
INTERNATIONAL UZBEK-UKRAINIAN CONFERENCE

Modern problems of the theory of stochastic
processes and their applications

October 10-11, 2023

Abstracts

1



Contents

A.A.Abdushukurov

Copula functions and its applications in survival analysis with covariates . . . 5

A.F.Aliyev

Hausdorff dimension of invariant measure of piecewise linear circle maps

with two break points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

J.B.Azimov

Asymptotic behaviour of branching processes with non-homogeneous

immigration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A.A.Dorogovtsev

Equations with interaction, second quantization, stability and

polymer models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

A.A.Dorogovtsev, A.Weiss

Intermittency Phenomena for Mass Distributions of

Stochastic Flows with Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.A.Dzhamirzaev, I.N. Mamurov

Asymptotic distributions of terms of a variation series in the case

of random sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

M.U.Gafurov

Asymptetic estimates for a small parameter in Hartmann–Wintner

law of the iterated logarithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

N.N.Ganikhodjaev

Limit Gibbs measures for 1-D lattice models with

competing interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

K.V.Hlyniana, A.A.Dorogovtsev

Gaussian structure in coalescing stochastic flows . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.Hrabovets

Operators of second quantization for Bernoulli noise . . . . . . . . . . . . . . . . . . . . . . 21

U.U.Jamilov, F.M.Mukhamedov

A family of F-quadratic stochastic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

I.M.Khamdamov, Kh.M.Mamatov

Weak dependence properties of a vertex process of a convex hull

generated by a Poisson point process inside a parabola . . . . . . . . . . . . . . . . . . . . 26

2



Ya.M.Khusanbaev

Limit theorems for reduced processes starting with a large number

of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.Mashrabboev

The asymptotic of the probability of falling into zero of a multi-type

branching process with immigration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Sh.M.Mirakhmedov

Asymptotic approximation for a certain class of statistics defined on several

generalized urn models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.K.Muxamedov, O.Sh.Sharipov

Limit theorems for U−statistics of positively associated random variables . 33

A.Y.Pilipenko

Functional limit theorems for perturbed random walks . . . . . . . . . . . . . . . . . . . . 35

O.Purtukhia, V.Jokhadze

Martingale representation of Brownian functionals . . . . . . . . . . . . . . . . . . . . . . . . 38

M.M.Rahmatullaev, M.A.Rasulova

Weak periodic Gibbs measures for the Potts-SOS model on a Cayley

tree of order two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

G.V.Riabov

Strong measurable continuous modification of the Burdzy-Kaspi

stochastic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

O.V.Rudenko

An intersection of joint trajectories of independent Brownian motions

in Carnot groups with a given set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

S.O.Sharipov

Functional limit theorems for branching processes with

non-stationary immigration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

O.Sh.Sharipov, I.G.Muxtorov

Central limit theorem for strong mixing random variables with values

in Lp[0, 1] space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Sh.Shorakhmetov

Extremal properties of Bernoulli random variables . . . . . . . . . . . . . . . . . . . . . . . . 46

3



M.B.Vovchanskyi

Operator splitting methods for non-homeomorphic one-dimensional

stochastic flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

V.K.Yuskovych

On asymptotics of solutions of stochastic differential equations

with jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4



Copula functions and its applications in survival
analysis with covariates

A.A. Abdushukurov, R.S. Muradov 1

Copula (dependence) functions which connect the marginal distributions to their

joint distributions, are useful in simulating the linear or nonlinear relationships among

multivariate statistical data in the survival analysis studies. Copula is a multivari-

ate distribution function with marginally uniform random variables on [0, 1]. Now a

days, copulas have been applied in statistics, insurance, finance, economics, survival

analysis, image processing, and engineering applications.

The problem of estimating of jointly survival function from incomplete data has

been considered by authors [1-2]. In the special bivariate case, there are numerous

examples of paired data representing the times to death of individuals (married cou-

ples or twins), the failure times of components of system and others which subject

to random censoring. At present time, there are several approaches to estimating of

survival functions of vectors of lifetimes. Moreover, the random variables (r.v.-s) of

interest (lifetimes) and censoring r.v.-s can be also influenced by other variable, of-

ten called prognostic factor or covariate. In medicine, dose a drug and in engineering

some environmental conditions (temperature, pressure) are influenced to the observed

variables. The basic problem consist in estimation of jointly distribution of lifetimes

by such censored dependent data with used copula (dependence) functions. The aim

of paper is considering this problem in the case of right random censoring model in

the presence of covariate.
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Hausdorff dimension of invariant measure of
piecewise linear circle maps with two break points

A.F. Aliyev

In this paper we study pointwise and Hausdorff dimensions of invariant measures for

circle diffeomorphisms. The notion of pointwise (or local) dimension was introduced

by Young in [1]. It plays an important role in dimension theory of dynamical systems.

