/ =0 and Zl; =0, respec-
tively. In view of the contact condition, this means that U, = 0 as well,
and thus the contact transformation W is the first prolongation of a point

transformation in the space with the coordinates (¢, x,y, u). ]

Each transformation ® from the point-symmetry pseudogroup G of the
dispersionless Nizhnik equation (1.1) can be represented as a composition of

transformations from subgroups each of which is parameterized by a single
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functional or discrete parameter (below 7', X° YO WO W1 and W? are

arbitrary smooth functions of £ with T; # 0, and C' is an arbitrary nonzero

constant) in the following form:

DNT): t=T, i=T"2, §=T""%,

i =u—wTuT, ' (2° + ),

D(C): t=t, i=Cux, g = Cuy, o = C3u,

PIXO): t=t T=x+X" =y,
i=u— X (32" + 3X" + (X°)?),

PUYD): t=t, T=u, g=y+Y" (1.9)
a=u— Y (3y" + 3Y" + (Y")?),

REWY: t=t, 7=u2, g=1, o =u-+ Wz,

RYW?): t=t, 7=ux, g=1y, = u+ Wy,

ZW%: t=t, T=u, g=1y, o =u-+ W

d: t=t, z=uy, y=x, U=1u

We will call transformations from the above families (1.9) elementary

point symmetry transformations of the equation (1.1). Note that the sub-
groups {D'(T)}, {D(C)}, {PH(XO)}, {PY(Y)}, {R* (W)}, {RY(W?)} and
{Z(W%)} of G are associated with the subalgebras { D'(7)}, (D®), {P*(x)},
{PY(p)}, {R*(a)}, {RY(B)} and {Z(0)} of g, respectively. Here all the

parameter functions run through the specified sets of their values. A rep-

resentation of a transformation ® of the form (1.4) as a composition of

elementary point symmetry transformations of the equation (1.1) is

® = D'(T) 0 DY(C) 0 P*(X?) 0 PY(Y?) 0 R* (W) 0 RY(W?) 0 Z(W)

o Y0 WO XX+ YY)
CTtl/S’ 03 6C3Tt ?
XtOXO - W2 Y;()Yo

with
- X0
X0 =
1/37
ct)
- wl
1 _
W=+

20273

+ )
3 2/3
3 g2
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Corollary 1.4. The identity component Giq of the point-symmetry pseu-
dogroup G of the dispersionless Nizhnik equation (1.1) consists of the trans-
formations of the form (1.4) with Ty > 0 and C' > 0. A complete list of
discrete point symmetry transformations of the equation (1.1) that are inde-
pendent up to composing with each other and with transformations from Giq
15 exhausted by three commuting involutions, which can be chosen to be the
permutation J of the variables x and y, (t,%,7,4) = (t,y,z,u), and two
transformations I and J° alternating the signs of (t,x,y) and of (z,y,u),

respectively,
I (3,9, 1) = (—t, —x, —y,u), I (£,2,9,40) = (t, —x, —y, —u).
Therefore, the quotient group G/Giq of the pseudogroup G with respect
to its identity component Gjq is isomorphic to the group Zs X Zo X Zs.
Remark 1.5. In Corollary 1.4 and analogous Corollaries 1.14 and 1.18 be-
low, we assume that each of the listed discrete transformations is defined on
the entire corresponding underlying space and absorbs its restrictions. The
claims on the structure of the related discrete groups after the indicated
corollaries are rigorous only under this assumption. The same assumption

should be imposed on the elements of §) in the proof of Theorem 1.16 for £

to be a group.

1.3. Defining subalgebras for point transformations

In the course of applying the megaideal-based method in the proof of
Theorem 1.3, we expand the basic condition ®,Q) € m, where m is the
minimal megaideal of g containing the vector field @), only for 11 (linearly
independent) vector fields from the algebra g, which is infinite-dimensional.
These vector fields span an 11-dimensional subalgebra s of g. In fact, we

separately consider two subalgebras of s,
s1=(Z(1), Z(t), R*(1), R(1), P*(1), PY(1), P*(t), PY(t), D7),
so=(Z(1), Z(t), R*(1), R¥(1), P*(1), PY(1), P*(t), PY(t), D'(1), D'(t)).
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Moreover, in the other example of applying the same modification of the
megaideal-based method in [85], which was computing the point-symmetry
group of the Boiti-Leon—Pempinelli system, the selected linearly indepen-
dent vector fields also span a subalgebra of the corresponding maximal Lie
invariance algebra. Nevertheless, it is still not well understood how com-
mon this phenomenon is. That subalgebra has the following interesting
property:

Definition 1.6. We call a proper subalgebra s of a Lie algebra a of vector
fields a subalgebra defining the diffeomorphisms that stabilize a if the con-
ditions ®,a C a and ®,s C a for local diffeomorphisms ® in the underlying

space are equivalent.

The implication ®,a C a = P,s C a is obvious, whereas the inverse
implication does not hold in general, and its verification requires nontrivial
computations.

For a better understanding of the general foundations of the algebraic
method in question, it is instructive to check whether the subalgebras s,

and s, are of the kind introduced in Definition 1.6.

Theorem 1.7. The subalgebra s, of the algebra g defines the diffeomor-
phisms that stabilize g, whereas the subalgebra s1 and even the subalge-

bra 51 := 51 + (D'(1)) does not have this property.

Proof. We follow the proof of Theorem 1.3 and use the same numeration of
the selected elements of the algebra g, but for each basis element () of the
subalgebra s; we employ the condition ®,() € g instead of the condition
®,.() € m, where m is the minimal megaideal of g containing the vector

field Q. In other words, we replace the equations (1.5) with the equations
¢.Q" = X"D" + D'(7) + P*(X") + P(5") 110)
+ RO(@") + RY(5") + Z(5"). |

where A\® are constants, 7%, x*, p~, a”, B“ and ¢" are smooth functions
of ¢, and the index x runs the set {1,2,3z,42,52,6,7,8 | z € {z,y}}.
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Collecting t-components in the equations with x = 1,2, we derive the
equations T, = 7Y(T) and tT, = 72(T). Suppose that T, # 0, and
thus 7172 # 0. Recombining the above equations leads to the equation
t = f(T) with f(¢) := 72(1)/7'(f). Differentiating it with respect to t gives
1 = f;(T)T;. Therefore, the derivative f; does not vanish, and according to
the inverse function theorem, we obtain that 7" = T'(t), which contradicts
the supposition 7T}, # 0. Therefore, T}, = 0 and also 7! = 72 = 0.

Collecting - and g-components in the same equations with x = 1,2
leads to the equations X, = MX + ¥/(T), tX, = XX + ¥*(7T),
Y, = MY + pYT) and tY, = N?Y + p*(T), which can be combined to
(At = A X +txH(T) — X3(T) = 0 and (At — )Y + tpY(T) — p*(T) = 0.
Suppose that (X,,Y,) # (0,0). Then we can split at least one of the last
two equations with respect to X or Y, respectively. As a result, we ob-
tain the equation At — A\? = 0, which splits further with respect to t to
A = A2 = 0. Therefore, we also have tY!(T) = ¥*(T) and tp*(T) = p*(T).
Moreover, (¥'x? p'p%) # (0,0) due to the supposition (X,,Y,) # (0,0).
Following the consideration of t-components, we again derive an equation
of the form ¢ = f(T') with f; # 0 and obtain in view of the inverse func-
tion theorem that 7" = T'(t). Then we collect 4-components in the same

equations with x = 1,2 and derive the equations

U= —5RUTIX? = ATV 4 6N (T)X + BAT)Y +6'(T),
tU, = —%X?(T)XQ — %ﬁ%(T)YQ +&(T)X + BAT)Y +6%(T).

We subtract the second equation from the first one multiplied by t. Since
t, X and Y are functionally independent, the equation obtained in this

way can be split with respect to (X,Y’), which in particular results in the
1
t
quences of these equations jointly with the equations tx(T) = x¥*(T) and

equations tX}(T) = X3(T), tp;(T) = p3(T). Pairwise differential conse-

tp*(T) = p?(T) are the equations y' = ¥*> = 0 and p' = p* = 0, respec-

tively. Therefore, we have the equations X, = Y, = 0, which contradict
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the supposition (X,,Yy) # (0,0). This is why in fact X,, =Y, = 0 as well
as M =X =0, x!=x>=0,p! =p*=0and U, #0.
Under the derived constraints, the only essential equation that is ob-

tained via collecting @-components in the equations with x = 1,2 is
U, =& (T)X + Y(T)Y +&4(T).

We temporarily jump to the equations with k = 42,5z, z € {z,y},
where we only collect f-components on this step, obtaining 7, = (T,
tT, = 7*(T), and thus t7(T) = 7*(T). Supposing that T}, # 0 for some
z € {z,y}, we then have 74*(T") # 0 and t = f(T) with f = 7> /7. Using
the same arguments as at the beginning of the proof, we obtain that the
function T depends only on ¢, which contradicts the supposition T, # 0.
Hence T, = T, = 0, i.e., T is nevertheless a function of ¢ only, T = T'(¢)
with T} # 0, and also 7% = 75 = 0.

We return to the equations with x = 3z, z € {z,y}, which we also
consider simultaneously. We successively collect -, - and §-components
and split the obtained equations with respect to X and Y since the func-
tions T', X and Y are functionally independent. This gives the constraints

73 = x% = p% = 0, A% = 0. Then collecting of @-components leads to

the constraints zU, = &*(T)X + %(T)Y + &%(T). In view of the above
expression for U,, this means that x and y can be represented as linear
fractional functions of (X,Y") with coefficients depending on 7. Since the
inverse ®~! belongs to the pseudogroup G as the transformation ® does,
we can permit (¢, z,y) and (7, X,Y) in the last claim. In other words, X
and Y are linear fractional functions of (z,y) with coefficients depending
ont, X = N¥/D and Y = N¥ /D, where the numerators and the denomi-

nator respectively are

NY = X'z + X2y + XO1t), N =Y'(t)a+ Y3ty + Y1),
D = K'(t)x + K*(t)y + K°(t)

for some smooth functions X%, X', X2 Y° Y! Y2 K° K' and K? of t.
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Now we consider the equations with k = 4z, z € {x,y}. The equa-
tions X, = \¥*X + ¥*(T) and Y, = \*Y + p**(T) which are obtained by
successively collecting - and y-components, reduce to

X'D — K'N¥ = A*N*D + y*(T)D?,
X?D — K*NY = AWN*D + y¥(T)D?,
YD — KINY = MNYD 4 54(T)D?,
YZD — K2NY = MWNYD + 5% (T)D?.

(1.11)
)
)
Suppose that (K1 K?) # (0,0). Then X'K? — X2?K' # 0 or
YIK? — Y2K! # 0 since otherwise the Jacobian of the functions 7', X
and Y is zero. Recall that the point transformation J: t =t, 2 =y, § = z,
@ = u, which just permutes x and y, is an obvious point symmetry of the
equation (1.1). This is why we can assume without loss of generality that
X1K? — X2K' # 0. Hence the Jacobian of the functions N* and D with
respect to (z,y) is nonzero, and we can split the first two equations in (1.11)
with respect to (N, D). As a result, we in particular derive the constraints
X! = X2 =0, which contradict the inequality X' K? — X?K! # 0. There-
fore, K! = K? =0, i.e., the functions X and Y are affine in (z,y) with
coefficients depending on ¢t. Re-denoting X*/K° by X* and Y*/K° by Y*,
k = 0,1,2, we can completely follow the part with i = 4,5 in item (i) of
the proof of Theorem 1.3.
The computation for x = 6 and further is again different.
Taking only the #-components and the coefficients of x in the -
components or, equivalently, the coefficients of y in the g-components

in (1.10) with k = 7 and with K = 8, we respectively obtain
1
T,=7(T), F/JF= ST/ Th + A
1
tT, = (7)), tF/F = gtTtt /Ty 4 8.

Combining the second and fourth equations to exclude Fy/F gives tA” = A8,

i.e., \" = \* = 0, and thus we can complete the proof for the subalgebra s,
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as in the second way in item (i) on the proof of Theorem 1.3. Therefore,
the condition ®,s5o C g implies ®,g C g. In other words, the subalgebra s,
defines the diffeomorphisms that stabilize g.

If we use the equations (1.10) with x = 6,7 instead of those with

k = 17,8, then we again obtain the equations

Ft ﬂt 7 3 F2 0 4 ) F2 0
— N W= X0 W0, W= -,
FoaT, 2T, ’ 2T, !

for transformation parameters, and only these equations and their differ-
ential consequences. Here the parameter A7 is an arbitrary constant, and
thus the set of point transformations ® satisfying the condition ®,s; C g
properly contains the group G, which coincides, in view of Theorem 1.3,
with the set of point transformations ® satisfying the condition ®,g C g.
Therefore, the subalgebra s; does not define completely the diffeomor-
phisms that stabilize g. Then the subalgebra s; as that contained in §; all

the more has the same property. ]

1.4. Defining subalgebras

for contact transformations

Subalgebras defining the diffeomorphisms that stabilize the entire cor-
responding algebras can also be considered for algebras of contact vector
fields and local contact diffeomorphisms. The transition from the point case
to the contact one complicates the problem due to extending the space co-
ordinatized by the independent and dependent variables with the first-order
jet variables and thus essentially increasing the total number of coordinates.

Theorem 1.7 implies that the first prolongation s;(;) of the subalgebra s,
of g does not define local contact diffeomorphisms that stabilize g;) since
the subalgebra s, itself does not define local diffeomorphisms that stabi-
lize g. It is not clear whether the first prolongation sy;) of the subalgebra s,

of g differs from s;(;) in the sense of defining local contact diffeomorphisms
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that stabilize g(;). To answer this question it is necessary to integrate
cumbersome parameterized nonlinear overdetermined systems of differen-
tial equations, and its solution requires more sophisticated techniques than
those used in the proofs of Theorems 1.3 and 1.7. The latter techniques

are still efficient only if we extend the algebra to be tested.

Theorem 1.8. A contact transformation ¥ with the basic space R}, xR,

satisfies the condition W,s31) C g(1) for the subalgebra
s3=(Z(1), Z(t), Z(t), R*(1), R(1), R*(t), R*(t))

of the algebra g only if it is the first prolongation of a point transformation

in the above space.

Proof. Suppose that a contact transformation ¥ with the basic space
R?)

t,1.7y
W,s531) € g1). For convenience, we re-denote the basis elements of s3 as

x R,, which is of the general form (1.8), satisfies the condition

Ql:=27(1), Q:=2(t), 9 :=2Z(,
Q= R*(1), Q°:=RY(1), Q°:=R"(t), Q":= RY{).

Then we expand the condition W,s31) € g1 to

0,90 = NDpyy + Dy (7)) + Py (X) + 15(1/1)(5%')

o e (1.12)
+ Ry (@) + R (B') + Zy(6Y),

where A are constants, 7, X', ', &', 8' and &' are smooth functions of ¢,
and the index ¢ runs from 1 to 7.
Collecting t-components in the equations (1.12) with i = 1,2,3, we

derive the equations
T, =#(T), tT,+T, =74T), t*T,+ 2T, =7T),

whose algebraic consequence is the equation 71(T)t* —272(T)t+7%(T) = 0.
Suppose that (7!,7%) # (0,0). Then the last equation implies that
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t = f(T), and, similarly to the proof of Theorem 1.7, we successively
have T = T(t), 7 = 0 and 7 = 0, which contradicts the supposition.
Hence 7' =72 =0and T, = T,, =0, and thus 73 =0 as well.

The next step is to collect z- and y-components in the same equations

with ¢ = 1,2, 3. It results in the equations

X, = MX +xXNT), tX,+ X, =NX+ (D),
22X, +2tX,, = X + (D),

Y, =AY +54(T), tY,+Y, =Y +5(T),
2V, + 2tY,, = N3Y + (7).

We separately combine the equations in each row to exclude derivatives
of X and Y,

(A 4+ 2tA% — M) X 4 21T 4 2t3(T) — *(T) = 0,
(2N 4+ 2t\2 — MY 4+ 2p1(T) + 2tp*(T) — p*(T) = 0.

Suppose that (X, X,,, Y., Ys,) # (0,0,0,0). Then, we can split the
last system with respect to X and Y, which leads to the equations
A 2t02 — 23 =0,

XN (T) + 2t°(T) — X*(T) =0,

(1.13a)
t*p!(T) + 2tp*(T) — p*(T) = 0.

The first equation means that A' = A* = A = 0, and hence (Y}, x?,
oL, %) # (0,0,0,0). Following the above consideration of t-components, we
obtain that the function T depends only on ¢, "= T'(t). We continue the
analysis of the equations (1.12) with ¢ = 1,2, 3, collecting u-components.
This gives the equations

1 1

U, = _§>~<§(T)X2 - §ﬁt1(T)Y2 +a(T)X +84T)Y +54(T),
1. 1_ N . N
tUy + Uy, = —gx%(T)X i §p?(T)Y2 +a*(T)X +64(T)Y +6°(T),
1 1 .
U, +2tU,, = —=XH(T)X? — =2 (T)Y? +a*(T)X +B*(T)Y +6*(T).

2 2
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We linearly combine the first, the second and the third equations with co-
efficients ¢?, —2t and 1, respectively. We can split the obtained algebraic
consequence of these equations with respect to X and Y since T', X and Y
are functionally independent, T depends on ¢ only and thus ¢, X and Y

are functionally independent. As a result, we derive the equations

5 (T) + 2t (T) — Xf( (T) =0, (1.13b)

£ (T) +2tp2(T) — p2(T) = 0.

In view of them, the analogous consideration of u;~components in the equa-

tions with ¢ = 1,2, 3 gives the equations

tQXtt(T) + 2tXtt(T) - )Z?AT) =0,

(1.13c)
EL(T) + 2453(T) - G(T) = 0.

We construct, separately for the equations with respect to x and for
the equations with respect to p, the differential consequences of the sys-
tem (1.13) that have the structures

0;(1.13a) — T3(1.13b), 972(1.13a) — (2T;0; + Ty)(1.13b) + T;*(1.13c).

After the additional division by 2, these differential consequences take the

form
tXHT) + X(T) =0, tp"(T)+p(T) =0, X(T)=0, p(T)=0

and this implies, jointly with (1.13a) that Y! = x> = x®* =0 and p! = p* =
3 = 0, which contradicts the supposition (X, X,,, Y, Ys,) # (0,0,0,0).
Hence X, =Y, =X, =Y, =0.

The next step is to collect t-components in the equations with ¢ = 4, 5.
It gives the equations T, = 7%(T) and tT,, = 7°(T) with z € {z,y}.
Suppose that 7, # 0. Then, similarly to the beginning of the proof of
Theorem 1.7 we again derive that 7" = T'(t) and thus 7, = 0, which

contradicts the supposition. This implies T, = 0 and 7%* % = 0 as well.
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Collecting z- and y-components in the same equations with ¢ = 4,5

leads to the equations

X, = \EX +X¥(T), tX, = X +3°%(T),

Y, = MY 4 5%(T),  tY, = \*Y + p5(T).
They are combined to (tA* — M)X + ty¥* — ¢»* = 0 and
(tA¥Z = \%)Y +tp* —p°* = 0. Suppose that (X, Yo, Xu,, Yu,) 7 (0,0,0,0).
Then we can successively split these combinations with respect to X and Y
and in addition split the coefficients of X and Y with respect to ¢, which
gives \* = X% = 0, tx¥* = Y% and tp¥* = p° with z € {x,y}. After

collecting u-components in the equations with ¢ = 4,5, we have

1 1
2Uy + U, = ==X (T)X? — =5 (T)Y?

TN ol
+a*(T)X + f*(T)Y + (1),
t(zU, +U,.) = —% A(D)X? - %~§Z(T)Y2

+a*(T)X + f7(T)Y + 67(T).

We combine the last equations, subtracting the first equation multiplied

by ¢ from the second one. Splitting the combination with respect to X and

Y gives tf(?z — )Z?Z = 0 and tﬁ ,5?2 = 0. Differential consequences of the
derived system for y** and p°* are the equations Y** = > = p* = p°* = 0,

which obviously imply X,, =Y, = X, =Y, = 0. The obtained contra-
diction with the supposition (X, ,Y,,, Xy, ,Y,,) # (0,0,0,0) means that
we ultimately have X,, =Y, =X, =Y, =0.

Due to the independence of (T, X,Y') on uy, uy, uy, it follows from the
contact condition (1.8b) that U,, = U, = Uy, = 0 as well. Therefore, the
contact transformation W is the first prolongation of a point transformation

in the basic space R? =~ x R,. ]

t,x,y
Corollary 1.9. The first prolongation of the subalgebra so + s3, which is
a subalgebra of the algebra g. = gq), defines the diffeomorphisms of the

corresponding first-order jet space that stabilize g.
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3

b oy X Ry satisfies

Proof. If a contact transformation ¥ with the basic space R
the condition W, (s + 53)(1) C g(1), then it satisfies the weaker condition
V,s31) € ga1)- In view of Theorem 1.8, this implies that the contact
transformation W is the first prolongation of a point transformation & in
the basic space R}, X R,, ¥ = ®(;) and the condition ¥, (s, +53)1) € g
reduces to the condition ®,(s2+s3) C g. In particular, ®,s5 C g. According
to Theorem 1.7, we have ®,g C g. The first prolongation of the last

condition gives the required property of ¥, W,g;) C g). ]
1.5. Point-symmetry pseudogroup

of nonlinear Lax representation

A nonlinear Lax representation of the dispersionless Nizhnik equa-
tion (1.1),

3
1 Uu Ugpqy Uy, U
3 zy xyUyy ry
v =5 |V — =5 |t Uawls — . Uy = ——, (1.14)
3 v Uy Uy
was derived as a dispersionless counterpart!'® of the Lax representa-

tion of the Nizhnik equation, cf. [104]. The maximal Lie invariance

(pseudo)algebra gy, of the system (1.14) is spanned by the vector fields

D'(1) = 70, + 3120, + 571y0, — 1—18775:5@3 +4%)0,,
D® =20, + Y0, + 3ud, + %v@v,
Pr(x) = x0» — 3x12°0u,  PY(p) = pdy — 5p1y° O,

R*(a) = axd,, RY(B)=Byd.,, Z(o)=0c0,, P'=20,,

where 7, x, p, a, § and o are again arbitrary smooth functions of ¢. The
algebra g, is infinite-dimensional as the algebra g and is obtained from g by
extending the vector fields from g to the additional dependent variable v

and supplementing the extended algebra with the vector field P’. The

13See a technique of limit transitions to dispersionless counterparts of (1+2)-dimensional differential

equations and of the corresponding Lax representations in [131, p. 167].
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appearance of PV is natural and related to the fact that the unknown
function v is defined up to a constant summand. This is why we can say
that the maximal Lie invariance algebra gi, of the system (1.14) is induced
by the maximal Lie invariance algebra g of the equation (1.1). Up to
the antisymmetry of the Lie bracket, the nonzero commutation relations
between vector fields spanning g, are exhausted by the counterparts of the

commutation relations (1.3) and one more commutation relation involving

the vector field PY, [PY, D¥] = 2P".

Remark 1.10. The corresponding linear nonisospectral Lax representa-

tion has the following form:

Xt = (PP + 0wy, + Uew + P Uaytiyy) Xa
- (pum:x - p_l(uxyuyy)x - p_gug?yuxxy)Xp)

Xy = p_2ua:me + p_lu:cxyXpa
where p is a variable spectral parameter, x = x(¢, z,y,p) and u = u(t, z,y).
See, for example, [122, p. 360] and references therein for linear nonisospec-
tral Lax representations and the procedure of converting a nonlinear Lax

representation into its linear nonisospectral counterpart in the (142)-

dimensional case.
Analogously to Lemma 1.2, we can prove the following assertion.

Lemma 1.11. The radical of gy, s
v = (D% P*(x), P(p), R*(a), RY(8), Z(0), P").

Further following the consideration of Section 1.1, we construct several

megaideals of the algebra gy,
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The technique for finding the megaideal m; differs from that for the other
obtained megaideals. This is why we formulate the claim on m; as an

assertion.

Lemma 1.12. The span m; := <]5“> 15 a megaideal of gr,.