Let µ be be a probability measure on a metric space X. Lower and upper pointwise

dimensions at a point x are defined as:

dµ(x) = lim inf
r→0

log µ(B(x, r))

log r
and dµ(x) = lim sup

r→0

log µ(B(x, r))

log r

where B(x, r) is a ball of radius r centered at x. If the two limits coincide, then their

common value dµ(x) is called the pointwise dimension of µ at x.

It is well known that if rotation number of circle homeomorphism is rational, it may

preserve many measures with different properties, but any ergodic invariant measure

is a uniform δ-measure on a periodic orbit. Then Hausdorf dimension of invariant

measure equal to zero.

Although a circle homeomorphism with irrational rotation number has uniquely

ergodic measure. In this case, it is more complicated to calculate Hausdorff measure

or to study rigidity properties. So, we need to study different types of irrational

rotation numbers.

Some irrational numbers differ how well they can be approximated by rational

numbers. For example, the numbers that can be rapidly approximated by rational

numbers are called Liouville otherwise they are called Diophantine. It follows from

the work of Herman [2] that sufficiently-smooth circle diffeomorphisms with Diophan-

tine rotation numbers are smoothly conjugate to the linear rotation Tρx = x+ρ. K.M.

Khanin and Ya.G. Sinai in [3] generelated this result for C2+α, α > 0 smooth circle

maps. Hence, the Hausdorff dimension of their unique invariant measure equals to

1. For any β ∈ [0, 1] V.Sadovskaya in [4], constructed C∞ -smooth circle homeo-

morphisms whose rotation numbers are Liouville and Hausdorff dimensions equal to

β.

K.Khanin and S.Kocić in [5] studied the Hausdorff dimension of circle maps with a

break point. They proved that if rotation number ρT ∈ S, then Hausdorff dimension

of T− invariant measure µ : µT equal to zero i.e. dimH µ = 0.
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The class of piecewise linear circle maps with two breaks first were studied by

M.Herman in [2]. A.Aliyev proved in [6] that this statement is also correct for the case

T is piecewise linear circle homeomorphism with irrational rotation number ρT ∈ S
and two break points b1 and b2 on different orbits which µ([b1, b2]) ∈ G. Where G is

a full set w.r.t. Lebesgue measure on [0,1].

Now we formulate our main theorem.

For each β ∈ [0, 1], there exist Gβ such that G0 = G and
⋃
β

Gβ = [0, 1].

Theorem 1. Let T be piecewise linear circle homeomorphism with unbounded type

irrational rotation number ρT and two break points b1 and b2 on different orbits which

µ([b1, b2]) ∈ Gβ. Then pointwise dimension dµ(x) of µT equals to β for µT− almost

every x.
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On inequalities for the probability of ruin

A.A.Atakhuzhaev1, V.R.Khodzhibaev2

Let ξ (t) , t ≥ 0, ξ (0) = 0, be a homogeneous stochastic process with independent

increments whose sample functions are continuous on the right. For it we have

Eexp {λξ (t)} = exp {tψ (λ)}, ψ (λ) = γλ + σ2λ2

2
+
∞∫
−∞

(
eλx − 1− λx

1+x2

)
dS (x),

with standard conditions on γ, σ and S (x). For arbitrary ones a > 0, b > 0, we

introduce a random variable , which equal to the moment of the process first exits

ξ (t) from the interval (−a, b):

T = T (a, b) = inf {t ≥ 0 : ξ (t) /∈ (−a, b)} .

It is known that a random variable T is finite with probability one if P (ξ(1) =

0) < 1. Let α (a, b) = P (ξ (T ) ≤ −a) , β (a, b) = P (ξ (T ) ≥ b). These quantities

are usually called ruin probabilities by analogy with the probabilistic model of a

two-player game with discrete time, and it is obvious that α (a, b) + β (a, b) = 1.