Proof. Let ¢ be an arbitrary automorphism of gr. Since D° € m, \ m)
and PV c 3(9[/) \ﬁlﬁ, where my = T, 61/2, 3(9L/) and mg = 3(QL//) are
megaideals of gr,, we have

(D) = coD° + P*(x°) + PY(p") + R"(a”) + RY(B°) + Z(c°) + by P",
QO(PU) = alz(l) + blpv,

where x°, p¥, o, Y and ¢ are smooth functions of ¢, and ¢y, by, a1 and b
are constants with cyb; # 0. Then we evaluate the defining automorphism

property at ¢ and the pair of vector fields (DS, ]5”),

(D)0 (PY)] = (D" P']) = =50(P")
~ (2C0 — 1)@12(1) + (CO — 1)[)1?” = O,

which implies (2¢g — 1)a; = (¢g — 1)by = 0. In view of by # 0, we derive
= 1 and then a; = 0. In other words, ¢(P?) € (P') =: m; for any

automorphism ¢ of gy, i.e., m7 is a megaideal of gr.. []

The improper megaideal gr, and the proper megaideals g/, m/, and 3(gr’)
are inessential in the course of constructing the point-symmetry pseu-
dogroup of the system (1.14) using the algebraic method since they are
sums of other megaideals, g, = m; + Moy, g/ = My + m7, M), = m3 + my,
and 3(gr’) = mg+my7. The two constructed one-dimensional megaideals mg
and m; are the most important for further consideration. As for the al-

gebra g, we cannot of course answer the question of whether the above
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megaideals exhaust the entire set of proper megaideals of the (infinite-

dimensional) algebra gr..

Theorem 1.13. The point-symmetry pseudogroup Gy, of the nonlinear Lax

representation (1.14) is generated by the transformations of the form

E=T(t), #=APT e+ X), §=A"T"y+Y4),

AT, A3
~ 42 tt 3 3y 0,2 0,2
t
+ W)z + W2 (t)y + WO(2),
v=Av+ B

and the transformation J: t =t, i =y, =z, 4 =u, 0 =v. Here T, X",
YO, WO W1 and W? are arbitrary smooth functions of t with Ty # 0, and
A and B are arbitrary constants with A # 0.

Proof. We follow item (i) of the proof of Theorem 1.3, replacing the point
transformation ® by the point transformation ® in the extended space with

the coordinates (t,x,y, u,v),

d: (t,%,9,0,9) = (T,X,Y,U,V),

where (T, X, Y, U, V) is a tuple of smooth functions of variables (¢, x, y, u, v)
with nonvanishing Jacobian. The condition ®,P” C m; implies that T, =
X, =Y, =U, =0 and V, = const. Since w,g;, = g, where w in the

natural projection from R? onto R} the independence of the tuple

£2,1,1,0 tayu
(T, X,Y,U) on v means that the -, z-, y- and u-components of ® satisfy
all the constraints derived in item (i) of the proof of Theorem 1.3 for
the components of the transformation ®, i.e., they have, up to composing
with the transformation J: (,%,9,%,9) = (t,y,z, u,v), the form (1.4). It is
obvious that the transformation J is a point symmetry of the system (1.14).
Then collecting v-components in the expanded conditions ®,Z(1) € mg,

®,P(1) €ms, z € {x,y}, and ®,D'(1) € my, lead to the equations V; =
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Ve =V, =V, = 0. Hence it has the form V = Av + B, where A and B are
arbitrary constants with A # 0.

Each point transformation ¢ whose components are of the above form
satisfies the condition ®,g;, C gr, which means that this form cannot be
constrained more within the framework of the purely algebraic method.

We complete the proof with computing by the direct method. More
specifically, using the chain rule, we derive expressions for derivatives
of (u,7) with respect to (¢,%,%) up to order two in terms of the vari-
ables and derivatives without tildes, successively substitute the obtained
expressions and the expressions for the leading derivatives v; and v, in
view of the system (1.14) into the system (1.14) written in terms of
variables with tildes and split the derived equations with respect to the
other (parametric) derivatives of v and v up to order two. The re-
sulting system of equations for parameters of point symmetry transfor-
mations of the system (1.14) reduces to the single equation C® = A%
ie., C = A?? > 0. The computation can be simplified by factor-
ing out the transformation J and the transformations related to vary-
ing the pseudogroup parameters 7, X° Y° WY W' W2 and B,
which are obviously point symmetry transformations of (1.14). In other
words, we can set T = ¢, X' = YV = W0 = W! = W? = 0 and
B =0. ]

Corollary 1.14. A complete list of discrete point symmetry transforma-
tions of the system (1.14) that are independent up to composing with each
other and with continuous point symmetry transformations of this system
18 exhausted by three commuting involutions, which can be chosen to be the
permutation J of the variables x and y, (t,%,9,4,7) = (t,y,2,u,v), and
two transformations J' and J° alternating the signs of (t,z,y) and of v,
respectively,

3 (t,2,79,4,0) = (—t,—x, —y,u,v) and

3% (t,z,9,0,0) = (t,x,y,u, —0).
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Therefore, analogously to the pseudogroup GG, the quotient group of the
point-symmetry pseudogroup G, of the nonlinear Lax representation (1.14)
of the dispersionless Nizhnik equation (1.1) with respect to its identity

component is isomorphic to the group Zo X Zs X Zs.

Remark 1.15. The point transformation

js: ({7 '%7 g) ’12, 6) = (ta -, —Y, —u, ’U),

which is the trivial extension of the discrete point symmetry transforma-
tion J° of the equation (1.1) to v, maps the nonlinear Lax representa-
tion (1.14) of the equation (1.1) to an equivalent nonlinear Lax represen-
tation of the same equation,

3
1 U Uy U U
3 xy xyUyy Ty
V= —= v, +—% | +UppVyp +———, U, =—.
3 x 3 Yy
vy Uy Uy

1.6. Point-symmetry pseudogroup

of dispersionless Nizhnik system

The equation (1.1) is in fact a potential equation of the dispersionless

counterpart

bt = (hlp)x + (th)yv hgl/ = DPu; h:% =Dy (1.15)

of the original symmetric Nizhnik system [94, Eq. (4)], ¢f. Remark 1.1.
(We re-denote the dependent variables and scale the system variables for
canceling the coefficient 3 on the nonlinear summands and for setting the
constant parameters k; and ko to 1.) Indeed, using the last two equa-
tions of the system (1.15) as “short” conservation laws, we introduce the

potentials ¢! and ¢? defined by the equations

pr=h', @,=p and ¢ =h* ol =p.

Therefore, we also have the “short” first-level potential conservation law

@, = @5, for which the associated second-level potential u is defined by



61

the equations with u, = ¢, Uy = ©?.* The dependent variables of the
system (1.15) are expressed in terms of the potential u alone, p = gy, h' =
Uyy and h? = uyy. Substituting these expressions into the first equation of
the system (1.15), we derive the equation (1.1) for the potential w.

Since the equation (1.1) and the system (1.15) are related in a nonlo-
cal way, the maximal Lie invariance (pseudo)algebra gqy and the point-
symmetry pseudogroup Ggn the system (1.15) cannot be directly derived
from their counterparts g and G for the equation (1.1) and should be com-
puted independently. At the same time, each Lie-symmetry vector field )
of (1.1) as belonging to the span of the vector fields (1.2) induces a Lie-
symmetry vector field Q of (1.15). The induction map M,: g — gan
is the composition of the standard second prolongation and the projec-
tion from the second-order jet space over the basic space Rix’y x R,
onto the space with coordinates (¢, z,y,p, ht, h?) under the identification
(p, h', h?) = (Usy, Ugs, uy,). It is obvious that M, is a Lie-algebra ho-
momorphism with ker M, = (R*(«), RY(8),Z(0)). The problem is to
prove that the homomorphism M, is surjective, i.e., it is an epimorphism,
im M, = gq~. This is really the case since computations within the frame-

work of the classical Lie infinitesimal approach show that
gaN = <ﬁt(7_>7 DS) Pw(X)) Py(ﬂ» = M*gv
where

D'(r) = M. D'(r), D*=M.,D",
P(x) = M,P(x), PY(p) = M, PY(p),

that is,

DY(1) = 78, + 1n20, + inyd, — 2mpd, — 2(21h' + Tux)Op
—5(27h° + Tiy) gz,

L4GSee [116, Section 3.5] and the end of Section VI in [75] for related terminology. The idea of the
iterative procedure of introducing potentials can be traced back to [129].
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D = 20, + y0, + pd, + h' O + h*Opz,
P(x) = X0x — xeOn1,  PY(p) = pdy — piOye,
and the parameter functions 7, x and p run through the set of smooth

functions of t.

Since M, is a Lie-algebra epimorphism with
ker M, = <Rx(oz), RY(5), Z(J)>,

the nonzero commutation relations between the vector fields spanning gqn

are exhausted, up to the antisymmetry of the Lie bracket, by

A

[D'(r), D'(r*)] = D'(7'7 — 7/77),

[D'(7), P*(x)] = P* (¢ — §7x),

[D"(), PY(p)] = P*(7pr — §mp),

(D%, P*(x)] = =P*(x), [D* P¥(p)] = —P¥(p).

(1.16)

Accordingly, we were able to construct the following proper megaideals of

the algebra gqn:
my = gan' = <1§t(7)>]5z( ) py(/?)>;
ﬁlz = TN = <DS px( ) ( )>,
), PY(p)).

By Theorem 1.3, the analogous map M: G — Ggy is a pseudogroup

I’flg = ﬁ12 m1 N m2 <Px(

homomorphism, where ker M is the pseudosubgroup of G' constituted by
the transformations of the form (1.4) with T =¢, C =1 and X =Y" = 0.
Although the problem is again to prove the surjection property of M, the
presence of this homomorphism allows us to easily make a conjecture on
the general form of point symmetry transformations of the system (1.15),
which we then prove using the modified version of the megaideal-based

method that was suggested in [85].
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Theorem 1.16. The point-symmetry pseudogroup Gax of the dispersion-
less Nizhnik system (1.15) is generated by the transformations of the form

E=T(t), #=CTz+X°1t), §=CT°y+Y"(),

e, . C , CTy X
p=—mb h=—zh - T =

Tt2/3 Tt?/?) 3Tt5/3 T, (1.17)
o C e Clu, Y0

pu— y J—
TtQ /3 3th)/?, T,

and the transformation J: t =t, & =y, j = x, p = p, h' = h%, h? = hl,
Here T, X° and Y° are arbitrary smooth functions of t with Ty # 0, and

C' is an arbitrary nonzero constant.

Proof. Although the procedure of proving is in general analogous to that
in the proof of Theorem 1.3, computational details are essentially differ-
ent. Consider a point transformation ® in the space with the coordinates
(t,2,y,p, k', h?),
o: (,,9,p, 0", 0% = (T,X,Y,P,H', H),

where (T, X,Y, P, H', H?) is a tuple of smooth functions of (¢, z,y, p, h', h?)
with nonvanishing Jacobian. If it is a point symmetry of the system (1.15),
then the pushforward ®, of vector fields by ® satisfies the conditions
d,m3 C my, . (my \ mz) € my \ my and P, (my \ m3) C my \ M3, and,
moreover, ker &, = {0}. For evaluating ®,, we choose the following lin-

early independent vector fields from g:
le — Pz(l)7 Q2z — pz(t)’ Q?)z — pz(t2>’
Q':=D'(1), Q°:=D'(), Q%:=D
with z € {z,y}. Since Q'*, Q%, Q¥ € m3, Q*, Q° € m; \ m3 and Q° € my\
mg, then
©.Q" = P*(X") + PU(5"), (X*,5") #(0,0), i=1,2,3,
¢.Q = D'(7) + P'(X') + P'(p), 7 #0, i=4,5, (1.18)
®,Q' = N'D° + P*(X') + PY(5'), M #0, i=6.
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Let (1.18),,, i = 1,2,3, and (1.18);, i = 4,5, 6, refer to the ith equation in
the system (1.18) with z € {z,y} for i =1,2,3.

The identity ®.Q% — 29, (t)®,Q% + ®.(t*)®.Q" = 0 and the corre-
sponding combination of the equations (1.18);,, (1.18), and (1.18)3, imply
the system

XH(T) = 2tx*(T) + 2X*(T) = 0, xF*(T) = 2tx7°(T) + £2x5°(T) = 0,

F (1) — 2472 (T) + £5(T) = 0, 5¥(T) — 2472(T) + £51(T) =0,
whose differential consequences are Y**(T) = tx'*(T') and p**(T) = tp**(T).
Similarly to the previous proofs, we derive from these equations that T" =

T'(t) with T; # 0. We collect the components in the equations (1.18);, and
in the combination ®,(¢)(1.18),, — (1.18),,, deriving the constraints

XZ:)ZZLZ(T), }Q:ﬁlZ(T), PZ:07 Xhz :Yhz :th :07

X Y,
H = 351y =-22, mg?=-pF1)=-2
z Xt() 7‘%7 z ’Ot(> j—;f’
(7)) X
HL = (1) — o) = D) X
h Xt() Xt(> Tt Tta
~1ZT) )%
H2 = (1) — i) = ) _ T
h pt() pt() j'vt E

with h* := h! and hY := h2. Hence
X = X'tz + X*(t)y + X (t,p),

Y =Y (t)x+ Yty +Y't,p), P =P(tDp),

X', X2, X' x2 . (1.19)
le_hl _h2__t _t Hlt .

Tt + fI% Crtx ,I%y+ ( 7p)7

vl o vi, o ovhoovR
H2:_h1+_h2——t1‘——ty+H2(tnp)7

T Ty T; T;
where X', X2 X0 vy y2 YO P H' and H? are sufficiently smooth
functions of their arguments with P,(X'Y? — X?Y1) £ 0.
The componentwise splitting of (1.18)4, 3(1.18), — 3®,(¢)(1.18), and
(1.18)¢ leads to the system
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. . 2
Y, = -7F(T)Y + pXT), Pi= —ng(T)P,
2 1. 5
H} = —ngL(T)Hl — §T%(T)X — X?(T)a
2 1. 5
H? = —ngl(T)H2 — ng‘;(T)Y — p{(T),

(T =t74T), =X, +yX, —2pX, =X +3¥°(T) — 3tx*(T),
xY, +yY, —2pY, =Y +35°(T) — 3tp*(T), pP,= P,
xH, +yH, — 2pH, — 2h' H}, — 2h*H), =
—2H" + (T; ') X = 3%2(T) + 3tx; (T),
vH. +yH; — 2pH; — 2h' Hpy — 20 H}, =
—2H? + (T, ')Y = 3p2(T) + 3t} (T),

X, +yX, +pX, = \°X + {%(T),

zY, +yY, +pY, = \Y + 5%(T), pP,=\°P,

xHy +yH, +pH) + h'Hy + WP Hyp, = X°H' — 33(T),
xH; +yH, + pH. + h'Hj, + h”Hpp, = \X°H? — p2(T).

Here we at once take into account the constraints 74(T) = T; and 7°(T) =

tT}, in view of which we have

FNT) =Ty/T,, #(T)—t7i(T) =1,

FUT) = (Tu/ T/ Ty, F3(T) —174(T) = —(T; )y

t

We substitute the earlier derived form (1.19) of the components of ® into
the above system, split the expanded system with respect to (z,y, ht, h?)

and solve the obtained system of constraints

Ty Ty

X/ = txi yl="Yyi i-129
t 311t 9 t 3E 9 ] )~y
X9 = 2L X0 L R(T), VP = 20 4 YT
t 37} ) t 31} )
2T, y 2T - T.\ X
P=-21P H =-2H' () - (D),
3T, 3T, T, ),3T,



66

— P (1),

pX) = X"+ %(T), —2pX) =X"+3°(T) - 3tx"(T),
pY) =Y+ 55(T), —2pY) =Y"+35°(T) — 3tp"(T),
pP, =P, X\ =1,

pHy = H' — XY(T),

3uH) +3yH, = (T;7 )X — 233(T) — 3%3(T) + 3tx;(T),
pH. = H® — pX(T),

3xH. + 3yH, = (T, '),Y — 2p%(T) — 352(T) + 3tp; (T).

This system implies that in fact XY = X%(¢) and Y° = Y°(¢). The other

its independent consequences are only

~4 0 ~4 0 0
T)=X) - —X° T)=Y, ——=Y
3(X°(T) —tx"(T)) = xXX(T) = =X,
3(p°(T) —tp'(T)) = p°(T) = =Y,
Y T . 213
X =X/ Y/ =Y/ j=1,2, P=-"-P P, =P,
t ?)E ) t 31—% ] ) “ t 37—;5 ) p
y " X7 v 2Ty X5 T
Hl — Hl “t Hl — __ttHl . tt it XO
p + ,_Z—;f ) t 37} j—;f 3T2 t
y " Y, v 2Ty Y9 T
H2 — H2 -t H2 — __ttH2 it it .
p P —'_ j—;f ) t 3/]‘2 iz‘vt 3T2 t
The equations for the parameter functions involved in ® integrate to
1/3 j 1/3 Cp
=AY Y =BT P =,
! (1.20)

B X Ewp YD
Tt2/3 T, ! Tt2/3 T, ’

where A;, B;, C'and E;, j = 1,2, are constants with C(A;By—A2B;) # 0.
The transformations defined by (1.19)—(1.20) constitute a pseu-

dogroup &, which contains the set 91 of the transformations of the
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form (1.17) with C' = 1 as a normal pseudosubgroup. The later trans-
formations are point symmetries of the system (1.15), which can be easily
checked by the direct method although it is also clear due to the observa-
tion that they are generated by Lie symmetries of the system (1.15) and
the time reflection (£,,7,p, h',h?) = (—t,—x, —y,p, h', h?). The pseu-
dogroup & splits over 91, & = §H X N, where the subgroup $ of & consists

of the transformations of the form

T'=t, X= Az + Agy, Y = Bix + Boy,
P=Cp, H'=Ah +Ah>+Ep, H?= Bh'+ Byh®+ Eyp,

A;, B;, Cand E;, j = 1,2, are arbitrary constants with C'(A; By — A2 By) #
0. Therefore, we can factor out the transformations from 91 and consider
only the transformations from $ in the remainder of the proof.

It is easy to check that W,gqn = gan for any ¥ € §. This means
that no constraints for the above constant parameters can be found within
the algebraic approach. Therefore, for completing the proof, the direct
method should necessarily be applied. The computation is standard. The
chain rule implies expressions for first-order derivatives of (p, k!, h?) with
respect to (,%,) in terms of the variables and derivatives without tildes,
which we substitute jointly with the expressions for (p, !, h?) and, e.g., the
expressions for the derivatives py, h, and h according to the system (1.15)
into the system (1.15) written in terms of variables with tildes and split
the derived equations with respect to the other (parametric) first-order

derivatives of (p, ht, h?). As a result, we derive the system
A1Ay = B1By =0, BiEy=A1Ey, ByEy = Aybp,
AZ — F\Ay= OBy, A? — E\A =CB,
B} — EyBy = CAy,, B} — EyB) = CA;.

In view of the inequality C(A; By — Ay By) # 0, it implies that £} = Ey =0
and (A1, A2, By, Bo) € {(C,0,0,C), (0,C,C,0)}. O
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Corollary 1.17. M.g = gan and MG = Ggn. In other words, the max-
imal Lie invariance algebra gan and the point-symmetry pseudogroup Gan
the system (1.15) are induced by their counterparts g and G for the equa-
tion (1.1), respectively.

Corollary 1.18. A complete list of discrete point symmetry transforma-
tions of the system (1.15) that are independent up to composing with each
other and with continuous point symmetry transformations of this equation
15 exhausted by three commuting involutions, which can be chosen to be the
permutation J of the variables x and y, and two transformations J and J°

alternating the signs of (t,x,y) and of (z,y,p, h', h?), respectively,
§: (1.2,9.5.0', %) = (t,y.z,p.h*,h1),
3 (f,2,9,p,h', h?) = (—t, —x, —y,p, h', h?),
3. (L, %,4,p, ', h2) = (t, —x, —y, —p, —h', —R?).
Hence again the quotient group of the point-symmetry pseudogroup Gy

of the dispersionless Nizhnik system (1.15) with respect to the identity

component of this pseudogroup is isomorphic to the group Zy X Zoy X Zs.

1.7. Defining geometric properties

We find geometric properties of the dispersionless Nizhnik equa-
tion (1.1) that completely define this equation. In this section, by wu,
or bY Uy, x, With the multi-index k = (kg, k1, k2) € N we denote the jet
variable that is associated with the derivative 9" 1752y /Jtf0Qx"1 Jy2.
Lemma 1.19. A partial differential equation of order less than or equal
to three with three independent vartables 1s invariant with respect to the

algebra g if and only if it is of the form

U — U U
utl‘y — (umuw)x -+ ('U,xyuyy)y + uxyuxyyH < TXT yyy’ x:cy> : (121)
Uzyy Uzyy

where H is an arbitrary smooth function of its arguments.
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Proof. The (infinite) prolongations @ of the vector fields @, which are
presented in (1.2) and span the maximal Lie invariance (pseudo)algebra g

of the equation (1.1), are

1 1
D’éoo)(T) =70 + §7‘,§£Cax + thyﬁ
2

3
+ 93 x x
- Z ( 8Uk 2,00 Eauk’—llo + §auk-—2,2o

1 y? Y 1
+ gﬁuk—z,:’,o + Eauk—zm auk 2,02 Sauk—2,03>

NN (R0 mit e (o
20T ((k)+ 3 k1)) toribmnath

Kk k=1
1 - Ko (k)
— § Z Z E—1 T (xu/-zoJrl—k,erl,liQ
Kk k=2

+ yulﬁo+1fk,ﬁ21,52+1) aUK,?

D? = 378 + y@ —+ Z — K1 — /f2)umau,€a

Xa - Z X ( Uk 1,00 + xauk—l,lo + auk—l,QO

K
+ Z <k0> uﬁ0k751+17/€28un> )
K

o0 2
Y
p) = p8@/ - E :p(k) (Eaukmo + yauk71,o1 + auk71,02

Ro
+ ; (k’)/IJLKOk’Kl’KQ—Fl@uN) )
o0
Z Q U’kOO + auklo)

Z B Ukoo + aukm)

oo

§ o* Outgoo -
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Recall that run through the set of smooth functions of t, (Z) = 0 if
k > n. The differential invariants of the identity component G;q of the
point-symmetry pseudogroup G of the equation (1.1) can be found as dif-
ferential functions F' of u that satisfy the equations Q(«)F' = 0, where @
runs through the set of the vector fields (1.2). We can split these equa-
tions with respect to the derivatives of the parameter functions 7, x, p, «
p and o and then, after deriving the equations F, = F, = 0, with respect
to x and y, which leads to the following system for F"

F=F=F =F

Uk00

Uk20+z <k+1>uﬁo k— 1I€1+1}€2F’UK :O7

Uk02 Z (k + 1) uno—k—l,m,ng—FlFuK - O,
Z(?)-/il—/ﬁgu,i —0 Z/ﬁo-i- 0

e S () <fﬁ+@>(k’i°1>>

X uﬁo—k—l,nmgFuﬁ =0, k € No.

= F

Uk10

= F

Uko1

=0,

Let the order of F' as a differential function be less than or equal to
three. Then the equations in the first row mean that F' is a function at
Most Ugy, Uy, Uyy, Wizz, Utzy, Utyy, Uzzes Uzzy, Uzyy a0d Uy, Then the

equations in the second row with £ = 1 and with £ = 0 successively imply

F,

Utz - Futyy - 07 Fua:;v

+ uxmyFumy = 07 F

Uyy

+ umnyumy = 0.

The equations in the third row and the equation in the last row with £ =0

reduce to
U:v:cFum T uIyFufy + unyuyy + umyFumy =0,
U;z;xxFuxm + U;pxyFumy + 'U/znyuwy -+ uynyuyyy + utxyFutw =0,
Fumx Fuq yyy + QUZyFumy - 0
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The other equations are satisfied identically in view of the derived equa-
tions. Integrating the latter equations, we obtain that any differential in-

variant F’ of order less than or equal to three of the group Giq is a function of

Utgy — (umuaj )x - (ux u ) Upgpr — U Ugy
Wy 1= Y Y y=yy y, Wy = yyy’ Wy 1= Y

UgyUzyy Uzyy Uzyy

?

F = F(wg,w1,ws). Hence the group Giq admits no differential invariants
of orders zero, one and two. The above consideration also implies that the
group Gjq admits no codimension-one singular invariant manifolds in the
third-order jet space J?’(Rgxy x R,). Therefore, a partial differential equa-
tion for the unknown function u depending on (¢, x,y) is Gig-invariant if
and only if it is of the form F'(wy, w;,ws) = 0, where F,,, # 0 since otherwise
the variable t is not significant and rather plays the role of a parameter,

and (1.21) is an equivalent form for such equations. O

Any equation of the form (1.21) is invariant with respect to the point
transformations J' and J® alternating the signs of (¢,z,y) and of (z,y,u),
respectively, cf. Corollary 1.4. At the same time, the permutation J of the
variables x and y is a point symmetry transformation of such an equation

if and only if
H(wi,wy) = ng(—wglwl,wgl).

The space of local conservation laws of the dispersionless Nizhnik equa-
tion (1.1) is infinite-dimensional, and the simplest conservation-law charac-
teristics of this equation are 1, u,, and u,,. Let us check when an equation

of the form (1.21) admits these conservation-law characteristics.

Lemma 1.20. (i) An equation of the form (1.21) admits the conservation-
law characteristic 1 and thus it is in conserved form if and only if H is an
affine function of (wy,ws), i.e., H = awy + bws + ¢ for some constants a, b

and c, and the equation takes the form

Utry — (Uxxuxy)x + (ufcyuyy>y (1 22)

+ Uy (a(uxmj — Uyyy) + Dliggy + cuxyy).
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(i) An equation of the form (1.22) admits the conservation-law char-

acteristic Uy, or Uy, if and only if a =b =0 or a = c =0, respectively.

Proof. The differential function

N = Upgy — (UgaUay )z — (UayUyy)y — Wy Usyy H (w1, w2)

is (locally) a total divergence if and only if EN = 0, where E is the Euler

operator with respect to u,

Ei= > (=Dy)*(=D,)" (=D,)* 2.

K

see, e.g., [96, Theorem 4.7]. Collecting coefficients of sixth-order derivatives

of u in the equation EN = 0, we derive the system
Hw1w1 — Hw1w2 — HCLJQ(JJQ - O?

and, in view of this system, the equation EN = 0 is satisfied identically.
This proves (i).

To prove (ii), it suffices to similarly consider the equations E(u,,N) =0
and E(u,,N) = 0 for affine functions H of (w;,ws).

Lemmas 1.19 and 1.20 jointly imply the following theorem.
Theorem 1.21. An rth order (r € {1,2,3}) partial differential equation

with three independent variables admits the algebra g as its Lie invariance
algebra and the conservation-law characteristics 1, uy, and wuy, if and only

if it coincides with the dispersionless Nizhnik equation (1.1).

In view of Theorem 1.21, the invariance with respect to the algebra g
and admitting the conservation-law characteristics 1, u,, and wu,, lead to
the invariance with respect to the entire group G, which includes the dis-
crete point symmetry transformations J, J' and J°, and to admitting the
entire (infinite-dimensional) space of conservation-law characteristics of the

equation (1.1).
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1.8. Conclusion

Let us discuss some implications of the results of this chapter in the

form of a chain of remarks.

Remark 1.22. Item (ii) of the proof of Theorem 1.3 is the first example of
applying the megaideal-based version of the algebraic method to computing
the contact-symmetry (pseudo)group of a partial differential equation in
the literature. An example of computing contact symmetries of a partial
differential equation using the automorphism-based version of the algebraic

method was presented in [61].

Remark 1.23. Item (i) of the proof of Theorem 1.3 shows that the condi-
tions (1.5) exhaustively define the point-symmetry pseudogroup G of the
equation (1.1), which is the first example of such a kind in the literature.
In other words, the second part of the computation procedure of the alge-
braic method using the direct method is a trivial check that all the singled
out point transformations, which are either of the form (1.4) or compo-
sitions of transformations of the form (1.4) with the transformation d,
are indeed symmetries of the equation (1.1). In view of item (ii) of the
proof of Theorem 1.3, the same claim is relevant for the contact-symmetry
pseudogroup G. of (1.1) as well. At the same time, this is not the case
for the point-symmetry pseudogroup Gi, of the nonlinear Lax representa-
tion (1.14) of the equation (1.1) and even more so for the point-symmetry
pseudogroup Ggn of the system (1.15), which is nonlocally related to the
equation (1.1).

Remark 1.24. It is obvious that J, J' and J° are point symmetries of the
equation (1.1), and the identity component of the pseudogroup G, whose
infinitesimal counterpart is the algebra g, consists of the point transforma-
tions of the form (1.4) with 7; > 0 and C > 0. Therefore, all the transfor-
mations described in Theorem 1.3 are point symmetries of (1.1), and the

first prolongation of these transformations are contact symmetries of (1.1).
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At the same time, this is a simple part of the statement of Theorem 1.3
although it is still not too trivial as shown by the imprecise formulation of
its analog in [92]. In fact, the purpose of the proof of Theorem 1.3 is to
check that the equation (1.1) admits no other point and contact symmetry

transformations.

Remark 1.25. As noted at the end of Section 1.1, the nonzero improper
megaideal of g, which is the entire algebra g itself, can be neglected in the
course of applying the megaideal-based method to computing the point-
symmetry pseudogroup G of the equation (1.1) since it is the sum of two
proper megaideals, g = my + my. This is not the case for the megaide-
als m; and my. Nevertheless, if we use one of them, then the condition
®,.m C m for the other implies no new constraints for the transformation
components, and the megaideal set {ms, ..., mg} assures a bit more effec-
tive and simpler computations than {m;, ms3,... , mg}. It is not yet clear
how to a priori identify megaideals whose involvement in the computation

is not too essential although they are not sums of other proper megaideals.

Remark 1.26. The span of each of the sets of linearly independent vector
fields that were selected for use in the course of applying the megaideal-
based version of the algebraic method in question in the present thesis and
in [85] is closed with respect to the Lie bracket, i.e., it is a subalgebra of
the corresponding invariance algebra. It is still not known whether this
property plays a certain role and whether its appearance is an occasional
phenomenon or appropriate vector fields can be always chosen in the way

to possess it.

Remark 1.27. The selected sets of linearly independent vector fields are
unexpectedly small but still allow us to effectively compute the corre-
sponding point- and contact-symmetry groups, especially when involving
megaideals. Nevertheless, we do not know whether the cardinalities of
these sets are minimum. In general, one has developed no techniques that

would help to a priori estimate sufficient numbers of such vector fields, not
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to mention finding the minimum among these numbers and the optimal

selection of vector fields for simplifying computations.

Remark 1.28. In the course of computing the point-symmetry pseu-
dogroup G of the equation (1.1), it is optimal and sufficient to use the
conditions ®,(s; Nm;) Cm;, j = 2,...,6, which jointly implies the condi-
tion ®,g C g. We have additionally checked that for each k € {2,...,6},
the collection of the conditions ®.(s; N m;) C m;, j € M, where
Mg = {6}, M5 = {5}, My = {4,5}, M3 = {3,4,5}, My = {2,3,4,5}
and My, = {2,3,4,5,6}, implies the condition ®,m; C my. As noted in
Remark 1.25, using the subalgebra s, leads to a bit more complicated com-
putations but allows us to replace the megaideal ms with m;. Moreover, it
suffices to consider the conditions ®,(so N m;) C m;, 7 = 1,3,4,5, which
jointly implies the conditions ®,g C g, and thus ®,m; C my, k € {1,2,6},

as well.

Remark 1.29. In the course of proving Theorem 1.7, we have checked
which subalgebras of g among s1, §; and s define diffeomorphisms stabiliz-
ing g. Simultaneously, we have in fact recomputed the group G only using
the condition ®,s9 C g, i.e., involving no proper megaideals of g. Although
the recomputation is based on a technique analogous to that in the proof
of Theorem 1.3, it is much more complicated. Moreover, in contrast to the
condition with s9, the analogous condition with §; or, moreover, with s;
does not imply the complete system of determining equations for point sym-
metries of (1.1). The situation is even more dramatic in the case of contact
transformations. From the condition W, (sy N'm;¢)) € myqy, j = 4,5, for
a contact transformation ¥, where s, = (Z(1), Z(t), R*(1), RY(1)) is the
common four-dimensional subalgebra of s; and s,, it is easy to derive that
this transformation is the first prolongation of a point transformation in
the space with the coordinates (¢,z,y,w). This is the content of item (ii)
of the proof of Theorem 1.3. We do not know whether this property of W

follows even from the condition W, (s;Us2)(1) € g(1). This weakened condi-
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tion, which does not involve the knowledge of megaideals of g, implies a too
complicated system of equations for the components of ¥, and techniques
applied in the present thesis are not appropriate for solving such a system.
This is the reason why in Theorem 1.8 we have used the subalgebra s3,
which is wider than the subalgebra s5. The presented facts demonstrate
the importance of using proper megaideals within the framework of the al-
gebraic method for finding point-symmetry groups of systems of differential

equations.

Remark 1.30. In contrast to continuous point symmetry transformations,
not all discrete point symmetry transformations of (1.1) are extended to
ones of its nonlinear Lax representation (1.14). At the same time, the
system (1.14) admits, in addition to the expectable point symmetries of
simple shifts in v, the discrete point symmetry transformation alternating

the sign of v.

Remark 1.31. Although the maximal Lie invariance algebra g of the equa-
tion (1.1) exhaustively defines the point-symmetry pseudogroup G of this
equation, it does not define exhaustively the equation itself. Nevertheless,
to single out the equation (1.1) from the entire set of third-order partial
differential equations with three independent variables, it suffices to sup-
plement the g-invariance with a few nice conditions. As such conditions, we

have selected admitting the conservation-law characteristics 1, u,, and wu,,.

The enhanced description of the point- and contact-symmetry pseu-
dogroups of the dispersionless Nizhnik equation (1.1) is only the first step
in further enhancing the results of [92] on Lie reductions of this equation.
In Chapter 2, we also reclassify the one-dimensional subalgebras of the al-
gebra g and classify its two-dimensional subalgebras, exhaustively carry out
Lie reductions of the equation (1.1) and then accurately study its hidden
Lie symmetries. In addition, we would like to compute the entire algebra
of (local) generalized symmetries of (1.1) and the entire space of its local

conservation laws. The above results will create necessary prerequisites for
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the consideration of nonlocal symmetry-like objects that are related to the
equation (1.1).

A similar study can be carried out for both the symmetric and asym-
metric Nizhnik equations [94, 124], over the real and the complex fields
in the presence of dispersion for the Nizhnik equation in the Novikov—
Veselov form and its dispersionless counterpart, as well as for the station-
ary Nizhnik equation, which was considered in [49,90] and in [119, Sec-
tions 9.7 and 9.8].
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Chapter 2

Lie reductions and exact solutions

of dispersionless Nizhnik equation

In this chapter, we exhaustively classify the Lie reductions of the real
dispersionless Nizhnik equation (1.1) to partial differential equations in two
independent variables and to ordinary differential equations.

One-dimensional subalgebras of g. (the representation of the contact in-
variance algebra of the equation (1.1) by vector fields in the evolution form)
that are appropriate for Lie reduction were classified in [92] with a minor
deficiency. Therein, the corresponding Lie reductions of (1.1) to partial
differential equations with two independent variables and further Lie re-
ductions of these equations were performed. Wide families of solutions that
are polynomial in (x,y) were constructed as examples of non-invariant so-
lutions. Second-order cosymmetries of the equation (1.1) were found. Since
all of them are conservation-law characteristics of this equation, the asso-
ciated conserved currents were computed as well. At the same time, it was
not studied which Lie symmetries of reduced equations are induced by Lie
symmetries of the original equation (1.1), and thus a number of presented
two-step reductions are in fact needless. Among obtained Lie-invariant so-
lutions of (1.1), there are many equivalent to each other or those containing
typos, which makes them incorrect. Careful analysis of reduced ordinary
differential equations shows that more of their closed-form solutions can
be constructed, and one should take into account the degeneracy of some

of these equations.
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In this chapter, we correct, enhance and significantly extend results
from [92]. We scrupulously carry out each step of the optimized proce-
dure of comprehensive Lie reduction for the dispersionless Nizhnik equa-
tion (1.1), which results in finding wide families of new invariant solutions
of (1.1) in explicit form in terms of elementary, Lambert and hypergeo-
metric functions as well as in parametric or implicit form.

The first step of the Lie reduction procedure for the equation (1.1)
was in fact implemented in [39] and has been reproduced in Sections 1.1
and 1.2 of the present thesis (cf. [92]), where we in particular computed
the maximal Lie invariance algebras g and gy, of (1.1) and its nonlinear
Lax representation (1.14) as well as their point-symmetry pseudogroups G
and GT,, respectively, and performed a preliminary study of these algebras
and pseudogroups.

We compute for the first time point symmetry groups of reduced equa-
tions, including their discrete point symmetries, and check whether these
symmetries are hidden or induced. Since most of the reduced equations
to be considered are quite cumbersome, various versions of the algebraic
method by Hydon [60-62] are much more efficient in the course of the
above computation than the direct method. In addition, some of the re-
duced equations of the equation (1.1) are not of maximal rank, and the
study of Lie and general point symmetries of differential equations that
are not of maximal rank was also carried out for the first time in [127]
and reproduced in this chapter. We also make deeper analysis of reduced
equations than in most papers in the field of classical group analysis, con-
struct more solutions for more reduced equations and more systematically
study hidden symmetries of the original equation. For integrating some of
reduced ordinary differential equations for the equation (1.1), we involve
the associated Lie reductions of the nonlinear Lax representation (1.14).

In the course of performing the Lie reduction procedure for the equa-

tion (1.1), we observe several interesting phenomena. Thus, not all param-
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eters of a family of inequivalent subalgebras are necessarily inherited by
the corresponding reduced equations. The limit case for this phenomenon
is when all inequivalent subalgebras from a family even parameterized by
arbitrary functions correspond, under an appropriate choice of ansatzes,
to the same reduced equation. Another display of this phenomenon is the
possibility of mapping a class of reduced equations to its proper subclass,
which has a less number of parameters. Some equivalent (two-dimensional)
subalgebras of the algebra g with a nonzero (one-dimensional) intersection
induce inequivalent (one-dimensional) subalgebras of the maximal Lie in-
variance algebra of a reduced partial differential equation obtained by the
Lie reduction with respect to the intersection. The algebra g is embedded
in the algebra g, via extending the vector fields from g to the dependent
variable v of the nonlinear Lax representation (1.14), and thus any Lie
reduction of the equation (1.1) has a counterpart among Lie reductions
of the system (1.14) but such a counterpart is in general not unique even
up to the Gp-equivalence. In contrast to Lie symmetries, simple and ob-
vious discrete point symmetries of the equation (1.1) induce, even under
the optimal choice of ansatzes, complicated and nontrivial discrete point
symmetries of the corresponding reduced equations.

For readers’ convenience, we mark the constructed solutions of the dis-
persionless Nizhnik equation (1.1) by the bullet symbol e.

The results of Chapter 2 were presented in the paper [127] and in the
abstracts of conference talks [4,6,7,126].

2.1. Optimized procedure of Lie reduction

Despite many papers devoted to the construction of exact solutions of
systems of partial differential equations using the Lie reduction procedure,
the number of papers with correct, proper and systematic studies of Lie re-

ductions for particular important systems modeling real-world phenomena



81

is not as large as it could be expected. Such studies involve cumbersome
computations and requires an accurate consideration of many inequivalent
cases. Hence a precondition of successfully performing the above procedure
1s its optimization.

To be specific, we describe the optimized procedure of Lie reduction for
the case of three independent variables, which is relevant to this chapter.
Given a system L of partial differential equations for unknown functions u
in three independent variables, this procedure consists of the following

steps; see also further comments after the procedure’s description.

1. Compute the maximal Lie invariance (pseudo)algebra g and the point

symmetry (pseudo)group G of L.

2. Construct complete lists of G-inequivalent one- and two-dimensional
subalgebras of g and select those among them that are appropriate

for using within the framework of Lie reduction.

3. Lie reductions of codimension one. For each of the selected one-
dimensional subalgebras of g, say s1, find an ansatz for the s;-invariant
solutions of £ such that the corresponding reduced system L£; of par-
tial differential equations in two independent variables is of the sim-
plest or most convenient form. If the system L can be completely
integrated or its general solution is expressed in terms of the general
solution of a system that has been well studied within the framework
of symmetry analysis, then the further consideration of the system £,
and carrying out the Lie reductions of £ with respect to subalgebras

of g containing, up to G-equivalence, the subalgebra s; are needless.

4. Otherwise, compute the normalizer Ny(s;) of s; in g, the stabi-
lizer Stg(s1) of s1 in GG, the maximal Lie invariance algebra g; and
the point symmetry group G1 of £ as well as the subalgebra g; of g;
and the subgroup @1 of @1 that are induced by elements of Ny(s)
and Stg(s1), respectively. Perform the Lie reduction procedure for the

system L, only if g; # g1 or at least el =+ él, see comments below.
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5. Lie reductions of codimension two. For each of the two-dimensional
subalgebras of g that have passed the selection in steps 2 and 3, say
s9, find an ansatz for the so-invariant solutions of £ such that the
corresponding reduced system Ly of ordinary differential equations is

of the simplest or most convenient form.

6. Compute the normalizer Ny(s2) of 59 in g, the stabilizer Stg(sg) of so
in G, the maximal Lie invariance algebra g, and the point symmetry
group Gy of L4 as well as the subalgebra g, of g2 and the subgroup G
of G, that are induced by elements of Ny (s2) and St (s2), respectively.

7. Construct, if possible, the general solution of Ly or at least some
particular solutions of L,. Use transformations from the group G for
gauging integration constants in the constructed solutions. Substitute
the arranged solutions into the ansatz for the s,;-invariant solutions,

which gives G-inequivalent solutions of the original system L.

8. Lie reductions of codimension three. Analyze whether there are Lie
reductions of £ with respect to three-dimensional subalgebras of g to
algebraic equations that lead to new exact solutions of £ in compari-
son with those constructed in the previous steps using Lie reductions
of codimensions one and two. If this is the case, then carry out all

such G-inequivalent Lie reductions.

In steps 1, 4 and 6, it is convenient to carry out the computation of the
corresponding point symmetry groups by a version of the algebraic method,
the automorphism-based version [60-63] (see also further examples, e.g., in
[70,123]) or one of the various modifications of the megaideal-based version
[27,46,47,85,100] in the case of finite or infinite dimension of the associated
maximal Lie invariance algebra, respectively. The direct method [27, 66]
may be advantageous for those systems that belong to classes of systems of
differential equations with known restrictions for point symmetries of their

elements, see [27,71,72]. Systems that are not of maximal rank, which are
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not too uncommon among reduced systems of differential equations,require

a specific study, which complicates the consideration, see Section 2.5.2.

Remark 2.1. As a simple illustrative example, consider the quadratic
porous medium (Boussinesq) equation u; = (uuy), for the groundwater
pressure u, which describes unsteady flows of groundwater with the pres-
ence of a free surface, and its first- and second-level potential equations

Vi = VUyUz and wy = l(wm)2. Each of these equations admits the one-

2
parameter group of shifts with respect to ¢t with the generator 0, as its Lie
symmetry group. The corresponding invariant solutions are just stationary
solutions, and the associated ansatzes u = p(w), v = ¥ (w) and w = ((w)
with w = z respectively reduce these equations to the ordinary differential
equations Y., = 0, Y., = 0 and ({,,)? = 0, which are not of maximal
rank. In particular, the last reduced equation ((,,)? = 0 is not of maximal

rank on the entire set of its solutions.

A subalgebra s of g is appropriate for using within the framework of Lie
reduction if and only if satisfies the local transversality condition. In fixed
local coordinates, this condition is equivalent to the equality of the ranks
of the matrices that are respectively constituted by all the components of
basis vector fields of s and by solely those corresponding to the indepen-
dent variables. In step 2, one can classify merely one- and two-dimensional
appropriate subalgebras of g but, in general, this does not lead to a signif-
icant simplification in comparison with the complete classification and the
further selection of appropriate subalgebras. Usually, subalgebras of g are
classified up to their equivalence generated by the group Inn(g) of inner
automorphisms of g, which coincides with the Gig-equivalence, where Giq
is the identity component of G. At the same time, it is advantageous to use
the stronger G-equivalence instead of the Giq-equivalence since it allows one
to reduce the list of subalgebras to be considered. Moreover, this makes
the Lie reduction procedure consistent with the natural G-equivalence on

the solution set of the system L.
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Particular attention in steps 3 and 5 should be paid to the optimal choice
of ansatzes [53,54,105,118]. Given a subalgebra s of g, an s-invariant ansatz
is defined up to an arbitrary point transformation of invariant variables.
In other words, there is an infinite family of s-invariant ansatzes, and se-
lecting a proper representative in this family usually leads to an essential
simplification of the corresponding reduced system and its further study.
The simplicity of the form of reduced systems and its certain similarity to
the form of the original system £ do not exhaust possible criteria in the
course of selecting ansatzes. Another criterion is to unify the form of re-
duced systems for a subset of listed families of G-inequivalent subalgebras
of g for embedding them into a nice superclass of differential equations
and unifying their study. After reducing the system L using a prelimi-
nary ansatz, one can improve the form of the obtained reduced system by
a point transformation of invariant variables and then optimize the ansatz
by means of combining it with this transformation. At the same time, such
transformations may significantly complicate the form of ansatzes. To pre-
serve the balance between the simplicity of ansatzes and the simplicity of
the corresponding reduced systems, sometimes it is necessary to transform
ansatzes only partially.

Elements of optimal lists of subalgebras of g can in general be not only
single subalgebras but also families of subalgebras parameterized by arbi-
trary constants or, if the algebra g is infinite-dimensional, even by arbitrary
functions. Lie reductions of the system £ with respect to subalgebras from
such a family result in a class C of reduced systems with subalgebra param-
eters as its arbitrary elements rather than in a collection of single reduced
systems. Thus, the study of Lie symmetries for systems from the class C
should be realized as the solution to the group classification problem for
this class.

We would like to emphasize that further Lie reductions of a reduced

system of partial differential equations with two independent variables
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in step 3 should be carried out only if this system admits point sym-

21 of the original sys-

metries that are not induced by point symmetries
tem £ and thus called hidden point symmetriesof £ associated with the
codimension-one reduction under consideration. See the description of the
optimized procedure of step-by-step reductions with involving hidden sym-

metries in [71, Section BJ.

Remark 2.2. In this context, the term hidden symmetries was first used
in [130]. Other terms for this notion in the literature are additional [96, Ex-
ample 3.5], non-induced [53,54] or Type-1I hidden [14,15] symmetries. The
first example of such symmetries was given in [64] but become known after
its discussion in [96, Example 3.5]. A systematic study of them is rather
seldom and has been carried out only for a few famous systems of dif-
ferential equations, in particular, for the Navier—Stokes equations describ-
ing flows of an incompressible viscous fluid [53,54], the (141)-dimensional
generalized Burgers equations uy + uu, + f(t,2)u,, = 0 [105], the two-
dimensional degenerate Burgers equation u; + wu, — u,, = 0 [123], the
Boiti-Leon—Pempinelli system [85], the (1+2)-dimensional ultraparabolic
Fokker-Planck equation w; + zu, = u,, [123] as well as the dispersion-
less Nizhnik equation in the present thesis. Interesting particular exam-

ples of hidden symmetries of several hydrodynamic models were presented
in [21, Chapter 1].

The study of Lie and general point symmetries of the derived reduced
systems, identifying hidden symmetries of £ among them and using such
hidden symmetries for further Lie reduction of the corresponding reduced
systems is a necessary part of the comprehensive Lie reduction procedure.

It is useless and counterproductive to consider the other step-by-step Lie
reductions, whose second steps are based on induced symmetries of reduced

systems. There are at least two sources of inconveniences in the course

21The induction of Lie symmetries of a reduced system by Lie symmetries of the original system was
first discussed in [103, Section 20.4].
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of such reductions, which implicitly lead to the consideration of multiple
essentially equivalent reductions.

To make the first source evident, consider a particular case, where the
system £ admits two commuting Lie-symmetry vector fields Q' and Q?
such that the subalgebras sf := (Q' + uQ?) of g parameterized by an
arbitrary constant y are pairwise G-inequivalent and each of them satisfies
the local transversality condition and is thus appropriate for Lie reduction
of £. Tt is obvious that for any pu, the vector field Q? belongs to the
normalizer of s in g. Therefore, it induces a Lie-symmetry vector field QZ“
of the reduced system L/ for si-invariant solutions of £. Suppose that
the algebra (Q>") also satisfies the local transversality condition. Thus,
we have the infinite family of two-step reductions, where for each u, the
system L is first reduced to the system L] using the algebra s} and then
the system L} is further reduced using the algebra (Q>"). Moreover, the
first steps of these reductions are definitely not equivalent to each other.
Nevertheless, each of these two-step reductions is equivalent to the same
one-step Lie reduction of the system £ with respect to the two-dimensional
subalgebra (Q!, Q%) of g. For invariance algebras of more complicated
structure, equivalences between multi-step reductions are in general not so
obvious, and establishing them requires an additional analysis.