The exact calculation of ruin probabilities is available only in some particular sit-

uations, both in discrete and continuous time. Therefore, the main attention in the

study of these quantities began to be paid to asymptotic approaches. Along with

asymptotic formulas, the task of obtaining two-sided estimates for the probability of

ruin is relevant. They are a natural addition to the asymptotic results. The problem

of obtaining two-sided estimates for the probability of ruin for random walks gener-

ated by sums of independent identically distributed random variables is considered

in [1], [2]. Some two-sided inequalities for the probability of ruin were also obtained

in the case of a homogeneous process with independent increments and continuous

time. Inequalities for the probabilities of ruin for the case Eξ (1) < 0 under various

restrictions on the distribution of the process were established in [3]. In point 1 of

[4], some lower and upper estimates were proved for the case Eξ (1) = 0 .

1The first author is supported by Tashkent branch of the National Research Nuclear University

“MEPhI”
2The second author is supported by Namangan Engineering-Construction Institute, Institute of

Mathematics Academy of Sciences of the Republic of Uzbekistan
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Our goal is to obtain new two-sided estimates for the probabilities of ruin in the

case of Eξ (1) = 0. Let us introduce the following notation:

l(s) =:
2(s+ 2)

s+ 1
· as+2

a2

, as =

∞∫
−∞

|x|sdS (x) , ξ(t) = sup
0≤s≤t

ξ(s), ξ(t) = inf
0≤s≤t

ξ(s),

Rt(dv, dz) =

t∫
0

P (ξ(t− s) ∈ dv)dsP (ξ(s) ∈ dz),

m+(t) =:

∞∫
0

b∫
0

0∫
−∞

|S(b− z + u− y)|Rt(dz, dy)du,

m−(t) =:

∞∫
0

a∫
0

0∫
−∞

|S(−a+ z − u+ y)|Rt(dy, dz)du, C(δ) := 2(l(1 + δ))
1/1+δ .

Theorem 1. Suppose that Eξ (1) = 0 and for some δ > 0 |ξ (1) |3+δ < ∞. Then for

any t ≥ 0
a+m−(t)− C(δ)

a+ b
≤ β (a, b) ≤ a−m+(t) + C(δ)

a+ b
.

It immediately follows that for any t ≥ 0

b+m+(t)− C(δ)

a+ b
≤ α(a, b) = 1− β (a, b) ≤ b−m−(t) + C(δ)

a+ b
.
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Asymptotic behaviour of branching processes with
non-homogeneous immigration

J. B. Azimov

Let µn be a number of particles of the Galton-Watson (G-W) branching process at

the moment n (n = 0, 1, . . . , µ0 = 1 ) with the generating function (g.f.)

F (x) =
∞∑
j=0

pjx
j, pj = P {µ1 = j} , j = 0, 1, ..., |x| ≤ 1.

The zero state is absorbing for the process µn , that is, if µN = 0 for some N > 0,

then µn = 0 for all n > N. In [1] J.H.Foster considered G-W process modified to

allow immigration of particles whenever the number of particles is zero. If µn = 0,

then, at the moment n, ξn particles immigrate to the population, where the number

of particles evolves by the law of the G-W process with g.f. F (x ).

The asymptotic behavior of branching processes with state-dependent immigration

were studied by many authors (see [1]–[3]).

We consider the case when immigration takes place as µ n =k, 0 ≤ k ≤ m, where m

is some nonnegative integer. Assume that the intensity of the immigration decreases

tending to 0, when the number of descendents increases. Limit theorems for such

processes have been studied in [4],[5],[6].

Thus, the immigration is given with g.f.

gk,n(x) =
∞∑
j=0

qkj(n)xj, |x| ≤ 1, k = 0, 1, ...,m, qkj(n) ≥ 0,

∞∑
j=0

qkj(n) = 1, n = 0, 1, 2, ... .

Let{Zn; n = 0, 1, ...} be a number of particles of this process at the moment n.

Suppose, that

F (x) = x+ (1− x)1+νL(1− x)

where 0 < ν ? 1 and L(x ) is a slowly varying function (s.v.f.) as x ¿ 0.

Introduce the function

M(n) =
n∑
k=1

N(k)

k1/ν
,
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where N (x ) is a s.v.f. as x ¿ ? such that

νN ν(x)L(x−1/νN(x))→ 1.

Denote

αn = max
0≤k≤m

g
′

k,n(1) βn = max
0≤k≤n

g
′′

k,n(1),

Q1(n) = αn

n∑
k=0

(1− Fk(0)), Q2(n) = (1− Fn(0))
n∑
k=0

αk

where F0(x) = x, Fn+1(x) = F (Fn(x)).