The second source is that Gj-inequivalent (one-dimensional) subalge-
bras of the maximal Lie invariance algebra a; of a reduced system L, of par-
tial differential equations may correspond to equivalent (two-dimensional)
subalgebras of g; recall that by G, we denote the point symmetry group
of ﬁl, see this and other related notations in the above description of
the optimized procedure of Lie reduction. More specifically, suppose that
the system L, is obtained by the Lie reduction of the original system L
with respect to a one-dimensional subalgebra s; = (Q°) of g, and vector
fields Q' and @? belong to the normalizer Ny(s;) of s1 in g, thus inducing el-
ements Ql and Qz of a;. In addition, suppose that the subalgebras (Q", Q)
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and (Q°, Q?) are G-equivalent and the equivalence is established only by a
transformation ® € G that does not belong to the stabilizer Stg(s1) of 1
in GG. Then the transformation ® does not induce a point symmetry of ﬁl,
and thus the subalgebras (Q') and (Q?) of ay are in general Gy-inequivalent.
In terms of reductions and solutions, this means that the inequivalent two-
step Lie reductions with the first step using the subalgebra s; of g and
the second step using the subalgebras (Q!) and (Q?) of a; result in the
G-equivalent families of the (Q°, Q1)- and the (Q°, Q?)-invariant solutions,
respectively. See Remark 2.8 for a nontrivial example of the described
situation, which arises in the course of studying Lie reductions of the dis-
persionless Nizhnik equation (1.1).

This is why the best strategy is to completely avoird multi-step reductions
not involving hidden symmetries.

We do not include the classification of three-dimensional subalgebras
of g in step 2 since in general, it is a much more complicated problem than
those for dimensions one and two and it is not required for the Lie re-
duction procedure in its entity. Only a small number of three-dimensional
subalgebras satisfy the selection criterion from step 8, if they exist at all.
This is why it is better to merely classify the selected subalgebras directly
in step 8. For example, the maximal Lie invariance algebra of the disper-
sionless Nizhnik equation (1.1) contains no three-dimensional subalgebras
that are appropriate to step 8. In a similar way, we may also consider two-
dimensional subalgebras of g but the reached simplification is not essential
in comparison with their complete classification.

The system L can possess families of trivial or obvious solutions that
can be easily guessed without applying Lie reduction or other methods.
Moreover, these families can contain solutions that are invariant with re-
spect to subalgebras of g whose dimensions are greater than or equal to
the number of independent variables, and thus such solutions can repeat-

edly arise in the course of performing the Lie reduction procedure for the
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system L. It is beneficial to find these families of solutions before step 3
and exclude their elements under the further listing of solutions. Similar
solution families can be constructed in step 3 and should be treated anal-
ogously. Section 2.3, the solution family (2.4) and the treatment of trivial
solutions in Section 2.5 illustrate the above remark.

In addition to classical integration methods, a number of other tech-
niques can be applied to finding exact solutions of a reduced system R of or-
dinary differential equations. An obvious approach is to use Lie symmetries
of the system R for at least lowering its order, see Section 2.5.2. One can try
to construct first integrals of R by means of the direct method [18,19] sup-
posing a certain ansatz for the associated integrating multipliers, see [85,
Section 6] for the application of this technique to reduced systems of or-
dinary differential equations for the Boiti-Leon—Pempinelli system. One
can also look for objects that are related to the original system £ within
the framework of symmetry analysis of differential equations and induce
analogous objects for the system R. These objects include not only Lie
and general point symmetries, first integrals and integrating multipliers but
also Lagrangian and Hamiltonian structures and (linear and nonlinear) Lax
representations. Induced objects can then be involved in obtaining exact
solutions of R. See, e.g., Section 2.5.2 for using induced nonlinear Lax

representations.

2.2. Classification of one-

and two-dimensional subalgebras

To carry out Lie reductions of codimension one and two for the equa-
tion (1.1) in the optimal way, we should classify one- and two-dimensional
subalgebras of the algebra g up to G,-equivalence. Instead of the clas-
sical approach for finding inner automorphisms [96, Section 3.3], we act

on g by G via pushing forward of vector fields by elements of G. Recall
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that this way is more convenient for computing in the infinite-dimensional
case [25,45]. Moreover, it also allows us to properly use the entire complete
point-symmetry group G and not be limited to its connected component
of the identity transformation. Thus the non-identity adjoint actions of

elementary transformations from G on vector fields spanning g are merely

(T)D(
DLUT)P*(x) = P* (T, °x(T)), DUT)PY(p) = PY(T;p (1)),
(T)R* (o) = R*(T}*a(T)), DUT)RY(B) = R(T,;*B(T)).
(T) (

DUC)IP(x) = P1(Cx), DiC)PY(p) = PY(Cp),
(a) = R*(C*a), DIC)RY(B) = R'(C*H),
DYC)Z(0) = Z(C0),
PLX")D'(r) = D'(7) + P*(7 X} — 37 X")
+ s RY(X(T X)) — 3m(X°)? — 7(X7)?)
— g Z (X" (rX7)e — gru(X")’ = 7XU(X})%),

PU(Y")D'(t) = D'(r) + PY(7Y, — ir,Y")
+1RY (YO(TYO)t — i (Y)? — 7(Y}")?)
— s Z((Y"P (V) — 3 (YY) = 7Y(YY)?),

RI(WH D' (1) = D'(7) + R* (v W} + 37 W),

RY(W?)D' (1) = D'(1) + RY(TW} + in,W?),

2. (WO D'(1) = D'(1) + Z(rW}),

PHUXND® = D° — PY(X"), REWHD® = D —2R*(W1),
PUYODS = D° — PY(YY), RYW?D* = D° — 2RY(W?),
2,(WD* = D — 3Z(W"),



PLXO)PT(x) = P*(x) + B (X" = xX7) = 52 (xe(X°)? = xX°X7),
PHXR*(a) = R*(a) — Z(aX"),

RIWHP(x) = PT(x) + Z(xW),

PUYO)PY(p) = PY(p) + RV (pY" — pY?) — 3Z(p(Y")? — pYPY"),
PUY)RY(B) = RY(B) — Z(BY"),

RUW?)PY(p) = PY(p) + Z(pW?),

*

J:P*(x) = P'(x), 3.P"(p) = P*(p),
3R (a) = R¥(a),  3.RY(P) = R*(P),

where 7' is the inverse of the function 7. At the same time, a part of
adjoint actions can be computed via mimicking the classical approach if

the corresponding Lie series has a finite number of nonzero terms.

Lemma 2.3. A complete list of G-inequivalent one-dimensional subalge-

bras of the algebra g is exhausted by the following subalgebra families:

s, = (D'(1) +6D7), s12=(D"),
sty = (P"(1) + PY(p)), sly = (P'(1) + RY(8)),
sis=(R°(1)+ RY(B)), sus={(Z(t)), sur={Z(1)),

where § € {0,1} (mod G), and p and B run through the set of smooth
functions of t with p # 0.

Proof. Let 51 = (@) be a one-dimensional subalgebra of g spanned by
a nonvanishing vector field @ = D'(7) + AD® + P*(x) + PY(p) + R*(«a) +
RY(B) + Z(o) from g. Here 7, x, p, o, B and o are arbitrary smooth func-
tions of ¢ and A is an arbitrary constant that do not simultaneously vanish.

If the function 7 is nonzero, then we use DL(T) with T, = 1/7 to
set 7 = 1 and, preserving the notation of the parameter functions, succes-
sively act on the (currently modified) vector field @ by P*(X?)oP%(Y") with
X AX"= —xand Y- AY? = —ptoset xy = p =0, by RE(W1)oRY(W?)
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with W}! — 2AW! = —a and W2 — 2A\W? = —B toset « = 8 = 0
and by Z,(W?) with W? — 3AW? = —o to set 0 = 0. Thus, we obtain
Q = D'(1)+AD®. If X # 0, we can set A = 1 by simultaneously scaling ¢ and
the entire () and, if necessary, alternating their signs. In other words, the
subalgebra s; with 7 # 0 is G-equivalent to a one in the family {s{, s1}.

Suppose that 7 = 0 and A # 0. Changing the basis element (), we first
set A = 1. Then, preserving the notation of the parameter functions and
successively act on the (currently modified) vector field Q by P*(x) o PL(p)
to set x = p =0, by RI(3a) o R{(38) to set @ = 8 =0 and by Z.(30) to
set 0 = 0, which leads to the subalgebra s 5.

Let 7 =0, A =0 and yp # 0. Analogously to the above cases, a chain
of simplifying successive actions is D! (T') with T} = =3, P¥(XY) o PL(Y?)
with X = a and pY? — p;Y? = 3 and by R¥(W?!) with W' = —o, which
gives x =1, « = 8 =0 and o = 0. Thus, we have the subalgebra s/ .

Let 7 = 0 and A = 0 and exactly one of the parameter functions y and p
is nonzero. Up to the permutation of x and y, we can assume without loss
of generality that y # 0 and p = 0. Similarly to the previous case, we set
X =1, a =0 and o = 0, and obtain the subalgebra sﬁ.

Further we assume 7 =0, A =0 and y = p = 0.

If (o, 8) # (0,0), then due to the possibility of permuting = and y, we
can assume, without loss of generality, a # 0 and set « = 1 and o = 0
modulo the G-equivalence, which gives the subalgebra 5?_5.

Otherwise, = 8 = 0 and o # 0. The consideration splits into two
cases 0; # 0 and o, = 0, where the subalgebra s; is G-equivalent to s14

and s; 7, respectively. ]

Lemma 2.4. A complete list of G-inequivalent two-dimensional subalge-

bras of the algebra g is exhausted by the non-abelian algebras

sy, = (D'(1), D'(t) + AD?),
sh, = (D'(1), D'(t) — 1D° + P*(1) + PY(v)),
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sy3 = (D'(1), D'(t) + gD° + R*(1) + R'(v)),
s2.4 = (D'(1), D'(t) + Z(1)),
sy = (D'(1) + AD%, P00 4 pPY(eP11)),
53% = (D'(1) + AD®, P(eXV) 4 GRY(ePA1)),
s53% = (D'(1) + AD®, R*(e® V") 4+ yRY(e2A11)),
835 = (D'(1) + AD?, Z(eP11),

529 — (D%, P'(1) + PY(7)),

S510 = = (D, R*(1) + RY(B)),

5211 = <D , Z(t )>, 5212 = <DS, Z(1)>>
and the abelian algebras

5913 = (D'(1), D%),

5970 = (D'(1) + 6 D%, P(e™) + vPY(e™) + &' RY(e*)),

5945 = (D'(1) 4+ 0D, R*(e*") + vRY(e*)),

55 16 = (D'(1)+ 6D, Z egét)>>
s = (P*(1) + R'(8), P'(p) + R*(p9)),
s61% = (P*(1) + PY(p), —R*(pB) + RY(B) + Z(0)) (5.0 200"

s51p = (P(1) + R'(8 >, RY(B%)) 40

52 20 = <Px 1)+ RY( (0)>U7§07

s5o = (R°(1) + Ry( D, BY(a) + RY(B%)) gy

555 = (R*(1) + RY(8), R*(a) + R*(aB) + Z(0)),, 4

Sy = = (R"(1) + RY(B), Z<U)>g¢ov 5504 = (Z(t), Z(0)>Utﬁé0,

995 = <Z ; (O-)>0-t7507
where p, p, o, B, B, B2 and o run through the set of smooth functions of t
with p #0, A € R, p € [-1,1]\ {0} and v € [-1,1] (mod G), 4,¢" € {0,1}
(mod G), and the conditions indicated after the corresponding subalgebras
should be satisfied as well.
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Proof. Consider a two-dimensional subalgebra s, = (Q', Q?) of g spanned

by two (linearly independent) vector fields
Q' = D7) + N'D*+ P*(x) + PY(p') + R*(a) + RV(B") + Z(0"),

from g with arbitrary smooth functions 7, x*, p’, o, f* and o* of t and arbi-
trary constants A’ such that the tuples (7%, A\, x%, p’, o', 8%, ¢%), i = 1,2, are
linearly independent. Moreover, since [Q!, Q%] € (@', @?), up to changing
the basis (Q!, Q?), we can assume that either [Q!, Q%] = Q' or [Q!, Q%] = 0
if the subalgebra s is non-abelian or abelian, respectively. Consider these
cases separately. For each of the obtained families of subalgebras, we do
not indicate a final tuning of its basis elements, which involves permuting
or scaling these elements or omitting superfluous indices.

I. The commutation relation [Q', Q*] = Q! implies A\! = 0.

I and 72 are linearly indepen-

First suppose that the functions 7
dent. Then the projections 79, of @', i = 1,2 on the t-line span
a two-dimensional Lie algebra of vector fields on the real line with
[710;, 720;] = 710;. In view of the classical Lie theorem, there exists a point
transformation ¢ = T'(t) of ¢ that pushes forward the vector fields 710; and
720; to O; and £0;. This means that the action by D(T) allows us to set
71 =1 and 72 = t. Following the first case of the proof of Lemma 2.3, we
can further set x!, p', o!, 81 and o! to 0. Re-denote (A2, 2, p%, a2, 8%, 0?) as
(A, X, p, @, B,0). Under the derived constraints, the commutation relation
[Q1, Q%] = Q' is equivalent to the equations y; = py = oy = 8 = 0y = 0,
i.e., all these subalgebra parameters are constants. The pushforward by a
transformation ® from G does not change the vector field Q' = D¥(1) up
to its scaling if and only if 7" = at + b for some constants a and b and the
parameter functions X°, Y? W9 W' and W? are constants, whereas the

constant C' is not additionally constrained,

¢: t=at+b F=Czx+X° §=Cy+Y"
o= Cu+Wlae + W2y +W°,
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that is,
® = DL (at+b)oP (X oPY(Y) o RH(W?/C)oRY(W?/C)oZ (W) oD (C).

Pushing forward so by such ® with a = C' = 1 in addition, we have
®.Q' = Q! and

0% = Q* - Q' — ()\ + %) (PT(X") + PY(Y"))
— <2>\ — %) (R* (W) + RY(W?))
— Z(aX? + BY? — xW' — pW?
- (2/\ - %) (WX + W2y + 3 W),

This implies that for general values of A\, wecanset y =p=a =08 =0 =0,
obtaining the subalgebra family {s3,}. Subalgebras of the considered kind
that are not G-equivalent to elements of the family {s5,} correspond to
the special values —%, % and 0 of A, where in addition (y,p) # (0,0),
(ar, B) # (0,0) and o # 0, respectively. In each of these cases, the other
parameters in the tuple (x, p, @, 8,0) can be set to zero by ®, as above.
Using the permutation of = and y, we replace the inequality (x, p) # (0,0)
by x # 0 and |p| < |x| and the inequality (a, 3) # (0,0) by a # 0 and
18] < |al. Acting by Di(at) or D3(C), we scale the nonzero parameter
among x, o or o to 1, which leads to the subalgebras s5 ., with |p| < 1, 85
with |5] < 1 or s9.4, respectively.

Now, let the functions 7! and 72 are linearly dependent but not simulta-
neously zero. The commutation relation [Q!, Q?] = Q! implies that 71 = 0
and 72 # 0 in this case. Following the first case of the proof of Lemma 2.3,
we can set Q% = D!(1) + AD®, where we re-denote A\? by A. Recalling
again the commutation relation [Q', Q%] = @', we obtain ! = e~ 11,
Pl = e ol = et B1 — o@D qnd gl = peBA Dt with
constants vy, ..., v5. For further simplification, we can apply only the

pushforwards that do not change the form of the basis element Q? up to its
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linearly combining with Q. The pushforward by an element ® of G has this
property if and only if the transformation ® or Jo® is of the form (1.4) with

T=t+b X°=reM - keCrie® VY0 =rye — koCroe 1,

A—1
W' = ke — (koCPr3 — )\H()CQVllil)e(Q/\_l)t 5 03 2211

A ; 1K()203V22e2(A—1)t7

W2 = /@462)\t — (5003V4 — >\I€002V2/£2)e(2)\_1>t —
Wb = /15e3’\t — ko(CPus + viks + V2/€4)e(3)\_1)t

A
+ KOC (113 + 1wy )elPA 2t — art 202 (125, + v2Ky o2

)\
6
where C', b and Ky, ..., k5 are arbitrary constants with C' # 0. In addition,

5303 (V13 + ]/23)63()\—1)157

we can multiply Q' by an arbitrary nonzero constant. As a result, we set

oy =1, || <1, rs=vy=v5=0 if 1y #0,

ovy =1, 15=0, v3=v;=0, vy € {0,1} if 11, =0, (v1,10) # (0,0),

ovs=1, || <1, v5=0 if vy =1, =0, (v3,1y) # (0,0),

o v5 = 1 otherwise.

After re-denoting the respective parameters, this corresponds to the sub-
algebras 52_5, 5%, 55% and 55 .

If 71 = 72 = 0, then A\? # 0 and we follow the second case of the proof of
Lemma 2.3 and set x2 = p? = o? = 32 = 02 = 0, which gives Q? = \2D".
The commutation relation [Q!, Q?] = Q! implies that there are three pos-
sible cases, A> =1 and o' = 8! = ¢! =0, AQZ%andxlzplzaleor
A =4 and x!' = p' = o' = ' = 0. Permuting = and y if necessary and
acting by D!(T') with an appropriate value of the parameter function T,
we can set x! =1, ol = 1 or o' € {t,1} in the first, the second or the third

1 1
cases, which leads to the subalgebras 559, 5310 or §9.11 and 59 19, respectively.

I1. Suppose that the subalgebra so is abelian, [Q!,Q?] = 0. Then the

functions 7' and 72 are necessarily linearly dependent.
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Let in addition the tuples (71, A1) and (72, A?) are linearly independent.
Linearly combining Q' and Q?, we can set 71 # 0, \! = 0, 72 = 0 and
A% #£ 0. The successive action by DL(T) with T; = 1/7! and the new value
of 7! allows us to set 7! = 1. Following the second case of the proof of
Lemma 2.3, we set x? = p> = o = 32 = 62> = 0. Then the commutation
relation [Q!, Q%] = 0 implies x! = p! = a! = ! = ¢! = 0, and thus we
have the subalgebra s 13

If the tuples (71, A\l) and (72, \?) are linearly dependent and the func-
tions 7! and 72 do not simultaneously vanish, then we linearly combine Q*
and Q% to set 71 #£ 0, 72 = 0 and A\?> = 0. According to the first case of
the proof of Lemma 2.3, we can reduce Q' to the form D'(1) + A!D%. In
view of the commutation relation [Q!, Q%] = 0, the parameter functions
in Q? are \% = vieM, p? = e, a? = e, 52 = ve®M and 02 = vsePM
with constants vq, ..., v5. The pushforward by an element ® of G, which
is necessarily of the form (1.4), does not change the form of the basis ele-
ment Q! up to its linearly combining with ? if and only if the parameters

of ® have the following form:
T=t+b X°= (ki +reCrit)e™, Y= (ky+ roCriot)eM
A

wt= </€3 + KkoC3rst — MegC?ri ket — K C3V12t — —/i 2C3y 2752) 20
2 3 2 3, )‘ 3, o2)t

W = | kg + koC?ryt — AroC Vgligt—lioc t——/iOC ,
0 3 L 53 2

W = | ks + ko(C°vs + VK3 + vaky)t + §/<300 (113 + oyt

1
—ZR§CH (ViR + vl — 5&5’03(V13 + vt

where C, b and kg, ..., k5 are arbitrary constants with C' # 0. We can
also push forward s, by J or multiply Q% by an arbitrary nonzero constant.

Hence we can set
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oy =1, || <1, rs=0, vy €{0,1}, v5=0 if (v,1n) #0,
<1, V5:O if V1=VQ=O, (Vg,V4)7éO,

o v5 =1 otherwise,

which corresponds, up to re-denoting parameters, to the subalgebras 53?1‘1,
595 and 89 ;.
If 78 = 72 = 0, then it follows from the commutation relation

[Q', Q%] = 0 that also Al = A2 = 0 since otherwise the vector fields Q!
and Q? are linearly dependent, and x*x?—xix? = 0, plp?—pip? = 0, x'a®—
ol + plB? — p?Bt = 0, i.e., the parameter functions x* and x? (resp. p!
and p?) are linearly dependent. Suppose that the tuples (x}, p*) and (2, p?)
are linearly independent. Linearly combining Q! and Q?, we make y!p? # 0
and x? = p! = 0. Then the action by D!(T') with T; = (x!)~? allows us to
set x' = 1, after which a? = p?', and we obtain the subalgebra s5%7. If the
tuples (x!, pt) and (x?, p?) are linearly dependent but not simultaneously
zero, then we linearly combine Q' and Q) and, if necessary, permute
and y to make x! # 0 and x? = p? = 0. Successively acting by D (T') with
Ty = (x1) 73, by PY(X?) with X? = o' and by R¥(W1) with W! = —o?, we
set x! =1, a' = 0 and ¢! = 0, which results in a?> = —p'%. The further
simplifications are B! = 0 if p! #£ 0, 02 = 0 if p! = 0 and 5% # 0, and no
meaningful simplification is possible if p! = 32 = 0. This gives the subalge-
bras s57, 55_11%2 and s5%,, respectively. In the case y' = p! = x2 = p? = 0,

the consideration splits according to the additional conditions that

o 04152 7& 042517
o alff? = a?B! but the tuples (al, ') and (a?, 3?) are linearly indepen-
dent,

o the tuples (!, 3') and (a?, 3?) are linearly dependent but not simul-

taneously zero,

oal=p'=a%?=$%2=0, and o} and o? are linearly independent,
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oal=p=a?=4%2=0, and ¢! and o7 are linearly dependent,

2
and after obvious simplifications, we obtain the subalgebras 5%15 5907,
Bo o o
53, 5594 and 53 5. U

Remark 2.5. The statements of Lemmas 2.3 and 2.4 should be interpreted
in the following way. Subalgebras from different families or within each of
the families parameterized only by constants are definitely G-inequivalent.
At the same time, there is an inessential equivalence between subalgebras
within each of the families parameterized by functions that does not allow
us to further simplify the general form of subalgebras from the family.
For example, subalgebras s, and 5’13.3 are G-inequivalent if and only if
p(t) = plat + b) for some a,b € R or p = (p(T)) ", where T is the inverse

of a solution T' of the equation 7} = c¢p~? for some ¢ € R.

Remark 2.6. For the purpose of Lie reduction of the equation (1.1) to
differential equations with less number of independent variables, it would
suffice to only classify one-dimensional subalgebras of rank one and two-
dimensional subalgebras of rank two. Nevertheless, we decided to present
the respective complete classifications since they require not much more
effort than the above partial classifications do. Moreover, this is instructive
given the fact that the number of correct classifications of subalgebras of Lie

algebras (especially infinite-dimensional ones) in the literature is not great.

Due to the analogy of the structures of (g,G) and (gr,G1), we can
easily obtain the classifications of one- and two-dimensional subalgebras of
the algebra gr, using Lemmas 2.3 and 2.4, respectively. Here we consider

only one-dimensional subalgebras of gi..
Lemma 2.7. A complete list of Gy,-inequivalent one-dimensional subalge-
bras of the algebra gr, is exhausted by the following algebras:

877 = (D'(1) + 0D° + 9'P"), . 512 = (D),

s1 = (P7(1) + PY(p) +6P"), 515 = (P"(1) + R'(8) +6P").
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§ = (R"(1) + RY(B) + 6P"), &= (Z(t)+ 6P,
817 =(Z(1) +0P"), &5 =(P),

where 9,0 € {0,1}, and p and B run through the set of smooth functions
of t with p # 0.

2.3. Trivial solutions

It is obvious that the equation (1.1) is identically satisfied on the solu-
tion set of the differential constraint u,, = 0 or, equivalently, on the set of
functions of (¢, x,y) with additive separation of the variables x and y. In

other words, the equation (1.1) has the solutions of the form
o u=w(tz)+wdty), (2.1)

where w and w are sufficiently smooth functions of their arguments. Calling
these solutions trivial is justified by the fact that the equation (1.1) is a po-
tential equation for the dispersionless Nizhnik system p; = (h'p), + (h*p),,

hy, = ps, h2 = p, with the relation p = uyy, h' = Uy, h?