We suppose that

Sup
n
αn <∞ , Sup

n
βn <∞ ,

0 < αn → 0 , βn → 0 , n→∞.

We consider the case ν = 1, M(n)→∞ as n→∞.

Theorem 1. Let αn ∼ l(n)
nr
, βn = o (Q1(n)) , n → ∞, where 0 ≤ r ≤ 1 and l(n) is

a s.v.f. as n→∞. Then

a) if r = 0, Q1(n)→ θ as n→∞ and 0 < θ < 1, that

lim
n→∞

P{Zn > 0} =
θ

1 + θ
, EZn ∼

n

M(n)
, n→∞.

b) if r = 0, Q1(n)→ 0, n→∞ or 0 < r < 1, that

P{Zn > 0} ∼ Q1(n), EZn ∼
nαn
1− r

, n→∞.

c) if r = 1 and βn = o (Q1(n) +Q2(n)) as n→∞, that

P{Zn > 0} ∼ Q1(n) +Q2(n), EZn ∼M(n), n→∞.
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Equations with interaction, second quantization,
stability and polymer models

A. A. Dorogovtsev

In the talk we present an overview of the recent results on stationary behaviour of

solutions to equations with interaction. Such equations were introduced by author

in 2000 [1] for description of the motion of the large systems of particles where the

instant increments of trajectory of fixed particle depend on mass distribution of the

whole system. The equation with interaction has the form

dx(u, t) = a(x(u, t), µt)dt+

∫ d

R
b(x(u, t), µt, p)W (dp, dt), (1)

x(u, 0) = u, u ∈ Rd, µt = µ0 ◦ x(·, t)−1.

Here W is a Gaussian white noise in L2(Rd × [0; +∞]) responsible for the influence

of random media. x(u, t), t ≥ 0 is the trajectory of the particle which starts from the

point u ∈ Rd. µt is the mass distribution of the whole system. Its presence in the

coefficients a and b reflects the interaction between particles.

In the first part of the talk we discuss the possible conditions under which the

equation with interaction has a stationary solution. It turns out that either such

solution is of poor structure [2] or only shift-compactness can be guaranteed [3].

This means that one can expect the stationarity only for certain functionals from

the solution. To investigate more detaily what kind of stationary behaviour can be

naturally achieved for solution to equation with interaction we propose to consider the

following construction. Let ξ : Rd → R be a Gaussian random field with independent

and identically distributed coordinates which have zero mean and covariance

Eξ1(u)ξ1(v) = exp{−1

2
‖u− v‖2}.

The random field ξ has infinitely smooth trajectories. For probability measure µ on

Rd denote by ξ(µ) its image ξ(µ) := µ ◦ ξ−1. Construct the coefficients for equation

with interaction as follows

a(u, µ) = Eξα(u, ξ(µ)), b(u, µ, p) = Eξβ(u, ξ(µ), p)

for α and β being functionals from ξ. With such coefficients equation (1) can be

treated as the lifting of initial equation to the space of functionals from ξ. In the
13



talk we present conditions for existence of such solution {µt; t ≥ 0} that the process

{ξ(µt); t ≥ 0} is stationary. Here we suppose that ξ and W are independent.

As an application of the general construction we consider the case when initial

measure µ0 is a visitation measure of a certain smooth closed curve (knot) γ0. It

is proved [4], that ξ(γ0) has no self-intersections a.s. For stationary random knot

{ξ(γt); t ≥ 0} we present overview of its properties and results of modelling.
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Intermittency Phenomena for Mass Distributions
of Stochastic Flows with Interaction

Andrey Dorogovtsev, Alexander Weiss

The intermittency phenomenon occurs when high peaks in a qunatity occur rarely

but are signicant enough to influence the asymptotics of the underlying quantity.