= Uyy, and
thus a solution is of the form (2.1) for the equation (1.1) if and only if it
corresponds to a solution of the dispersionless Nizhnik system with zero
principal component p.

Within the family (2.1), there is the subfamily of solutions satisfying
the differential constraints w,, = Uypes = Uyyyy = 0 and vy, = uy, and

thus having the form

w=W51) (2 + 1°) + W3(t)a® + W(t)y?

(2.2)
+ W) w + W2 (t)y + WO(t),

where the coefficients W9, ..., W?® are arbitrary sufficiently smooth func-
tions of ¢. The solutions from the subfamily (2.2) are even more trivial than
general elements of the family (2.1) since each solution of the form (2.2) is

G-equivalent to the constant zero solution u = 0.



100

The above trivial solutions of the equation (1.1) often arise in the course
of its Lie reductions. Identifying such solutions among constructed ones
and neglecting them in addition to listing solutions up to the G-equivalence
allow us to better arrange the found families of invariant solutions. Note
that modulo the G-equivalence, we can arbitrarily change or neglect sum-
mands of the form W!(t)z + W?2(t)y + W(t) in any solution of (1.1).

2.4. Lie reductions of codimension one

Among subalgebras listed in Lemma 2.3, only subalgebras s9 ,, 51,
s 5 and 5f4 are appropriate to be used for Lie reduction of the equa-
tion (1.1). We collect G-inequivalent codimension-one Lie reductions of the
equation (1.1) in Table 2.1. There, for each of the above one-dimensional
subalgebras of g, we present a constructed ansatz for u, the corresponding
reduced partial differential equation in two independent variables, where
w = w(z1, 29) is the new unknown function of the invariant independent
variables (21, z2). The subscripts 1 and 2 of w denote the differentiation

with respect to z; and z,, respectively.

Table 2.1. G-inequivalent Lie reductions with respect to one-dimensional subalgebras of g.

Cg U 21 29 Reduced equation

s‘fl e30qyy — %5(:53 +93) | e Oz e Oty (wiiwi2)1 + (wiwaz)2 = 30w

51.2 zPw t y/x (zowza — 2w2)1 = ((22w22 — 2wa)wna),
— (2202 — 2) ((ZQ'LUQQ — 2ws)(22waz
— 4zowo + 6w))

51 3 w— gpep~ 'y t | ply— x| wizg 4 2(1 — pT?)wagwary = 0

5?.4 w + Bry 13 Yy Bwage = b1

We study each of the listed reduced equations separately, indexing it

by the number of the corresponding one-dimensional subalgebra of g.
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1.1.5), = (D'(1)+éD*), § € {0,1} (mod G). The maximal Lie invariance

algebra of reduced equation 1.1° is>?

al | = (D%, w0y, 0y, 0.y, 210y, 220y, ) if 6 =0,

a1, = (D?, 0., 0y, 210y, 220, Oy) if 6=1.
Here D* := 210,, + 200., and D := 210,, + 290, + 3w0,,. All their elements
are induced by Lie symmetries of the original equation (1.1). Indeed, the
normalizer of the subalgebra s9 , in g is
Ny(si) = (D'(1), D'(t), D*, P*(1), P*(1), R*(1), R'(1), Z(1)),

1) = (D'(1), D%, PU(ef), P(e"), R* ("), RY(e™), Z (™))

—_

for 9 = 0 and § = 1, respectively (see a similar computation in [123, Sec-
tion 3]). The Lie-symmetry vector fields D'(1) +0D%, D5, P*(e’"), PY(e’),
R*(e®"), RY(e*"), Z(e*") and, for § = 0, 3D!(t) of the equation (1.1) in-
duce the Lie-symmetry vector fields 0, D, 02,y Osyy 210y, 220y, O, and, for
0 = 0, D? of reduced equation 1.1, respectively.

Therefore, any two-step Lie reduction of the equation (1.1) to an or-
dinary differential equation, where the first step is reduction 1.1 and the
second step is a Lie reduction of reduced equation 1.1, is equivalent to
a direct Lie reduction to an ordinary differential equation using a two-
dimensional subalgebra of g. This means that there is no need to carry out
Lie reductions of reduced equation 1.1.

For each 6 € {0, 1}, let us compute the point-symmetry group G ; of the
reduced equation 1.1° by the algebraic method. Up to the antisymmetry

of the Lie bracket, the nonzero commutation relations between the basis

22In contrast to reduced equation 1.1', its counterpart with § = 0 loses the property of maximal
rank on the submanifold Mj of the manifold M. Here the manifold M is defined by this equation in
the jet space J3(R?

21,22

x R,) and the submanifold My is singled out in M by the consistent system
w1 = Wi = Wwoe = 0, wi1a = Wi = w111 + weze = 0. It can be proved by the classical infinitesimal
method that the maximal Lie invariance algebra of the complement M\ Mg of Mg in M coincides with
the algebra a ;. At the same time, the submanifold M is also invariant with respect to this algebra.

Therefore, the maximal Lie invariance algebra of reduced equation 1.1° is indeed the algebra a ;.
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vector fields of the algebra a := af; are exhausted by

[D%,0.)] = =0.,, [D?,0,] = -0,

[D?, 210,] = 2104, [D?, 290,] = 2204,

(WO, 210, = =210y,  [WOy, 200y = =220y, [WOy, Op] = =0,
(0:1,2100] = Ou, [0, 2200 = Ou,

and

[D%,0,] = =0.,, [D*,0.] = 0.,

[DZ, zlﬁw] = —Zzlﬁw, [[)Z, 228w] = —2226w,

[Bz’ 8w] = _3awa [azla Zlaw] = aw; [8z27 228111] = aw
if 6 =0 and 0 = 1, respectively. We first find megaideals of the algebra a
applying techniques that do not require the knowledge of the automor-
phism group Aut(a) [26,111]. Then we use the constructed megaideals for

simplifying the computation of Aut(a) and obtain the remaining megaide-

als. As a result, the complete list of proper megaideals of a is as follows:

my = a = (0., 0.y, 210y, 220y, Op), My :=a" =j3(my) = (dy),
ms = =C (mg <Dz> —|— mp, My = <Dz + 2w8w> —|— my if 0= 0,
ms = <218w, 228w, 8w>, my = <8Zl, 822, 8w> if 6=1.

Denote mgy := a. Let a point transformation ®: (Z, %, w) = (Z1, 2%, W)
in the space with the coordinates (z1, 29, w), where (Z1, Z2, W) is a tuple
of smooth functions of (21, 2o, w) with nonvanishing Jacobian, preserve the
equation (1.1). Necessary conditions for this are ®,m; Cmy, £k =0,...,4.
Hereafter the indices ¢ and j run from 1 to 2, and we assume summa-
tion with respect to repeated indices. The conditions ®,0, € my and
. (2,0,) € my imply that

Zi = Qj;%Zj + a;o, W =cw+ WO(Zl, 2’2),

where a;j, a;o and c are constants with cdet(a;;) # 0, and WY is a smooth

function of (z1, 22). Then the conditions ®.0,, € my if § =1 or ¢,0,, € my
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and ®,D? € my if 6 = 0 in addition give that W° = b;z; + by for some con-
stants b; and by. Since no further constraints on ® can be derived within the
framework of the algebraic method, we continue the computation with the
direct method, obtaining ay1 = a9, a1z = a9, anas = 0, (a11,a12) # (0,0)
and, if § = 1, ¢ = a®, where a is the nonzero value among a;; and a». This
means that there are exactly two independent, up to composing with each
other and with continuous point symmetry transformations of the equa-
tion (1.1), discrete point symmetry transformations of this equation. They
are the involutions, the one that permutes the independent variables z;
and 2o, (21, Z2,W) = (29, 21, w), and the one that simultaneously alternates
the signs of all the variables, (Z1, 25, W) = (—z1, —29, —w). These transfor-
mations are respectively induced by the discrete point symmetries J and J°
of the original equation (1.1). The fact of inducing all Lie symmetries of
reduced equations 1.1° follows from that for the corresponding Lie invari-
ance algebras a ;. Therefore, for each § € {0, 1} the group G, is entirely
induced by the stabilizer of ¢, in G.

The subalgebra s? | of g is associated with the subalgebra(s) 55° of gr,
with 00’ = 0. The extension of ansatz 1.1 to v is v = e%‘stq + ¢'t. Here
and in the next case, ¢ = q(z1, 29) is the invariant unknown function that
replaces v, and, as for w, the subscripts 1 and 2 of ¢ denote the differenti-
ation with respect to z; and zo, respectively. The corresponding family of
reduced systems for the nonlinear Lax representation (1.14) is associated

with the subalgebra family 5% from Lemma 2.7 and consists of the systems

1 3
g(éﬁ + C]g) + quwi1 + Qawar = §5q +0, wp=—qq, (2.3)

each of which can be interpreted as a nonlinear Lax representation for
reduced equation 1.1 with the same value of §, cf. the introductive part
of [92, Section 4.1]. In other words, reduced equation 1.1 is the compatibil-
ity condition of the system (2.3) with respect to q. Note that for § = 0 we
thus construct two inequivalent nonlinear Lax representations, with §' =
and with ¢’ = 1.
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Reduced equation 1.1° is just the stationary dispersionless Nizhnik

equation. Note that its counterpart with dispersion was studied in [90].

Remark 2.8. A complete list of G ;-inequivalent one-dimensional subal-

gebras of the algebra al ; is exhausted by the subalgebras

b, = <1N?Z>, 05" = (0., + V0., + k210 + $220,),
bg = <Zlaw + V228w>, by, = (&U),

where v € [-1,1], and ¢ # 0 if v € {—1,1} and (k,s) # (0,0), cf. [92,
Proposition 2]. A further gauging of subalgebra parameters is possible
only within the second family {b5"}, where one of the parameters x or ¢,
if nonzero, can be set to be equal to 1 up to the Gi ;-equivalence. At the

same time, the subalgebra by"* is induced by the subalgebra

b5™ = (D'(1) +8D°, P*(e") + vPY(e™) + kR (™) + cRY(e*)) of g,

which is G-equivalent to the subalgebra 3%, where &' = 0 if k = ¢ and

0’ = 1 otherwise. In other words, if 7 = v, the tuples (k,<) and (&,<) are
not proportional with a nonzero multipliers and x — ¢ and kK — ¢ are si-
multaneously either are equal to zero or are not, then the subalgebras by"™
and b5™ of al | are G1 -inequivalent, whereas the associated subalgebras
Bg“ and Bg’“ are G-equivalent. This is why the inequivalent two-step reduc-
tions, where the first step is reduction 1.1 and the second step is based on
subalgebras b5™ and b5 of a} ; with the above constraints on the subalge-
bra parameters, definitely results in G-equivalent families of invariant solu-
tions of the dispersionless Nizhnik equation (1.1), cf. [92, Section 4.1.1.2].

The above phenomenon has not been described in the literature.

1.2. 519 = <DS>. The same conclusion on the superfluousness of two-
step Lie reduction can be made for reduced equation 1.2. Its maximal Lie
invariance algebra is

a0 = <lu)(7')> with  D(7) := 78, — (le + %7’11(223 + 1)> .-
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Here and in what follows the parameter function 7 runs through the set
of smooth functions of z;. It is obvious that the normalizer of the sub-
algebra 619 in g is Ny(s12) = (D(7), D®). The Lie-symmetry vector field
D'(7) of the equation (1.1) induces the element of a; 5 with the same value
of the parameter function 7, whereas D® is mapped to 0. In other words,
the entire maximal Lie invariance algebra a; - of reduced equation 1.2 is
induced by Ng(s12). Therefore, similarly to reduced equation 1.1, further
Lie reductions of reduced equation 1.2 are needless.

In fact, all point symmetries of reduced equation 1.2 are induced by
point symmetries of the original equation (1.1). To show this, we compute
the point-symmetry group of reduced equation 1.2 using the most general
version of the algebraic method. Again, consider a point transformation ®:
(21, 29, W) = (Z', Z% W) in the space with the coordinates (z1, 29, w), where
(Z1, Z%,W) is a tuple of smooth functions of (21, 22, w) with nonvanishing
Jacobian. The algebra a := a;5 is infinite-dimensional and contains no
proper megaideals. This is why the only convenient necessary condition
for the transformation ® to preserve the equation (1.1) is ®.a C a, which
expands to QD*D(T) = lu?(%) Componentwise splitting the latter condition
with each of the specific values 7 = z{, i = 0,...,3, ®,D(z}) = D(7), and
recombining the derived determining equations for the components of &,

we in particular obtain the equation
7 — 37 + 327 — 270 = 0.

Since at most one function among 7, i = 0,...,3, can be constant, this
equation can be solved with respect to Z1, giving Z! = Z1(z;). It is ob-
vious that reduced equation 1.2 admits the discrete point symmetry gL
(Z1, Z9, W) = (—21, 22, —w), which is induced by the discrete point symme-
try J' o J* of the equation (1.1). Up to factoring out the transformation gL
and Lie symmetries of reduced equation 1.2, each of which is also induced,
we can assume that Z' = z;. For this restricted form of ®, we have

®,D(7) = D(r). Splitting this condition componentwise and with respect
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to the parameter function 7 and its derivatives 7., and 7, ., leads to the
equations Z2 = Z; =0, W,, =0, wW,, = W and (z5' + 1)W,, = (Z°)* + 1.
Therefore, Z? = Z*(z) and W = W' (z)w with conditions Z2 # 0 and
Wh:=((Z**+1)/(z3 + 1). To derive more constraints on ®, we should
continue the computation with the direct method. This only gives two
solutions, Z2 = 2y and Z? = 1/2,, which correspond to the identity trans-

formation and the discrete point symmetry J: (21, %2, W) = (21,25 5, 25 °

The transformation J is induced by the discrete point symmetry J of the
equation (1.1). Therefore, the entire point-symmetry group of reduced
equation 1.2 is induced by the stabilizer of s15 in G.

The associated subalgebra of gr, for the subalgebra sq 5 of g is §15. The v-
component of the extension of ansatz 1.2 is v = ]x|3/ 2q. The corresponding
reduced system for the nonlinear Lax representation (1.14) is

e (3 ’ . € 3
= — —_— —_— Z p—
q1 3 2q 242 3612

3
+ (z22w22 — 429wy + 6w) (5(1 - 22(12) + wo2q2,

3
£Qq2 (59 — ZzCI2> = Z9W32 — 2W»

with ¢ = sgnax, which can be interpreted, after solving with respect
to (q1,¢2), as a nonlinear Lax representation for reduced equation 1.2,

cf. [92, Section 4.2] up to typos.
1.3. 504 = (P*(1) + P¥(p)) with p = p(t) # 0.

If p = 1, then reduced equation 1.3 degenerates to wiyy = 0, and its
general solution is w = f(22) + 0'(21)22 + 0°(21), where ¢° and o' are
arbitrary functions of z; = ¢, and f is an arbitrary sufficiently smooth
function of zo = y — x, cf. [92, Eq. (60)]. Up to the G-equivalence, the
coefficients ¢” and o' can be assumed to vanish. The corresponding family

of solutions of (1.1) is

o u=f(y—ux). (2.4)
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For any p with p # 1, meaning that p # 1 on each open interval of the
domain of p, we can use the change of independent variables z; = 2 [(1 —

p_?’) dzy, Z3 = zo for modifying ansatz 1.3” and reduced equation 1.3” to

the form
oo - Ly, m=2 [E 5 5=
U= wl\=1,22) — —Y, 21 = — - di, L9 = — — @,
6p p? p
w212222 + w2252w222222 — O (25)

Thus, the class of reduced equations 1.3” associated with the subalgebra
family {s75 | p Z 1} collapses to the unary class, whose single element
is the equation (2.5). In other words, the G-inequivalent subalgebras s/ 4
with p # 1 lead to pairwise similar reduced equations, which take the same
form (2.5) if appropriate ansatzes are chosen. Nevertheless, we prefer to use
ansatzes 1.3” from Table 2.1 since otherwise Case 1.3 splits into two cases,
and without the above explanation, the modified ansatz looks artificial.
The substitution ws,z, = h maps the modified reduced equation (2.5)

to the inviscid Burgers equation
hz, + hhz, =0,

which is the simplest nonlinear transport equation, called also Hopf’s equa-
tion. An implicit representation of the general solution of this equation is
well known, F'(h,Zs — hZ;) = 0, where F' is an arbitrary nonconstant suf-
ficiently smooth function of its arguments. Modulo the G-equivalence, we
can assume that w is a fixed second antiderivative of h with respect to Zs.
As a result, we construct a family of solutions of (1.1) expressed in terms

of quadratures with an implicitly defined function,

N ~ Pt 3
o U= h(z1,22)dzy | dZe — —
/(/(1,2) 2) 2 pra
31
51::2/p 3 dt, 52:=g—x,
P P
where p is an arbitrary sufficiently smooth function of ¢ that does not

(2.6)

coincide with the constant functions 0 and 1, and the function h = h(Z1, 25)
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is implicitly defined by the equation F'(h,Zs — hZ;) = 0 with an arbitrary
nonconstant sufficiently smooth function F' of its arguments.

Lie and generalized symmetries, cosymmetries, conservation-law char-
acteristics and conservation laws of the inviscid Burgers equation were
exhaustively described in Sections 3 and 6 of [123], see also [23, Appendix]
for the first computation of the generalized symmetries of this equation.
Via the substitution

h(gl,gg) = wQQ(Zl,ZQ) Wlth 21 = 2/(1 — p_3) le, 22 = Z9,

this results in finding many hidden symmetry-like objects for the equa-
tion (1.1).
The normalizer Ny(s/ ) of the subalgebra s/ 5 in g depends on the value

of p, p+ # 0 and p; = 0, respectively,

Ng(s73) = (D%, P*(1), PY(p), R*(B) — R*(pB), Z(0)),
Ng(sf5) = (D'(1), D'(t), D%, P*(1), PY(p), R(B) — R"(pB), Z(0)),

where 8 and o run through the set of smooth functions of £. The maximal

Lie invariance algebra of the modified reduced equation (2.5) is

a3 = (0, 210z, — WOy, 7105, + 2150z, + (1w + £25) O,
2903, + 3wdy, 0z,, 2105, + %5225% a(21)Z20u, (Z1)0u ),

where & and ¢ run through the set of smooth functions of z;. The vector
fields D%, P*(1)+ PY(p), P¥(p), RY(8) — R*(pp), Z (o) and, if p, = 0, D*(1)
and D'(t) from Ny (s/ ;) induce the Lie-symmetry vector fields 220z, + 3w,
0, 0z, @20, with &(Z) = p(t)B(t), 60, with 6(Z1) = o(t) and, if p; = 0,
0z, and 7,0z, + £20:, of the modified reduced equation (2.5), respectively.
All the elements of a;3 from the set complement of the linear span of
the above vector fields from a; 3 are genuinely hidden symmetries of the
equation (1.1). Note that whether the vector fields 8z, and z,0;, + 32,05, are

genuinely hidden symmetries of (1.1) depends on the value of the parameter
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function p, which does not appear in the modified reduced equation (2.5)
and in its maximal Lie invariance algebra ay 3.

In view of the representation (2.6) for all 7 ;-invariant solutions of the
equation (1.1), we do not carry out further Lie reductions of the modified
reduced equation (2.5) with respect to subalgebras of a; 3 although most
of them are associated with hidden Lie symmetries of (2.5). At the same
time, in Section 2.5.1 we exhaustively study essential direct Lie reductions
of (2.5) with respect to two-dimensional subalgebras of g that can be in-

terpreted as two-step Lie reductions with reduction 1.3 as the first step.

1.4.5", = (P*(1) + RY(B)) with 8 = S(t). Each reduced equation 1.4 is
trivial, see [92, Section 4.4]. Its general solution is an arbitrary sufficiently

smooth function of (21, 22) if f =0 and

1
w = 6615*1,23 + QQ(zl)zg + 01(21)22 + Qo(zl)

with arbitrary sufficiently smooth functions ¢°, o' and ¢? of z; = tif B # 0.
The case 5 = 0 leads to the solution family u = w(t,y) of (1.1), which is
parameterized by an arbitrary sufficiently smooth function w of (¢, y) and is
hence a subfamily of the family (2.1). In the case 3 # 0, the coefficients o,
o' and ¢? can be assumed, up to the G-equivalence, to vanish. This leads

to the following simple solutions of the equation (1.1):

u= ?—éy?’ + By, (2.7)
where [ is an arbitrary sufficiently smooth function of ¢.

We can modify ansatz 1.4° with 3 # 0 to u = (2, ZQ)+5my+%ﬁt5_1y3
with the same z; = t and 2, = y, which simplifies reduced equation 1.4°
to g9 = 0. Therefore, analogously to the subalgebras s} ; with p # 1, the
subalgebras from the family {5?4 | 5 # 0}, which is parameterized by an
arbitrary nonvanishing function [ of ¢, also correspond, under this ansatz

choice, to the same reduced equation.
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Depending on the value of the parameter function §, the normalizer
Ny (s} ,) of the subalgebra s, , in g is
(D'(1), D'(t), D*, P*(1), P¥(p), R¥(B), Z(0)) if B =0,
(D'(1), D'(t) + D%, P*(1), PY(p) + R*(pB), R*(B), Z(0))
if 6 # 07 Bt = 07
(D'(1) + xD*, P(1), PY(p) + R*(pB), R(B), Z(0))
if Bt 7é 07 5t = ’%67
(D'(t+p) + (k+3) D, P*(1), PY(p) + R*(pB), RY(B), Z(0))
if Bt 7é 0, (t‘HL)ﬁt = /{57
(P(1), PY(p) + R*(pB), R¥(B), Z(0)) otherwise,
where p, B and o run through the set of smooth functions of ¢. In the
second, the third and the fourth cases, 8 =1, (3,x) = (e',1) and (8, u) =
(|t|",0) modulo the G-equivalence, respectively.

For any value of the parameter function g, the vector fields P*(1) +
RY(B), P¥(p) + R*(pB), RY(3) and Z(o) from Ng(sz) induce the Lie-
symmetry vector fields 0, pd., — %ptzfé?w, Bzg(?w and 00, of reduced equa-
tions 1.4%, where B , p and o are arbitrary smooth functions of z; = ¢. For
particular values of 8 with extension of Ng(sﬁ), there are the following
additional independent inductions:

0.y, 210z, + 3200.,, 220, + 3wd, by D'(1), D'(t), D* if B=0,
0.y, 210;, + 220., +2w0,, by DY(1), D'(t) + 3D°
if B # 07 Bt = 07
0., + kz0., +3kwd, by D'(1)4+ kD> if B #0, B = kp,
(21 4 )02, + (k4 1)200, + (35 + 2)wd, by D'(t+p)+ (k+ 3)D°
1f ﬁt 7é 07 (t—i_:u)ﬁt — /{Bv
where x and p are arbitrary constants with x # 0. If we use the mod-

ified ansatz in the case 8 # 0, the expressions for the analogous in-
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duced Lie-symmetry vector fields are formally the same up to replacing w
by w, except the vector field pd,, — %ptz;aw that should be replaced by
p0., — 5(pr + BB p) 2304

Since reduced equation 1.4° is in fact the identity, it admits any point
transformation in the space with coordinates (21, z2,w) as its point sym-
metry, and any vector field in this space is its Lie-symmetry vector field.
The maximal Lie invariance of the modified reduced equation w999 = 0 for
the case # # 0 coincides with the span of the vector fields 9., 0.,, 200.,,
220,, + 220W0g, Wy, Op, 2005 and 230z over the (pseudo)ring smooth
functions of z;. Moreover, it is obvious that these reduced equations also
possess very wide sets of other symmetry-like objects. Hence for each [,
the equation (1.1) admits many hidden symmetry-like objects associated
with reduction 1.4° but they are not of interest in view of the triviality of

reduced equations 1.4°.

2.5. Lie reductions of codimension two

The subalgebras 55\.1 with A = —1/3, 5%”7, 5%_8, 5510, $9.11, $92.12, 5‘%{’15,

5 pBo  B'B*  _Bo aBlp?  _aBo  _Bo
59165 59180 9919 » 92905 99,21 » 92925 5293, 95994 and 69 o5 cannot be used for

codimension-two Lie reductions of the equation (1.1) since the rank of these

subalgebras is less than two.

The subalgebras s, and s5%7 contain the subalgebras s, and s/,

respectively, and the one-dimensional subalgebras of 3%, and s9% that are
spanned by the respective second basis elements are G-equivalent to sf. 4 for
some (3. All 5?_4—invariant solutions were constructed in Section 2.4. This
is why we can neglect the subalgebras 3%, 84, 53% and 557 in the course
of carrying out codimension-two Lie reductions of the equation (1.1). The
same claim is true for the subalgebras s3%, s5 5 and 53, due to their relation
to the subalgebra s1 ;.

For the subalgebras 55\%, sh o and 5940 with p,v # 0,1 and p # 0,1,



112

the similar claim is relevant only partially since the representation (2.6)
for s7 s-invariant solutions is not explicit and involves quadratures of the
general solution of the inviscid Burgers equation. At the same time, the
Lie reductions associated with these subalgebras are simpler and essen-
tially differ from the remaining G-inequivalent Lie reductions. Moreover,
we were able to construct general solutions of all the corresponding reduced
equations either in an explicit form in terms of elementary functions and
the Lambert W function or in a parametric form. This is why we consider
the above Lie reductions first.

The remaining subalgebras from the list in Lemma 2.4 are s {, 85, 5 5,
s94 and so13. They constitute the second collection of subalgebras to be
considered within the framework of Lie reductions. All the corresponding
invariant solutions are stationary. The integration of the involved reduced
equations is more complicated, and the construction of general or even par-
ticular solutions in certain closed form is possible only for some of them.
For each subalgebra in the second collection, we consider its counterparts
among inequivalent two-dimensional subalgebras of the algebra g, and as-
sociated (p-inequivalent Lie reductions of the nonlinear Lax representa-
tion (1.14). Some of these reductions help us in finding exact solutions to
the associated reduced equations.

Below, for each of the subalgebras 55\% with p # 0,1, s5 4 with p # 0,1
and s34, with v # 0,1 (the first collection) and s5, with A\ # —1/3, s},
sh 4, 694 and S913 (the second collection), we present an ansatz for the
related invariant solutions and the corresponding reduced equation, where
¢ = ¢(w) is the new unknown functions of the single invariant variable w.
We also compute the subalgebra normalizers and induced symmetries (both
infinitesimal and discrete) of reduced equations. In reduced nonlinear Lax
representations, ¥ = 1 (w) is one more unknown functions of the single
invariant variable w, which is associated with the unknown function ¢ in

the original nonlinear Lax representation (1.14).
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2.5.1. The first collection of reductions. In this subsection, we collect

the results for the subalgebras 5;_’;, 599 and §37).

2.5. 5yl = (D'(1) + AD?%, P*(e®11 4 uPY(eV4), 1 #£ 0,1, |u| <1
(mod G):
A—1
3N
u=e""yp 6

2(,&3 - 1)@ww§0www — WPpww T (3)\ — 2)§0ww = 0.

(2} + ), w=eMy— u);

For any value of the parameter tuple (A, i), the subalgebra sé\’g has the

same normalizer in g,
No(sd¥) = (D'(1), D°, PP(e) 4 uP ()
— uRT(eM) 1+ RY(ePM), Z(e?))\t)>.
Reduced equation 2.5 is invariant with respect to the algebra
25 = (WO, + 390, Op, wD,,)

and the point transformation (@, ) = (—w, —¢) and, therefore, with re-
spect to the Lie group Gs5 that consists of the point transformations
Ww=aw, p = afgo + asw + ag, where aq, as and ag are arbitrary constants
with a; # 0. The vector fields D*(1) + AD?, D%, P*(eP=Dt) 4 P (A1),
— R (M) + RY(e2M) and Z(e*) from Ny(s5%) induce the Lie-symmetry
vector fields 0, wd, + 3¢d,, 0, wd, and 9, of reduced equation 2.5, re-
spectively. This means that the entire algebra as 5 is induced by elements
of Ng(s5"). Alternating the signs of (w, @) is a discrete point symmetry
of reduced equation 2.5 and is induced by the discrete point symme-
try transformation J° := D%(—1) of the original equation (1.1). Hence
the group Gs 5 is entirely induced by the point symmetry group G of the
original equation (1.1).

For any values of (), ), reduced equation 2.5 is satisfied by all ¢
with ¢, = 0 but such values of ¢ are G5 5-equivalent to 0 and, moreover,
corresponds to solutions of the equation (1.1) that are G-equivalent to the

zero solution u = 0. Further we assume that ¢, # 0.
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There are several values of A, for which the general solutions of the
corresponding reduced equation 2.5 can be represented in the closed form.
These are A =2/3, A=1/3, A\=5/6 and A\ = 1.

Solving of reduced equation 2.5 with A\ = 2/3 degenerates to the in-
dependent consideration of two equations, the trivial equation ¢, = 0
and the equation 2(u® — 1)@, = w. Solutions of the first equation corre-
spond to solutions of the equation (1.1) that are G-equivalent to the zero
solution © = 0, whereas the second equation is a particular case of the
constraint 2(u® — 1)¢,. = —3(A — 1)w, whose solution set is contained in
that of reduced equation 2.5 for any ), and the associated solutions of

the equation (1.1) take, modulo the G-equivalence, the form

Rk 3, Re3 . 3
_ _ K 2.8
e u 4(M3_1)(y pa)” + (@ +y7) (2.8)
with xk := —(A — 1). Note that the solution (2.8) with fixed values of &

and p is in fact invariant with respect to the three-dimensional subalgebra
(D'(1), D%, P*(e™") + pPY(ve ")) of g.

Below X\ # 2/3. We can integrate reduced equation 2.5 once in two
different ways. The first way uses the fact that the left-hand side of this

equation is a total derivative with respect to w, thus leading to the equation

(:LLB - 1)(900%0)2 — WPy + (3)\ - l)SOw +c1 =0, (2.9)

where c; is the integration constant. The second way is to consider reduced
equation 2.5M as a first-order ordinary differential equation with respect

to ., which integrates to

3
1 1
w:_g)\_lgpww"i_CQ‘QOww'm if >‘7A17 (210)
W = —2(/13 — Do In |@uw| + 200 if A=1,

where ¢y is another arbitrary constant, and the integrated equations can
be easily solved as algebraic equations with respect to ¢, for four values
of A, A\=1/3, A=5/6, A\ =4/3 and A = 1. Some of these values are also

singled out in the course of the further integration.
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Moreover, the case A = 1/3 is singular from the point of view of gauging
the constant ¢; by point symmetries of the corresponding reduced equation.
To be specific, in contrast to the other values of A, we cannot set ¢; to be
equal to zero and can only assume that ¢; € {—1,0,1}. The equation (2.9)

with A = 1/3 is easily solved. Its general solution is

w? +ey/(W2+ )P

T TR o)
ec
+4(,u3—1—1)(w1n’w+ Vw? 4+ } — \/wQ—I—cl) + cow + €3,

where ¢ = £1, and ¢y and c3 are integration constants, which can be set
to be equal zero modulo the G5 5-equivalence. The corresponding family

of solutions of the equation (1.1) is

Wt e/ (w4 a)?

A Ty
ecrel 3—|— 3
e 1_1 <w1n‘w+\/w2+cl|—\/w2+cl>+ 9y

where w = e */3(y — px), e = %1, p is an arbitrary constant with p # 0, 1,
and ¢; € {—1,0,1} (mod Ga3).

For A = 5/6, A = 4/3 and A = 1, the general solutions of the corre-
sponding reduced equations 2.5 can also be represented in closed form,

where for convenience we use other integration constants b1, b, and b3, and
e==+1:

5 ph—1 4e 3 2 5/2

)\:6 Y = bl w +@(4(,LL —1) —blw) +b2w+b3,
4 w3 biw?

A== = — +
3 12(u2 —1)  16(u® —1)2

(b — 8(u* — 1)w)5/2

b
T (A — 1)

+ bgw + bg,
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41822 + 152 +4
216(u3 — 1)23

2 e {Wy(@), W4(@)}, @:=—

A=1: p=—-w

+ bgw + bg,

biw

20 — 1)

where W, and W_; are the principal real and the other real branches of the
Lambert W function, respectively. The solutions with b; = 0 correspond
to solutions of the equation (1.1) that belong, up to the G-equivalence, to
the family (2.8). Hence we can assume that b; # 0 and thus set the gauges
b1 =1, by = b3 =0 (mod Gs5). This leads to the following G-inequivalent
solutions of the equation (1.1) with ¢ = £1 and an arbitrary constant
w#0,1:

3 3

o u= (- Ded(y—pa)?+ " ?j;y
4e 5 _5 5/2
+ 1—5€2t(4(u3 — 1) — e iy — px))”?,

(y —pa)’ o (y—px)® 2’4y’
D e A + es —
12(3 — 1) 16(5—1)2 18
_a 5/2
w (1= 8 = Deit(y — pa))”
1920(1% — 1)* ’
L1822 + 152 + 4
216(u3 — 1)23 7
e 'y — px)
20 = 1)
For any \ # 2/3,1/3,1, the general solution of reduced equation 2.5

can be represented in a parametric form in a uniform way. Considering

u =

+ ce

o u=—(y— pux)

ze {W(@), Wa(@)}, @:=

the derivative ¢, in the equations (2.9) and (2.10) as a parameter and

denoting it by s, we rewrite these equations as

213 —1
3A—-1

(u? —1)s* —ws + ¢
3A—1

W= 8+62|8|ﬁ7 Pu = —
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The associated parametric expression for ¢ = [ ¢, dw is given by

4 —1)s —3w 5, (WP —1)s —w

3
(3 -1 _
P e =D T mea o
clw 11
oo @ ARG
2 1 > 3/2 4 s 1
Y = 27(:“ - ) 3 - §C2( )| ‘ 9 Sgn( ) Il|8| (211)

+cw4cy if A=0,
8 5 23 4 4c2
= (u’ =1 — 1)1
1

+ 2ciw 4¢3 if )\:5

Note that the value ¢y = 0 corresponds to solutions of the form (2.8) and
can be excluded from the consideration. Thus, we can assume ¢y # 0 and
thus set co = 1, ¢4 = ¢ = 0 (mod Ga5). This leads to the following

G-inequivalent solutions of the equation (1.1):

A—1
3
o u=¢e"p 5

where X\ # 2/3,1/3,1, u # 0,1, and the function ¢ is defined by the ap-
propriate equation from (2.11) with co = 1, ¢; = c3 = 0, w := e M (y — px),

(2 + °),

and additionally the function s = s(w) is implicitly defined as a solution

of the Lambert’s transcendental equation

1 2#3—1

|5|3,\—2 _ =

3A—1
In fact, the elementary solvability of this equation for A € {5/6,4/3} as

s =w. (2.12)

a quadratic equation with respect to a degree of s has been used above
for deriving explicit solutions of the equation (1.1). The equation (2.12)
can also be solved for some other values of A as algebraic equations with
respect to certain degrees of s, which results in explicit expressions for

the general solutions of the corresponding reduced equation 2.5*. Thus,
(BA—2)"1=—-1/2,-2,3,1/3 for A =0,1/2,7/9,5/3, respectively, and the
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corresponding equations (2.12) are cubic equations with respect to certain

degrees of s and, therefore, can be solved, e.g., using the Cardano formula.

2.9. 65y = (D*, P*(1)+PY(p)), p # 1 for any open interval in the domain
of p and p(t) # 0 for any ¢ in this domain:

p? 6p

3
p’—1 4

-,
p3

The normalizer of the subalgebra s, in g is

(D, P"(1) + PY(p)) if pi #0,
(D'(1), D'(t), D, P*(1) + PY(p)) if p,=0.

Ny(sh)
Ny(sh )

Since reduced equation 2.9” is a first-order ordinary differential equation,
its maximal Lie invariance algebra af, is infinite-dimensional. The nor-
malizer Ng(s5 4) induces merely the zero subalgebra of the algebra af 4 and
its subalgebra (0,,, wd,, — 0, if py # 0 and p; = 0, respectively. Therefore,
the original equation (1.1) admits an infinite number of linearly indepen-
dent hidden symmetries that are associated with reduced equation 2.97.
Nevertheless, these hidden symmetries are not of great interest in view of
the trivial integrability of reduced equation 2.9”. Separating the variables
in the reduced equation, we integrate it and substitute the obtained expres-
sion for ¢ into the ansatz, which gives the following a family of solutions
of (1.1) (cf. reduction 1.3):

_ L o3
e =
% 12p° 6p

2.14. §3% = (D'(1)+6D%, P=(e®) +vP¥(e®) + 8 RY(e*)), 6,0" € {0,1},
v#0,1, |v|<1 (mod G):

J o
— 3(515(‘0_6(:63_’_y3)_|_566ty27 Ww=e

2V(V3 - 1)90ww90www = 5/§0www - 3V(5g0ww.

My — va);
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Depending on values of (,4'), the normalizer of the subalgebra s37,

in g is one of the following:

No(sp1y) = (D'(1), D'(t), D°, P*(1), P'(1), —vR"(1) + R'(1), Z(1)),

Ng(s37y) = (D'(1), D'(t) + 3D°, P*(1), P'(1) + R"(1),

—vR*(1)+ RY(1), Z(1)),
Ng(s211) = (D'(1), D°, P*(e"), P(¢"), —vR*(e) + RY(e™), Z(e™)),
Ng(sy5s) = (D'(1) + D%, P7(e"), PY(e') + R"(e"),

— VR (e*) + RY(e*), Z(e™)).

Therefore, the vector fields D'(1) + D%, P(e®), PY(e) 4 & R*(e*),
—vR*(e*") + RY(e?*) and Z(e*") belong to Ny(s3%),) with the correspond-
ing value of (0,0") and induce the Lie-symmetry vector fields 0, —vd,,
0y — 0'vw0,, wd, and J, of reduced equation 2.149%%  respectively. For
any values of (0, v,d), reduced equation 2.14°*?" is invariant with respect
to the algebra as 14 = (0., 0,, w0,) and, therefore, with respect to the cor-
responding Lie group (G914, which consists of the point transformations
w=w+ay, p =p-+asw+ az, where ay, ao and az are arbitrary constants.
The group G914 is entirely induced by the point symmetry group G of the
original equation (1.1). For any values of (§, v, §'), reduced equation 2.14°
is satisfied by all ¢ with ¢, = 0 but such values of ¢ are G5 14-equivalent
to 0 and, moreover, correspond to solutions of the equation (1.1) that are
G-equivalent to the zero solution v = 0. Further we can consider only
solutions with ¢, # 0.

Consider the case § = 0. Reduced equation 2.14°%" degenerates to the
elementary equation ¢, = 0 whose maximal Lie invariance algebra is well
known, a4, = (0, wd,,, W0, + 2wpd,, O, WO, W?d,, ©d,). In addition
to the Lie-symmetry vector fields d,,, 0, and wd,, which are induced as in
the general case, elements of the normalizer Ny(s9%,) induce wd, + 200,
if & = 1 and wd, and d, if & = 0. Any element of a)%, involving at
least one of the basis vector fields w?d,, + 2wp0,, wQQD and, if o' = 1,
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w0, + apd, with a # 2 is a hidden symmetry of the equation (1.1). All
the corresponding solutions of the equation (1.1) are G-equivalent to either
the zero solution u = 0 or solutions of the form (2.7) with 8 = const.

Reduced equation 2.14'"? is factored out to (2(V3 —1)puww —1—3) Vuw = 0.
Therefore, its solution set is the disjoint union of the solution sets of the
equations 2(v® — 1)puww + 3 = 0 and ¢, = 0. This implies that the
maximal Lie invariance algebra ai%, of reduced equation 2.14™? is the
intersection of the maximal Lie invariance algebras of the above equations,
as’y = (D, Oy, WO, WO, + 3¢d,). The entire algebra a3’} is induced by
Ng(s34)). Thus, the case (4,8") = (1,0) leads, modulo the G-equivalence,
to the solutions of the equation (1.1) that are of the form (2.8) with k = —1
and p = v.

Consider the case 0" # 0. Thus, 6 = 1. We neglect the gauge 0’ = 1,
set &' to another value, &' = —v(v® — 1), and denote k := —3(v* —1)71. As

a result, we need to solve the equation

((Qoww)2 + Puww — "ﬁpw)w = 0.

We integrate it once, deriving (QOW)2 + Quw — Kpw —c1 = 0, ¢ 1s an
integration constant, and solve the integrated equation with respect to ¢,

1 1
Do = —3 + 5\/411%, + 1+ 4c;.

/ . .
417" coincides

The maximal Lie invariance algebra of reduced equation 2.1
with the common invariance algebra as 14 of case 2.14. Modulo the induced
(G9.14-equivalence, we can set 1 + 4c¢; = 0. Separating the variables in the
resulting equation, denoting z := —1 & /4K, and integrating once more,
we obtain z + In|z| = k(w + ¢2), where ¢, is another integration constant
that also can be set to be equal zero up to the Go14-equivalence. In other

words, we derive the equation
z+1n|z|

:F w = ,
w = F(¢w) e
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and its general solution can be represented in parametric form as

w=F() with (: —(ZJr—l)Q

dF 1 (2 3 w
= —(()d — (4229 =
© /Cdc ¢ = / 4/—@2 4/12<3+22+ z>+4/€+03,

where c3 is one more integration constant that also can be set to be equal
to zero up to the Gsi4-equivalence. The summand w/(4k) can be ne-
glected using the (G5 14-equivalence as well. Since ze® = £e“, we have
that z € {Wy(e™), Wo(—e™), W_1(—e")}, where W, and W_; again de-
note the principal real and the other real branches of the Lambert W
function, respectively. As a result, we show that any solution of reduced
equation 2.14% with 66’ # (0 is G9.14-equivalent to one of the solutions

]' 23 3 RW KW KW
12 (§ + 7 —|—22> , 2z € {Wh(e™), Wy(—e™), W_i(—e™)}.

The corresponding G-equivalent solutions of the equation (1.1) take the

()0:

form

(V—l) 3t 23 3 1 3 3 V3_1t2
= 7 . + 422 ) — (2 4+ — —=
o U 36 3 22 y4 6(1’ y) ey,

where z € {Wy(e™), Wy(—e™), W_1(—e")} with w := e”'(y — vz) and
k=312 —1)"!

2.5.2. The second collection of reductions. The reduced ordinary
differential equations that are obtained from the equation (1.1) by Lie re-
ductions using the two-dimensional subalgebras from the second selected
collection are cumbersome and among them there are three one-parameter
families of equations, which complicates the computation of Lie and, more-
over, point symmetries of these equations. At the same time, there is a
more essential obstacle even for computing Lie symmetries just using the
standard Lie approach augmented with specialized computer-algebra pack-

ages. The general form of the above reduced equations is

M(w, @, Puw, @ww)%pwww + N(W7 @, Puw, Spww) =0,
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where M and N are respectively specific first- and second-degree polyno-
mials in (¢, @, Puw) With coefficients polynomially depending on w that in

addition satisfy the conditions

M. #0 or
(2.13)
M@ww - 07 M@w (BM@UJ + N@ww@ww)(GM@w + N@ww@ww) % 0

Some of these equations cannot be represented in normal form due to their
degeneration, and the solution set of each of them splits into two parts
that are singled out by the constraints M # 0 and M = N = 0, re-
spectively. The left-hand sides of several of them even admit algebraic
factorizations. Therefore, the maximal Lie invariance algebra of such an
equation My, + N = 0 is the intersection of the maximal Lie invariance
algebras of the equation ¢, = —N/M with M # 0 and of the (overde-
termined) system M = N = 0. We prove that under the conditions (2.13),
any Lie-symmetry vector field of the equation ¢, = —N/M is necessar-
ily of the form &0, + (n*¢ + 1°)d,, where &, n* and n" are functions of w,
and then the computation of the maximal Lie invariance algebra of this
equation can be easily completed with a computer-algebra system even
in the case of presence of a parameter. After reducing the corresponding
system M = N = 0 to a passive form, we also find its maximal Lie in-
variance algebra if its solution set is nonempty. For each family of reduced
equations under study in this section, the construction of its point sym-

metry group is specific and is carried out using the algebraic method by
Hydon [60-62].
2.1. 53, = (D'(1), D'(t) + AD%), A # —1/3:
Yoo
x’ 3N+ T
(2w(w3 — 1) — (k= 1)(3w® — D), + K(k — 1)w24p)gpww
— (k — 2)((5w3 — 1ol — (k — Dw(llwe, — 360)Pu
+ (k= 1)* (5w, — 260)py) = 0.

u=|z|"p, w=
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In view of its definition, the parameter £ cannot be equal to 3 but we can
neglect this fact by uniting reduction 2.1 with reduction 2.13, which can be
considered as corresponding to the values A = +o00 and k = 3, see below.
Note that it is convenient to assume the family of reduced equations 2.1
to be parameterized k instead of .

The associated system M = N = 0 is equivalent to the equation

v, =0 it k=0,

Vuw =0 if k=1,

20(w?® — g — (Bw® — D, + 2020 =0 if k=2,
(w? 4+ 1), = 3w?p if k=3,

(w® — 10w* + 1), = 6w (w* — 5)p if k=6,

¢ =0 otherwise.

The corresponding solutions of the original equation (1.1) belong to the
family of trivial solutions (2.1), except the cases kK = 2, see the considera-

tion of this case below, and k = 6, with the polynomial solutions
u = ¢y (2% — 102y + ¢%)

of (1.1), where ¢ is an arbitrary constant.

The normalizer of the subalgebra 55, in g is

Ny(s3,) = (D'(1), D'(t), D*) if X+ 0,1/6,
Ng(ﬁg.l) - <Dt(1)7Dt<t)>DS7 Z<1)>7
Nq(syy) = (D'(1), D'(t), D%, R*(1), R¥(1)).

For a general value A # —1/3, the vector fields D(1), 3D'(t) and D?
induce the Lie-symmetry vector fields 0, —rk¢0,, and (3 — k)pd,, of reduced
equation 2.1% whereas for A = 0 and A = 1/6 (i.e., Kk = 0 and kK = 1)
we in addition have inductions d, by Z(1) and J,, and wd, by R*(1) and

RY(1), respectively. The discrete point symmetry transformations J and J°
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of the equation (1.1), see Corollary 1.4, induce the discrete point symmetry

transformations

(@,¢) = (W, [w|™p) and (@,¢) = (v, —¢)
of reduced equation 2.1" for any k, respectively, whereas the discrete point
symmetry transformation J' of the equation (1.1) corresponds to the iden-
tity transformation of (w, ).

For a general value A\ # —1/3, the subalgebra 53, has, up to the G-
equivalence, a single counterpart among subalgebras of the algebra gp,
53, = (D'(1), D'(t) + AD®). This is why ansatz 2.1 is extended to v as
v = |z|"/?¢, and the nonlinear Lax representation (1.14) reduces to the
system

12(k — 1) (2(w® + 1)thy — k) oy,
— 126(k — Dw(2wihy, — K1) + 16w(w® — 1)

126w — D2 + KPwyd = 0, (2.14)

K
WPww — (/€ - 1)§0w + w%,? - §¢¢w = 0.

For each of the values A = 0 and A\ = 2/3, where Kk = 0 and kK = 2,

there is another counterpart of the subalgebra s, among subalgebras of

the algebra gp, that is Gy -inequivalent to the subalgebra 531,
> > 15 - = 2
s30 = (D'(1), D'(t) + 5 P*) and &y = (D'(1)+ P', D'(t) + 3 D°).
respectively.  This results in one more Gf-inequivalent extension of

ansatz 2.1 to v for each of these values of A\, v = ¢+ In |z| and v = z¢) + 1.

The corresponding reduced systems are
3((w3 + 1)¢w T w2)g0w - 2&)(&)3 - 1)ww3 + 3(w3 - 1)¢w2 —Ww= 07

WP + O, + mpf — 1, =0
and

3((w3 + 1), — wZ@b)gpw — 6w (wih, — )
T 2u(w? — 1) — 3w — 2+ wi — 3w = 0,

WP — Pw T W/Jf - 7/”/@ = 0.
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For the specific values k € {0, 1,2} or, equivalently, A € {0,1/6,2/3},

we are able to construct more solutions than for the other values.

k = 2. The solution set of reduced equation 2.1" with k = 2, i.e., A = 2/3,

is a union of the solution sets of the equations
Puww = 0 and 20(w” — Dpuy — (3w’ = D)y, + 2wPp = 0,

whose intersection consists only of the zero solution ¢ = 0. It can be proved
that the maximal Lie invariance algebra a3 ; of reduced equation 2.1? is the
intersection of the maximal Lie invariance algebras of the above equations,
a3, = (p0d,), and thus it is induced by Ny(s3 ).

The solutions of the first equation are not interesting since each related
solution of the equation (1.1) is G-equivalent to either the zero solution
u = 0 or the solution (2.7) with 5 = 1. The general solution of the second

equation is
» = Cl(W3/2 + 1)4/3 + 02(w3/2 — 1)4/3 for w >0,
p=(1-u?? (Cl o (% arctan \w\3/2) + co8in (% arctan \w\3/2>>
for w <0,

where ¢; and ¢y are arbitrary constants, and one of them, if nonzero, can
be set to one by induced symmetries of reduced equation 2.12. This leads

to the following solutions of the equation (1.1):

o u=ci([af?+ [y el lyl? — 2P for ay >0,

4 3/2 4 3/2
* u= (l'?) - y3)2/3 (Cl COS <§ arctan ’g‘ ) ) sin <§ arctan ’g‘ ))

i i

for zy <0,

where ¢; and ¢y are arbitrary constants, and one of them, if nonzero, can

be set to one up to the G-equivalence.
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k = 1. The solution set of reduced equation 2.1% with k = 1, i.e., A = 1/6,

coincides with that of the equation
2w(w3 — 1) puww + (5w3 — 1) =0
and thus consists of the functions

11273
0 =w) +wtcs with (W) = |w]?? 35 (— -, == —'w3>,

where ,Fj(ai,...,ap;b1,...,by; 2) is the generalized hypergeometric func-
tion. Hence the maximal Lie invariance algebra of reduced equation 2.1
is a); = (0, w0y, P (w)dy,, d,), and its subalgebra induced by Ny(s3 ;) is
(D, wD,, D), 1.e., any element of aj; with nonzero coefficient of ¢°(w)d,
is a hidden Lie-symmetry of the equation (1.1) that is associated with
reduction 2.11.

Up to induced symmetries of reduced equation 2.1, we can set ¢; = 1,
and co = c3 = 0. Thus, the only corresponding G-inequivalent solutions of

the equation (1.1) is

n(l127 3y
3472 6’273,6727373 .

x = 0. The maximal Lie invariance algebra aj ; of reduced equation 2.1 is

Y
o U= —

equal to (D, ¢d,), and thus it is entirely induced by Ny(s9 ;). The reduced
system (2.14) with k = 0 degenerates to

Yo (3(w?® + 1)y, — 2w(w® — 1)3.2) =0,

) (2.15)
WPpw + P +wip,; = 0.

It is obvious that the integration of the system (2.15) splits into two cases.
If 4, = 0, then it is equivalent to the equation wp,+p, = 0, whose general
solution is ¢ = ¢; In|w| + ¢y and gives only trivial solutions of (1.1) from
the family (2.1). Under the constraint 1), # 0, we easily exclude v, from
the system (2.15) and derive the equation 2w(w® — 1)@, + (5w*+1)p,, = 0.
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The general solution of this equation is

w32 4+ 1

m + ¢ for w}O,

p=-c1ln

@ = cparctan |w|*? + ¢ for w <0.

Up to induced symmetries of reduced equation 2.1°, we can set ¢; = 1, and

co = 0. This leads to the following solutions of the equation (1.1):

e
e u=In for zy >0,
[ [3/2 — [y3/? g
3/2
e 1y = arctan ‘—‘ for zy <0.

x
The independent variable w and the ratio ¢/, are the lowest-order
differential invariants of the solvable algebra a3 ;. Therefore, the change of
dependent variable p = ¢,,,/¢. lowers the order of reduced equation 2.1°

by two. The derived equation
(2w(w? —1)p+3w® — 1)py + 2w(w® — 1)p* + (13w® — 3)p® +22pw? + 10w = 0
integrates to
(w(w® = 1)%p? + (Bw® — 1)(w® — 1)p + w?(2w® — 5))3
(2w(w? — 1)p + Bw? + 1)4(wp - 1)2
Substituting ../, for p into the last equation, we obtain the first integral

= (1.

of reduced equation 2.1°. We are not able to integrate further for the
general value of ¢;. Nevertheless, setting ¢; = 0 simplifies the equation

into be integrated to the equation
w(w3 - 1)290wzw + (3w3 - 1)(("}3 o 1)§0ww90w + w2(2w3 o 5)903 - 07

which is easily solved as a quadratic equation with respect to ¢, /¢, and
integrated twice. As a result, we construct the following solution of reduced

equation 2.1% with Kk = 0:
1 1 2
s+ T+ K|5|Ts + 1+ K[6(2s +2 — K)3

B 3s(s —1) ds

K=vs2+14s5+1

s=w3
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The corresponding solution of the original equation (1.1) is

1 1 2
(s +TH+K|E|Ts +14+ K[6(25 +2 — K)3

v 3s(s — 1)

ds
K=+v/s24+14s5+1

For the general value of k, Kk # 0,1,2, all Lie and discrete point sym-

y3

X

S

metries of the associated equation ¢, = —N/M are symmetries of the
system M = N = 0. This is why the maximal Lie invariance algebra a5,
of reduced equation 2.1" is equal to (¢d,), and thus it is entirely induced
by Ng(s5,).

We compute the point symmetry group G4, of reduced equation 2.1%
with an arbitrary nonsingular value x # 0,1,2 by the algebraic method.
Let ®: @ = Q(w, ¢), ¢ = F(w, ) with Q,F, — Q,F, # 0 be a point sym-
metry transformation of this equation. From the condition ®,a57 C as;,
we only derive the equations €}, = 0 and ¢F, = aF', which mean that
Q2 = Qw) with Q, # 0 and F = g(w)p* + f(w) with a nonzero con-
stant a, a nonvanishing function ¢g of w and a function f of w. The fur-
ther computation by the direct method is the most complicated among
such computations in this chapter. The left-hand side L[y] of reduced
equation 2.1% is a homogeneous second-degree polynomial with respect to
the unknown function ¢ and its derivatives with coefficients depending
on w. After expanding the transformed equation with taking into account
the obtained form of ® and collecting the coefficients of ¢,.}v,,, we first
derive the equation a = 1, which means that the transformation ® is
affine with respect to ¢. Then the condition of preserving reduced equa-
tion 2.1" by ® can be written in the form L[®,p| = K(w)L|[p], where K
is a nonvanishing function of w. Collecting, in the last equality, coeffi-
cients of the terms that are of degree two with respect to the unknown
function ¢ and its derivatives leads to a system of determining equations
for the functions €2, g and K, whose general solution consists of two fam-
ilies, (2,9, K) = (w,c1,¢?) and (Q, g9, K) = (W™, cqw™, ciw 2711, where

c1 is an arbitrary nonzero constant. For each of the found solutions for
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(Q, g, K), the system for f derived by collecting coefficients of the remain-
ing terms only has the zero solution. As a result, for any value of x the
entire group G4, is induced by the stabilizer of 53, in G with the corre-
sponding value of .

Polynomial solutions of reduced equations 2.1" whose degree is not
greater than five and that result in nonpolynomial solutions of the original
equation (1.1) are exhausted by ¢ = cw for k = 5/2 and ¢ = c(w?® — 8/21)
for k = 9/2, where ¢ = 1 modulo the induced G i-equivalence. The first
solution corresponds to the solution u = |z|*?y of (1.1), which can also
be obtained and, moreover, generalized using the multiplicative separation
of variables; make the permutation J of x and y in the last solution of

Section 2.7. The first solution gives a new solution of (1.1),

3
o u=|z|”? (y——i) .
3 21
2.2. 55, = (D'(1), D'(t) — :D*+ P*(1) + PY(v)), |v| <1 (mod G):

u=¢e "y, w=y—vr;
(2v(1V* = Dy + (30 = 1) + 170) P
+ (51/3 - 1)90ww2 +v(11ve, + 3¢)Pu, + 57/9%)2 + 2¢p, = 0.

The associated system M = N = 0 (see the beginning of this section) is
equivalent to the equation o, = 0if v =0, 2¢0, = pif v =—10or ¢ =0
otherwise; the corresponding solutions of the original equation (1.1) be-
long to the family of trivial solutions (2.1) or to the family (2.4). All Lie
and discrete point symmetries of the associated equation @, = —N/M
are symmetries of the system M = N = 0. This is why for any value
of v, the maximal Lie invariance algebra of reduced equation 2.2” is the
algebra as9 = (0,, ¢0,), and this equation is invariant with respect to the
group (5.9, which consists of the point transformations w = w+¢;, ¢ = ¢,

where ¢; and ¢, are arbitrary constants with ¢, # 0. All the subalgebras s5 ,
have the same normalizer Ny(s ,) = (D(1), D'(t)—3D*, P*(1), P(1)) in g.
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The vector fields D'(1), D'(t) — D*, P*(1) and P¥(1) from Ng(s4,) induce
the Lie-symmetry vector fields 0, —¢0,, —vd,, + 99, and J, of reduced
equation 2.2", respectively, and thus the algebra as 5 is entirely induced by
elements of Ny(s4,). The discrete point symmetry transformation J' o J5:
(t,,7,u) = (—t,x,y,—u) of (1.1) induces the discrete point symmetry
transformation (@, 9) = (w, —p) for any of reduced equations 2.2”. There-
fore, the entire group G is induced by the point symmetry group G of
the original equation (1.1).

We construct the point symmetry group G5, of reduced equation 2.2”
with an arbitrary fixed v using the algebraic method. Let ®: @ = Q(w, @),
¢ = F(w, p) with Q,F,—Q,F,, # 0 be a point symmetry transformation of
this equation. The necessary condition ®,as9 C a5 implies the equations
Oy = an, pQy = ag1, F, = apF and pF, = axnl’, where a1, aiz, an

and aqy are constants with aj1a99 — a10a9; # 0. Therefore,
Q=apw+anIn|p|+ ¢, F = ce¥pt

where ¢; and ¢, are arbitrary constants with ¢, # 0. We continue the com-
putation with the direct method using the derived form for ®, which leads
to a cumbersome overdetermined system of determining equations for the
parameters aj1, a2, as; and asy, whose solution depends on the value of v.
For v # 41, we obtain the single solution a19 = a9; = 0, a11 = a9 = 1,
i.e., the complete point symmetry group G% , of reduced equation 2.2 with
such values of v coincides with the common point symmetry group Gs.s.
For each v € {—1, 1}, there is exactly one more solution a;; = —1, as; = 0,
a1s = UV, ase = 1, i.e., in addition to the elements of (Goo, the complete
point symmetry group Gy , of reduced equation 2.2 with v = %1 contains
the transformations w = —w + ¢, © = e"“p, where ¢; and ¢ are again
arbitrary constants with ¢o # 0. This means that the group G4, with
v =1or v = —1 is generated by the elements of GGy and the discrete
point symmetry transformation (@, ¢) = (—w, e"“y), which is induced by

the discrete point symmetry J or J o J° of the original equation (1.1), re-
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spectively. Therefore, for any value of v the group G% , is entirely induced
by the stabilizer of 55, in G.
Up to the Gr-equivalence, the subalgebra s, with any value of v is

prolonged in a unique way to v, which leads to the subalgebra
55, =(D'(1), D'(t) — sD° + P*(1) + PY(v))

of the algebra g;,. Therefore, up to the Gp-equivalence, there is a unique
extension v = e /%) of ansatz 2.2 to v, and the corresponding reduced

system 1is

241Pu0 — 12200, + V) (v, + @) + 8(20° + 1)y 2
+120%y, 7 — ¢° =0,

1
VPuw T Pu + V%2 + §¢¢w = 0.

It is obvious that an arbitrary function of the form ¢ = ¢je™“/V4-¢y if v #
0 or an arbitrary constant if ¥ = 0 is a solution of reduced equation 2.2,
and these solutions lead to trivial solutions of the equation (1.1) from the
family (2.1). Further we ignore the above trivial solutions.

Reduced equation 2.2° is especially short, ¢, 0w + Qu’ = 200, and
integrates twice to cpf = % 4+ c1p + ¢, where ¢; and ¢y are the integration
constants. Separating the variables and integrating further, we construct
the general solution of reduced equation 2.2° in an implicit form with one
quadrature,

dep
— 2.16
/ (03 + 10 + ¢9)1/3 ©E G (2.16)

where c3 is one more integration constant. The corresponding solutions of

the original equation (1.1) are of the form

o u=c¢e “p(y)), (2.17)

where the function ¢ = ¢(y) is implicitly defined by (2.16), where w = y,

c3 = 0 (mod G), and, up to the G-equivalence, the constant ¢y, if it is
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nonzero, can be set to be equal 1 or the constant ¢, if it is nonzero,
can be set to be equal one. The solution family (2.17) can be extended
using the multiplicative separation of variables, see Section 2.7. The for-
mula (2.16) obviously leads to explicit solutions of reduced equation 2.2°
only if ¢; = ¢o = 0, which gives ¢ = ¢3e¥ with an arbitrary constant ¢3. All
the corresponding solutions of the equation (1.1), u = é3e?~*, belong to
the family of simple solutions (2.4).

For several specific values of (c1, ¢2), when the integral in the left-hand
side of (2.16) is reduced to cases of the Chebyshev theorem on the inte-
gration of binomial differentials, it be expressed in terms of elementary
functions. This gives the following (5 o-inequivalent parametric solutions

(without quadratures) of reduced equation 2.2°:

s34+ 2 1. 24+s+1 23—!—1_

o = 53 1 Wlth §IHW — \/garctan \/g =Y,
o g0:‘83_:”—1/2
1. s24s+1 2s+1 (2-18)
ith —In——— — V3arct =2
w1 5 n (3—1)2 \/_arc an \/ﬁ v,
1. s? 1 25 + 1
o o= (=17 with S’ ot — V/3arctan i = 3y

2 (s—1)2 V3
if 4¢3 = —27¢3, (c1 # 0, co = 0) and (¢; = 0, ¢z # 0), respectively; cf. [92,
Section 4.1.1.2], where there are several typos and a needless involvement
of complex numbers. In the first case, the polynomial ¢ + ci¢ + ¢5 has
a root A of multiplicity two and can thus be factorized to (¢ 4+ 2X)(¢ — A)?,
i.e., c; = —3)% and ¢y = 2\3. It is then obvious that we can set A = 1 up
to Go9-equivalence, more precisely, by scaling of ¢. In the second and the
third cases, we analogously can set ¢; = sgn(s3—1) and ¢y = 1, respectively.
For ¢; # 0, the integral in the left-hand side of (2.16) was reduced in [92,
Egs. (33)-(34)] to an integral that, as stated therein, can be expressed
in terms of elliptic functions but the corresponding representation of the

solution (2.16) does not seem useful.
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For general values of v, the order of reduced equation 2.2” can be low-
ered by the differential substitution z = ¢, /¢, p = p../p inspired by the
Lie invariance algebra as . This leads to a first-order ordinary differential

equation with respect to p = p(z),

(2v(® —p+ 30’z — 2+ 17°) (p — 2%)p-
+ (2v(V® = 1)z +50° — 1)p? (2.19)
+ ((3V° — 1)2% +120°2 + 3v)p + 5v2° + 22 = 0.
Looking for solutions of (2.19) that are at most quadratic with respect

to z, we construct only the solutions p = —z/vifv =0,p=4if v =1/2

and p =z — 1 if v = —1. For reduced equation 2.2”, this gives the above

trivial solutions ¢ = cre 9" 4 ¢y if v = 0 as well as © = cie” 2 + e

if v =1/2 and p = c1e*/2cos(3v/3w + ) if v = —1. As a result, up
to G-equivalence we construct the following new solutions of the original

equation (1.1):
o u=¢e¢""+te? o u=-¢e¢""cos (\/g(x +y)).

If v = 1, the equation (2.19) becomes the Abel equation of the second
kind,

(224 1)(p — 2°)p. + 4p° + (222 + 122+ 3)p + 52° + 22 = 0,

which is reduced by the point transformation s = z+1, r = (z+1)%(p—2?)

to the simpler Abel equation
1677, 4 45(285% — 1)r + s°(4s* — 1)(12s* + 1) = 0,

whose general solution in implicit form is
(4r + 4s* — s7)?((144r + 144s* — 1)% — (12s* + 1))
(3(32r + (852 + 1) (4% — 1))” — (852 4 1) (4% — 1)2)°

The latter equation has two polynomial solutions up to degree four,

1 1
r= —132(432 —1) and r= —a(432 —1)(125* + 1),
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which correspond to the values ¢; = 0 and ¢; = 1/256 and the solutions

2(22 =222 -32-1)
(22 4+ 1)2

of the former Abel equation, respectively. After the inverse differential

p=—z and p=

substitution, we respectively obtain two ordinary differential equations.
The integration of the first one only results in trivial solutions of the original
equation (1.1), whereas solving the second equation, we construct, up to

the G-equivalence, the following parametric solution of (1.1):

322+ 32+ 1)_1/6
2[172])z + 1172
z+1 2
— arctan \/5224—1 =y — .
. 7 (V3( ) =y
2.3. 855 = (D'(1), 2D'(t) + 5D° + R*(1) + R¥(v)), [v| <1 (mod G) (we

replace the subalgebra si 5 by the G-equivalent subalgebra s4 5 for conve-

o u— ol

with In

nience of the reduction procedure):

u=zp+(y+ve)nlz, w=y/z
(2w(w3 _ 1)§0ww - 2(,03 + VWQ + 1)90www + (5w3 - 1)90ww2
—w(8w — 3V) Py, + 3w —2v = 0.

For any values of v, reduced equation 2.3” can be represented in nor-
mal form since the coefficient of .., in it does not vanish on its solu-
tions. Its maximal Lie invariance algebra is the algebra as3 = (0,,w0,).
The corresponding Lie group (Gs3 consists of the point transforma-
tions W = w, ® = @ + Ciw + Co, where ¢; and ¢y are arbi-
trary constants. All the subalgebras s, have the same normalizer
Ng(8%5) = (D'(1),2D"(¢)+3 D%, R*(1), R¥(1)) in g. The vector fields D(1),
2D'(t)+ 5 D%, R*(1) and R¥(1) from Ny (8% 4) induce the Lie-symmetry vec-
tor fields 0, —(w+v)0,, 0, and wd,, of reduced equation 2.3", respectively,
i.e., the algebra as 3 is entirely induced, and thus the entire group Gs 3 is

induced by the stabilizer of s, in G.
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Using the algebraic method, we compute the point symmetry group G4 5
of reduced equation 2.3" for any fixed value of v. Let ®: @ = Q(w, ¢),
¢ = F(w, p) with Q,F,—Q,F,, # 0 be a point symmetry transformation of
this equation. The condition ®,as3 C ay3, implies the equations Q, = 0,
F, = an + a2f) and wk, = ag + a2, where a1, a2, az and ag are
constants with aj1as99 — ajsas; # 0. Therefore,

—a1 W + a1 a11G22 — A12021

Q = ) F P —
ajppW — G22 ajpW — G22

¢+ f(w)

with a function f of w. Taking into account the derived form for ®, we
continue the computation with the direct method. As a result, we obtain
a cumbersome overdetermined system of determining equations for the
parameters aii, a2, a1, ago and f, whose solution depends on the value
of v. For v # =+1, we obtain that a;s = a9y = 0, a1 = ayy = 1 and
f = cw + ¢ with arbitrary constants ¢; and ¢;. In other words, the
complete point symmetry group G4 ; of reduced equation 2.3” with v # +1
coincides with the common Lie symmetry group Gs 3. For v = £1, we have

additional solutions,
a1 =ax =0, az=a1=v, [=—-(v+w )nw|+cw " +d,

where ¢; and ¢, are again arbitrary constants. Hence the complete point
symmetry group G4, of reduced equation 2.3” with v = +1 is generated
by the elements of the common Lie symmetry group (Go3 and the discrete

point symmetry transformation

D=wl P=wvwlo—(v+wHin|wl,

which is induced by the discrete point symmetries J and JoJ® of the original
equation (1.1) if v =1 and v = —1, respectively. Therefore, for any value
of v the group GY 5 is entirely induced by the stabilizer of s5 ; in G.

For each value of v, the subalgebra s4 5 has, up to the Gp-equivalence,

a single counterpart among subalgebras of the algebra g,

555 = (D'(1), 2D"(t) + 3D° + R*(1) + RY(v)).
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This is why ansatz 2.3 is extended to v in a unique way up to the Gi-
equivalence as v = |z|"/?¢), and the nonlinear Lax representation (1.14)

reduces to the system

16ew(w?® — )3 — 12e(w?® — D)np 2 — 24(vw? — D)y,
+ ewt)® + 12vwe) = 0, (2.20)

€
WP, + swgbcf — §¢¢w —1=0,

where € := sgn .

Reduced equation 2.3 is an Abel equation of the second kind with
respect to ... Its particular solution ¢ = wln|w| corresponds to
a solution of the system (2.20) with v = 0 and the trivial solution
u=ylnl|y| + veln|z|of (1.1) from the family (2.1). The differential substi-
tution ¢, = p+w ! maps reduced equation 2.3" to the simpler Abel equa-
tion of the second kind (2w(w? —1)p+vw? —1)p, + (5w® — 1)p® + 3vwp = 0.

2.4. 84 = (D'(1), 3D'(t) + Z(1)) (we replace the subalgebra s, 4 by the

G-equivalent subalgebra §, 4 for convenience of the reduction procedure):
u=¢+Infz|, w=y/z;

(2w(w3 - 1)9000&) + (3(")3 - 1)90w - WQ)QOwww
4+ 2(5w® — 1)@ 4 2w(1lwe, — 3)@u, + 2(5we, — 2)¢@, = 0.

The normalizer of the subalgebra §; 4 in g is Ng(82.4) = (D'(1), D'(t), Z(1)).
The Lie-symmetry vector fields D'(1), 3D'(t)+ Z(1) and Z(1) of the equa-
tion (1.1) induce the Lie-symmetry vector fields 0, 0 and J, of reduced
equation 2.4, respectively. This equation can be represented in normal
form since the coefficient of ¢, in it does not vanish on its solutions.
The maximal Lie invariance algebra as4 of reduced equation 2.4 is one-
dimensional, as 4 = (J,), and thus it is entirely induced by Ng(s2.4).

We compute the point symmetry group Go4 of reduced equation 2.4
by the algebraic method. Let ®: @ = Q(w, ), ¢ = F(w, ) with Q, F, —



137

Q,F, # 0 be a point symmetry transformation of this equation. From
the condition ®,as4 C as4, we derive the equations €2, = 0 and F,, = 0,
which mean that 2 = Q(w) and F = ap + f(w) with €, # 0, a nonzero
constant a and a function f of w. Taking into account the derived form
for ®, we continue the computation with the direct method and obtain
a cumbersome overdetermined system of determining equations for the
parameters €2, ¢ and f, which can nevertheless be solved, giving a = 1 and
either @ =w and f =cor Q =w™ and f = In|w| + ¢ with an arbitrary
constant c. Therefore, the group Gs4 is generated by the one-parameter
subgroup of the shifts with respect to ¢ and the discrete point symmetry
transformation @ = w™!, ¢ = p+In |w|. The last transformation is induced
by the permutation J of the variables x and y in the original equation (1.1).
Therefore, the group G4 is entirely induced by the stabilizer of s4, in G.

The subalgebra s54 has the family of G-inequivalent counterparts
55, = (D'(1), 3D'(t) + Z(e) + vP") among subalgebras of the algebra gr..
Here ¢ = +1 and v > 0 (mod G).?>? This results in a family of G-
inequivalent extensions of ansatz 2.4 to v that are parameterized by ¢
and v, v = ¢ +elnjz|, v = ¢ + vin|z|. The corresponding reduced

systems are
3((wW*+ Dthy — vw?) i — 2w(w® — D)2 + 3v(w’— 1)1}
— 3ewyy, — V(v — 3e)w = 0, (2.21)
WPy + o + w2 — v, = 0.
The condition of vanishing the coefficient of ¢, in the first equation
of (2.21) is consistent with (2.21) only if v = 0 and thus v, = 0, which
implies in view of the second equation of (2.21) that wy,, + ¢, = 0.

The associated family of particular solutions ¢ = c¢;ln|w| + ¢ of re-

duced equation 2.4, which are parameterized by the arbitrary con-

23The discrete point symmetry J° := D3(—1) of the equation (1.1), which alternates the signs of
(z,y,u) and of the vector fields Z(o) from the algebra g, has no counterpart among point symmetries of
the nonlinear Lax representation (1.14). As a result, in contrast to the subalgebra §s 4, the parameter &
in the subalgebra family {§5%} can be gauged, up to the Gy-equivalence, merely to +1 but not to 1.
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stants ¢; and ¢y, corresponds to the subfamily of the trivial solutions
u=c Inly| + (¢1 + 1) In|z| + ¢ from the family (2.1).

Further (w? + 1)¢, — vw? # 0. Solving the first equation of (2.21)
with respect to ¢, and excluding ¢ from the second equation of (2.21), we

derive a first-order ordinary differential equation with respect to ¢ := v,

(dw(w® —1)¢* = 3v(w® — 1)(3w® + 1)¢* + 61°w?(w* — 1)¢
— vw(v’w® + v° — 3¢)) ¢y + (Tw® + 18w® — 1)¢*
— 6uw?(3w® 4 5)¢* + 3w(5r%w? + 3% 4 3¢)(¢?
— 20 (20%w?® — 12 4 3¢)¢ = 0.

(2.22)

Let v = 0 and thus ¢ # 0. Then the equation (2.22) reduces to the simple

Bernoulli equation

4w(w® — 1)¢¢, + (Twb + 18w? — 1)¢* + 9ew = 0,

which integrates to ¢ = 4(w? — 1)7'/&|w|V/2(w3 4 1) + 3ew. The first
equation of (2.21) with this value of ¢ implies that

w2 41
eSS

In |w® — 1| 4+ ¢ arctan [w|*? + ¢, for w <0,

cngln|w3—1|+clln '+Cz for w >0,

£

°=3
where ¢; and ¢y are arbitrary constants, and the constants ¢, and € can be
set to 0 and 1 up to the Gs 4-equivalence, respectively. The corresponding

solutions of the equation (1.1) are

1 3 3 [P + Jy[*
= — — =
e u 3ln\y z°| 4+ ¢1 In P [y for xy >0,
1 3/2
) u:gln\y3—x3|+clar0tan’y’ for 2y <0.
x

For v = /3, the equation (2.22) can be integrated implicitly,

4ln‘(w3—1)§—\/§w2}—2ln‘(w3+1)g—\/§w2‘—|—ln‘w(—\/g‘—l—lnM = 1.
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Then the function ¢ is defined by the first equation of (2.21) with ¢, = (
and v = /3.

2.13. 5013 = (D'(1), D%):  u=1p, w=y/z;

(2w(w3 - 1)906%0 - 2(3w3 - 1)90w + 660280) Puoww
— (5cu3 — 1)gpw2w + 2w(1lwpy, — 99)Yuw — 4(bwp, — 6¢)p, = 0.

The normalizer of the subalgebra s 13 in g is Ny(s9.13) = (D'(1), D'(t), D®),
and the entire maximal Lie invariance algebra as 3 = (¢0,) of reduced
equation 2.13 is induced by this normalizer.

Reduced equation 2.13 can be included in the family of reduced equa-
tions 2.1% as the element with k = 3, which corresponds to the limit values
A = ZFo0.

Simple solutions of reduced equation 2.13, ¢ = \w|3/ 2 and the family
of solutions that are cubic polynomials in w, were found in [92], see the
equations (24) and (25) therein, respectively. The solution u = |zy|/? of
the original equation (1.1), which corresponds to the solution ¢ = |w|/?,
is essentially generalized in Section 2.7 using multiplicative separation of
the variables x and y. The above family of polynomial solutions in w is
associated with the family of solutions of (1.1) that are homogeneous cubic

polynomials in (z,y) with constant coefficients.

2.6. Lie reductions to algebraic equations

For any three-dimensional subalgebra ss of the algebra g, either its
rank 7 is less than three and thus it cannot be used for Lie reduction of the
equation (1.1) to an algebraic equation or all the corresponding invariant
solutions are, up to the G-equivalence, just particular elements of param-
eterized families of solutions that have been constructed in Sections 2.4
and 2.5. To show this, we present an outline of the classification of three-

dimensional subalgebras of g.
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Consider a three-dimensional subalgebra s3 = (Q% i = 1,2,3) of g
spanned by three (linearly independent) vector fields

Q' = D)+ N'D*+ P*(x") + PY(p') + R*(a') + RY(8") + Z(o")

from g with arbitrary smooth functions 7%, x*, p, o, B* and o' of ¢ and
arbitrary constants A’ such that the tuples (7°, A\, X', p, o', 8, o') are lin-
early independent. Here and in what follows the index ¢ runs from 1
to 3. The consideration splits into cases mainly depending on two values,
ki = ki(s3) := dim(7") and ky = ko(s3) := dim((7%, \")). For brevity, we
use transitions to G-equivalent subalgebras, basis changes and hints from
the proofs of Lemmas 2.3 and 2.4 without referring to this. Below, k1, Ko,
k3 and v denote constants.

ki = 3. In view of the classical Lie theorem on Lie algebras of vector
24 we can set 7' = 1, 72 = t and 7 = t?, which
implies s5 C ¢, and thus A’ = 0. The vector fields Q' and Q? reduce
to D'(1) and D'(t) + Z(0) with § € {0, 1}, respectively. We successively
derive from the commutation relations [Q!, Q3] = 2Q* and [Q? Q%] = @Q*
that x3, 03, a3, 3% = const, 0 = § and hence 3, p?, a?, 32 = 0. Therefore,
r=2.

fields on the real line,

ki =2 ky=3 Wecanmake 7' =1, 72 =¢t, =0, N =)X2=0, M} =1,
and then @3 = D*. The commutation relations [Q!, Q3] = [Q? Q3] = 0
imply Q! = D!(1) and Q? = D!(t), i.e., r = 2.

ki = ko = 2. Setting Q' = D!(1), 7> =t, 7> = 0, A3 = 0, we derive from
the commutation relations (@7, Q°] = x;Q°, 7 = 1,2, [Q', Q%] = Q' + r3Q°
that x7 = kX, tX7 = kaX®, p} = k1p®, tp} = kop®, and thus, if r = 3,
(%, 0%) # (0,0), k1 = ko = 0, which further implies that x} = p} =
ar = B = oy = 0. In other words, the subalgebra s3 contains, up to

G-equivalence, a subalgebra from the family {s9%}.

24Gee [28,36-38,77,78,98] and references therein for applications of this theorem to classifying subal-
gebras of various algebras of vector fields.
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ki =1,k =2 Wemake 7' =1, 72=72=0, \' =X =0, A2 =1 and
then @? = D°. The commutation relations [Q', Q%] = 0, [@, Q*] = k;Q°,
j=1,2,imply Q! = D'(1) and, if r = 3, then xy = —1 and Q* = P*(e"!)+
v PY(ef), i.e., the subalgebra s3 contains a subalgebra that is G-equivalent
to one from the family {s} ,}.

ko < 1. If r = 3, then up to G-equivalence, the subalgebra s3 contains a

subalgebra from the family {5’2"3{@} and, therefore, a subalgebra from the

family {s;,}.
As a result, we conclude that Lie reductions of the equation (1.1) to
algebraic equations give no new G-equivalent solutions in comparison with

those that have been constructed in a closed explicit form in Sections 2.4
and 2.5.

2.7. Multiplicative separation of variables

The equation (1.1) is identically satisfied under the additive separa-
tion of the variables z and y, and the solutions from the corresponding
family (2.1) are trivial.

Consider solutions of the equation (1.1) with nontrivial multiplicative

separation of the variables x and y. They are represented in the form
u = @(t,x)Y(t,y) with ¢, # 0 and ¢, # 0.

Remark 2.9. The functions ¢ and v are defined up to the transformations
¢ = ¢/ f, ¥ = fi with an arbitrary nonzero function of t. If ¢, = 0 or Yy =
0, then one can set ¢ = 1 or ¥ = 1, respectively, and thus the separation of
the variables x and y is trivial; moreover, then the corresponding solutions

belong to the family of trivial solutions (2.1).
Substituting the multiplicative ansatz u = (¢, x)1¥(t,y) into the equa-

tion (1.1) and separating the variables x and y, we obtain the equation

wty (prx@x) ¢+ (%y%)

— ¥
¢y P %
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which we further simultaneously differentiate with respect x and y and

derive
1 mwm) i(%WM):O
P ( Pu x i wy wy Y .

These two equations imply that
—(SOxxtpx)x =ap+ f, % =vp+46 and
(Pyyty)y

Wutboly _ _ i
0, ay + 7, b,

for some sufficiently smooth functions «, 3, v and 0 of £. These systems

= By -6

with respect to ¢ and v integrate to

« 3
0l =S+ 58P+ o+ =2t 0+ (2 (2.23)
3
b} = —%w + 57@/)2 +O0W+ 6, = §w2 — 0 + 6, (2.24)

where (0, 1, ¢2, 6°, 9! and 62 are also sufficiently smooth functions of t,
and for solutions to be nontrivial, we should impose the conditions that the
tuples (o, 8,¢1, ¢Y) and (a, 7, 6%, 6°) are nonzero. Due to the indeterminacy
of (,1), we set § = 0 without loss of generality.

We exclude the derivatives of the functions ¢ and v in view of the
systems (2.23) and (2.24) from their compatibility conditions (¢,); = (¢1)x
and (vy); = (¢1), and split the obtained equalities with respect to ¢ and v,
which gives the following systems for the parameter functions depending

on t:
5 5
af=ay=py=0, =0, b= g’YCl —al®, m= gﬁel + ab”,
G =3v¢"=36¢% 0, =3p80° —340%, () =—C'¢ 0] =—0'60%
Consider possible cases separately.

1. « #0. Then a = const, B =~ = (> = #* = 0, and thus ¢, ¢!, §°
and 0! are constants. Integrating the systems (2.23) and (2.24) with these
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parameters’ values and simplifying the result by transformations from G,
we derive a family of G-inequivalent solutions of the equation (1.1) that

generalizes the solutions (2.17),

o u=p(x)y),

g L
G rap+a)? U Wrapta)ts s

Up to the G-equivalence, one of the constants ¢; and cg, if it is nonzero, can
be set to be equal &1 or one of the constants ¢y and cy, if it is nonzero, can
be set to be equal one. Both quadratures here are the same as in (2.16).
Hence they can be computed explicitly for certain values of the tuples
(c1,c9) and (c3,¢4), see (2.18).

2. f#0. Then o = v = 0, and thus #° = §' = 0, which contradicts the
nontriviality condition 1, # 0. The case v # 0 reduces to the case 5 # 0
by permutation of z and y.

3. a = =~ =0, and thus ¢! and #' are constants, (* = —fClCth
and 6° = — [ 0162dt. Rearranging the solution sets of the systems (2.23)
and (2.24) with these parameters’ values up to the G-equivalence and in
view of the indeterminacy of (¢, 1), we construct the solutions of the equa-
tion (1.1) of the form

o u=(lzP2+cO) (WP +00), e u=(z+®)ly?

and the solution u = zy, which belongs to the family (2.7). Here ¢ and 6
are arbitrary sufficiently smooth functions of ¢. The first and the second
families of solutions generalize the s, 13-invariant solution u = |zy|*? and
53/13 -invariant solution u = |z|3?y, see [92, Eq. (26)] and the last paragraph

related to reduction 2.1 in Section 2.5.2, respectively.

Remark 2.10. For any v, the s ,-invariant solutions can be interpreted as
those with multiplicative separation of variables after their linear change.
Following the consideration in this section, one can try to carry out a com-

prehensive study of such separation of variables. Maybe, the most interest-
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ing is the multiplicative separation of the variables T = x4y and y = x —v,

cf. the last (parametric) solution obtained by reduction 2.2!.

2.8. Conclusion

In this chapter, we have constructed wide families of new exact invari-
ant solutions of the dispersionless Nizhnik equation (1.1) in closed form
in terms of elementary, Lambert and hypergeometric functions as well as
in parametric or implicit form. The main tool for this purpose was the
optimized procedure of Lie reduction. A rigorous description and a proper
substantiation of this procedure is in fact the main theoretical attainment
of the second chapter.

Using the results of Chapter 1 on the maximal Lie invariance alge-
bras g and gy, of the equation (1.1) and of its nonlinear Lax representa-
tion (1.14) and their point-symmetry pseudogroups G and GT,, see also [39],
we have classified one- and two-dimensional subalgebras of the algebra g
and one-dimensional subalgebras of the algebra g;, up to the G- and G-
equivalences, respectively. We could only classify subalgebras that are ap-
propriate for Lie reduction but this would not result in an essential simplifi-
cation in comparison with the classification of all one- and two-dimensional
subalgebras and the further selection of the appropriate ones among the
listed inequivalent subalgebras. Instead of the standard equivalences within
the algebras g and gy, up to their inner automorphisms, which coincide
with the Gig- and Gy j9-equivalences, where Gig- and G, iq are the identity
components of G and Gy, respectively, we have used the stronger G- and
(GL-equivalences. In this way, we have also taken into account the discrete
point symmetry transformations of the equation (1.1), which has allowed
us to reduce the optimal lists of subalgebras. Moreover, as explained in
Section 2.1, it has also made the Lie reduction procedure consistent with

the natural G-equivalence on the solution set of the equation (1.1). The



145

above arguments clearly confirm that the correct computation of G and
G1, in Chapter 1 was important. Note that in fact the algebras g and g,
are infinite-dimensional Lie pseudoalgebras of vector fields. In general, the
classification of (low-dimensional) subalgebras of such an algebra is com-
plicated, in particular, by the necessity of considering differential [54] or
even functional [44,88] equations in the course of this classification.

The algebra g is injectively mapped into the algebra g;, via extending
the vector fields from g to the variable v. The vector fields (1.2), which
span g, are extended trivially and formally coincide with their counter-
parts in gr. The only exception is the vector field D®, which extends to
Ds = x8x+y8y+3u8u+%v&). Moreover, gr, = g€ (P?), where g is the image
of g under the above mapping, and P” = 0,. Although the corresponding
homomorphism?® of the pseudogroup G into the pseudogroup Gi, is not
injective, its kernel is generated by the discrete involution J* := D%(—1)
from G, which of course involves the restrictions of J° as well, and the
quotient pseudogroups G/{id, J*} and Gr,/{P"(B),J" o P'(B) | B € R} are
isomorphic, see the paragraph after Theorem 1.13. As a result, the classifi-
cations of one- and two-dimensional subalgebras of the algebra g, up to the
(G1-equivalence can be easily derived from the respective classifications for
the algebra g up to the G-equivalence, cf. Lemmas 2.3 and 2.7 for the case
of dimension one. Nevertheless, we have not presented the classification
of two-dimensional subalgebras of the algebra gr, since we needed only a
few of these subalgebras, which are given directly when using them for Lie
reductions of the nonlinear Lax representation (1.14) in Section 2.5.2. The
correspondence between the equivalence classes of one-dimensional (resp.
two-dimensional) subalgebras of the algebras g and gy, is injective but not
one-to-one. The list of inequivalent subalgebras of g of any fixed dimen-

sion can be trivially embedded in the corresponding list for the algebra g,

25For this homomorphism and the isomorphism below, we should replace G by its trivial prolongation
to v, considering the restriction of elements of the prolongation on open subsets of the space with the

coordinates (¢, z,u,v).
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via the above extension of elements of g to the variable v. The bijection
breaking is related to the disappearance of J° and the appearance of PV
in the course of the transition from (G, g) to (Gr, g1.), see the subalgebras
591, §§/ﬁ and §5% in Section 2.5.2. The last family of subalgebras is the
most interesting since, in contrast to the corresponding coefficient in the
second basis vector field of s54 and the G-equivalence, the parameter ¢ in
55", cannot be set to 1 up to the Gp-equivalence.

The described relation between the lists of inequivalent subalgebras of g
and of gr, can be reformulated in terms of the relation between the cor-
responding collections of inequivalent Lie reductions of the equation (1.1)
and of the nonlinear Lax representation (1.14).

If subalgebras of g are G-equivalent, then the corresponding reduced
equations are necessarily similar with respect to point transformations
of the invariant variables. Consider a class C of reduced equations for
the equation (1.1) that is associated with a parameterized family F of
subalgebras of g, and thus the arbitrary elements of C are expressed in
terms of the subalgebra parameters. Then the stabilizer of F in G in-
duces a (pseudo)subgroup Gz 4 of the equivalence (pseudo)group Gg of
the class C. The proper inclusion Gz 4 < Gg, which happens quite com-
monly, means that some elements of G are not induced by transforma-
tions from G, and hence we call them hidden equivalence transformations
of the class C. If the subalgebras from the family F are G-inequivalent to
each other, then transformations from the group G can induce only point
symmetries of equations from the class C but not point transformations
between different elements of this class. At the same time, in the case
of the presence of hidden equivalence transformations, a wide subset of
the action groupoid of G can still be used for mapping the class C to
its proper subclass C’,; which formally has less number of (significant) ar-

bitrary elements.>% Then the correspondence between the parameters of

26Gee [102] and references therein for mappings between classes of differential equations that are gen-

erated by families of point transformations.
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the family F and the arbitrary elements of the subclass C’ is definitely not
injective. We can select ansatzes associated with subalgebras of F such
that the corresponding class of reduced equations is minimal up to the
described mappings by hidden equivalence transformations. Nevertheless,
this is not always convenient as shown by reductions 1.3 and 1.4. The
classes of reduced equations 2.5, 2.9 and 2.14 are also not minimal in the
above sense. In this context, the family F of subalgebras {s{,} is espe-
cially demonstrative. After excluding the singular subalgebra s 5 from F
and properly modifying the corresponding ansatzes from Table 2.1, we
have derived the single simple reduced equation (2.5) instead of a class
of reduced equations with the functional parameter p = p(t) of F as its
arbitrary element.

We have paid considerable attention to the selection of optimal ansatzes
and thus simplified the further consideration but the simplification is
not as significant as, e.g., that achieved for the Navier—-Stokes equations
in [53,54,118]. Most of the reduced equations for the equation (1.1) are
quite cumbersome, and this is not the only feature of them that compli-
cates the computation of their Lie and discrete point symmetries. Thus,
each of reduced equations 1.1°, 2.1% (including 2.13), 2.2” and 2.14%% is
not of maximal rank on the entire associated manifold in the corresponding
jet space.>” Even if a reduced equation is of maximal rank, it is not nec-
essarily can be represented in the normal form, see reduced equation 2.5
with A = 2/3. As far as we know, Lie and general point symmetries of such
unusual differential equations have not been considered in the literature.
For some reductions of codimension two, even under the optimal choice of
ansatzes, the permutation J of z and y, which is a simple and obvious dis-
crete point symmetry of the equation (1.1), induces more complicated and
nontrivial discrete point symmetries of the corresponding reduced equa-

tions, and this leads to the complexity of general elements of the point

2TEach of the reductions 2.1% (including 2.13), 2.2 and 2.14%/%" can be considered as a two-step Lie

reduction with reduction 1.1° as its first step.
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symmetry groups of some reduced ordinary differential equations. There is
no similar phenomenon for Lie symmetries of reduced equations obtained
from the equation (1.1). Nevertheless, we have comprehensively studied
point symmetries and their induction for all the reduced equations se-
lected in the course of applying the optimized Lie reduction procedure to
the equation (1.1). This study itself is a necessary ingredient of the reduc-
tion procedure. It has helped us to cut down the number of Lie reductions
to be considered and to integrate or at least to lower the order of reduced
ordinary differential equations. Note that discrete symmetries of reduced
equations have been computed for the first time in [127], which is the
source of this chapter. In view of the above reasons such as the complexity
of reduced equations and their point symmetries and the simplicity of their
Lie-symmetry vector fields, the algebraic method by Hydon and its various
modifications are especially efficient and convenient for this computation.

For finding exact solutions of reduced ordinary differential equations,
we have also used the associated reduced systems for the nonlinear Lax
representation (1.14). Due to properly arranging the hierarchy of Lie re-
ductions of the equation (1.1) and accurately selecting a low number of
reduced ordinary differential equations to be integrated, we were able to
deeply analyze them and construct wider families of exact solutions of the
equation (1.1) than those presented in the literature. Of course, there
are a number of possibilities for extending and generalizing the results of
this chapter. In particular, since most of Lie symmetries of the reduced
equation (2.6) are hidden for the original equation (1.1), one can actu-
ally represent more solutions from the family (2.5) in an explicit form by
means of Lie reductions of (2.6) than those found in Section 2.5.1. In ad-
dition, the results of Section 2.7 on multiplicative separation of variables
for the equation (1.1) and of [92] on solutions of (1.1) that are polynomial
n (z,y) show that more closed-form solutions of (1.1) can be constructed

using other tools of symmetry analysis of differential equations.
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We have checked all the obtained solutions and have selected only G-
inequivalent ones among them. Checking constructed solutions and their
inequivalence to known solutions is the last but most important step of
any procedure of finding exact solutions of differential equations. Unfor-
tunately, this step is commonly disregarded, which led to many papers
containing only incorrect or known solutions, see the discussion of such

papers in [74,117].
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Conclusion

In the thesis, we carried out the extended symmetry analysis of the (real
symmetric potential) dispersionless Nizhnik equation. In the course of this
study, we observed a number of new interesting phenomena and formalized,
enhanced and developed several methods and techniques of group analysis

of differential equations. In particular, we obtained the following results:

e Applying an original megaideal-based version of the algebraic method,
we computed the point-symmetry pseudogroups G, Gy, and Ggy of
the dispersionless Nizhnik equation, the corresponding nonlinear Lax
representation and the dispersionless counterpart of the symmetric
Nizhnik system as well as the contact-symmetry pseudogroup G. of
this equation, which is the first usage of the megaideal-based version of
the algebraic method for finding the contact-symmetry (pseudo)group
of a differential equation. It turned out the pseudogroup G. coincides

with the first prolongation of the pseudogroup G.

e As the first step of the above computations, we studied the struc-
ture of the maximal Lie invariance algebras of the systems of differ-
ential equations under consideration and constructed sufficient sets of
megaideals of these algebras, main of which are their radicals. For
constructing a megaideal of the maximal Lie invariance algebra of the
nonlinear Lax representation of the dispersionless Nizhnik equation,
we developed a new technique, which is completely different from ex-

isting techniques that are used for the same purpose.

e [t was shown that the necessary algebraic condition completely de-

fines the point-symmetry pseudogroup of the dispersionless Nizhnik
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equation. This gave the first example of a system of differential equa-
tions with this property in the literature. Even the nonlinear Lax
representation of the dispersionless Nizhnik equation and the disper-

sionless counterpart of the symmetric Nizhnik system do not have this

property.

We checked whether the subalgebras of the maximal Lie invariance
algebra g of the dispersionless Nizhnik equation that naturally arise
in the course of the computation of the pseudogroup G define the

diffeomorphisms stabilizing this algebra or its first prolongation.

We constructed all the third-order partial differential equations in
three independent variables that are invariant with respect to the al-
gebra g. We found a set of geometric properties of the dispersionless
Nizhnik equation that exhaustively defines it. In addition to the in-
variance with respect to the algebra g, it includes the presence of the
three simplest conservation-law characteristics 1, u,, and w,,. This
combines an inverse group classification problem with an inverse prob-

lem on conservation laws.

The one- and two-dimensional subalgebras of the algebra g are exhaus-
tively classified up to the equivalence generated by the pseudogroup G,
which led to the complete classification of Lie reductions of the dis-
persionless Nizhnik equation to partial differential equations with two
independent variables and to ordinary differential equations. We also
showed that Lie reductions of this equation to algebraic equations
give no its new solutions as compared to those constructed using Lie

reductions of codimensions two and three.

Lie and point symmetries of the derived reduced equations are compre-
hensively studied, including the analysis of which of them correspond

to hidden symmetries of the original equation. The point symmetry
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groups of reduced equations, in particular those that are not of max-
imal rank, were computed for the first time, including their discrete
point symmetries. It turned out that in contrast to Lie symmetries,
simple and obvious discrete point symmetries of the initial equation,
even under the optimal choice of ansatzes, can induce complicated
and nontrivial discrete point symmetries of the corresponding reduced

equations.

The wide families of new exact invariant solutions of the dispersionless
Nizhnik equation are constructed in closed form in terms of elemen-
tary, Lambert and hypergeometric functions as well as in parametric

or implicit form.

Multiplicative separation of variables was used for illustrative con-
struction of families of non-invariant solutions of the dispersionless
Nizhnik equation, which essentially generalizes some obtained fami-

lies of invariant solutions of this equation.
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