Mathematically speaking this can be characterised with moments. In this talk the

topic of intermittency will be covered for mass distributions for stochastic differential

equations with interaction, namely
dx(u, t) = a(x(u, t), µt)dt+ b(x(u, t), µt)dBt

∀u ∈ Rd x(u, 0) = u

µt = µ0 ◦ x−1(·, t)

where µ0 is a probability measure and a : Rd ×M(Rd)→ Rd and b : Rd ×M(Rd)→
Rd×d are coefficients. Here M(Rd) is the space of all probability measures on Rd

and d ≥ 1 denotes the dimension. In the talk only such measures will be investigated

which possess a Lebesgue density. The space of probability measures will be equipped

with the Wasserstein distance

γ(µ, ν) = inf
κ∈C(µ,ν)

∫ ∫
|u− v|

1 + |u− v|
κ(du, dv)(1)

Theorem 1. Let a and b be Lipschitz continuous with respect to all arguments and

continuously differentiable with respect to the spatial variable. Moreover assume that

a and b are bounded. Then µt is almost surely absoulutely continuous with respect to

the d-dimensional Lebesgue measure for all t ≥ 0 with Lebesgue density:

pt = p0(x−1(·, t)) det(Dx−1(·, t))

Then intermittency is defined as followed

Definition 1. (pt)t≥0 is intermittent if (λp
p

)p≥1 is strictly increasing for

λp = lim
t→∞

ln
(∫

Rd p
p
t (u)du

)
t

It turns out intermittency exists under dissipativity conditions on the coefficients

Theorem 2. Let a and b suffice the conditions of Theorem 1, assume furthermore
15



(1) There exists a continuously differentiable function φ such that φ and its de-

rivative is bounded. Furthermore φ suffices for all u, v ∈ Rd

(u− v, φ(u)− φ(v)) ≤ −α|u− v|2

for some α > 0.

(2) Let B be the Lipschitz constant of b with respect to the spatial variable. Then

2α−B2(2q − 1) > 0

where q > d

Then pt is intermittent.
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Asymptotic distributions of terms of a variation
series in the case of random sample size

A. A. Dzhamirzaev, I.N. Mamurov

The variation series is the starting point for many applied problems; this concept is

widely used in issues of mathematical statistics and other fields of knowledge. There-

fore, a larger number of publications are devoted to the study of the distributions of

terms of a variation series (t.v.s.).

In classical mathematical statistics, as well as in the studies conducted by the

above authors, the sample size from which a variation series is formed is considered

deterministic. In this paper, the authors study the asymptotic distributions of t.v.s.

in the case when the sample size itself is a random variable (r.v.), i.e. the charac-

teristics of the general population under consideration are observed (due to certain

circumstances) in a random number of tests. This situation often occurs in practice

and is more general than the deterministic case, when the number of observations

is considered non-random. Random sample size appears in statistical problems in

reliability theory, queuing theory, sequential analysis, etc.

All available publications concerning random sample size can be divided into two

groups. The first group includes studies, in which an essential condition is the inde-

pendence of the random sample size from the observed values (”independent scheme”).

The second group consists of studies, in which such a condition is not assumed (”de-

pendent scheme”). In most of the works of the first group, regarding the sample size

νn, it is assumed that νn
n

as n→∞ converges in distribution to some r.v. While the

studies of the second group are characterized by a stronger condition: convergence in

probability νn
n

as n→∞ to some positive r.v. [1], [2].
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Asymptetic estimates for a small parameter in
Hartmann–Wintner law of the iterated logarithm

M. U.Gafurov

The work is devoted to further refinement of the classical Hartman-Wintner the-

orem on the law of the iterated logarithm for a sequence of independent, identically

distributed random variables. Namely, an estimate of the rate of convergence in the

form of convergent series of weighted probabilities of large deviations is established

the exact asymptotes in the small parameter of the series, which is a refinement of

the corresponding result [1]. Analogs of the obtained results were proved for a family

of independent, identically distributed random variables indexed on sectors of the

d-dimensional lattice of the Euclidean space. Regarding the concept of a sector, we

recommend to have a look at the monograph [2].
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Limit Gibbs measures for 1-D lattice models with
competing interactions

N.N.Ganikhodjaev

An Ising model with competing nearest-neighbour and next-nearest-neighbour in-

teractions is considered on a Cayley tree of first order. Such model on the Cayley

tree of second order was considered by Vannimenus [1]. The author was able to find

new modulated limit Gibbs measures, in addition to the expected paramagnetic and

ferromagnetic ones. These new limit Gibbs measures (phases) consist in a period-four

phase and commensurate modulated phases. We show that for model on the Cayley

tree of first order its phase diagram contain the same paramagnetic, ferromagnetic,

antiferromagnetic and modulated phases except period-four phase.
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Gaussian structure in coalescing stochastic flows

K.V. Hlyniana1, A. A. Dorogovtsev

In this talk, we consider an ordered family of standard Brownian motions on the

real line {x(u, ·), u ∈ R}, in which any two particles move independently until they

meet and after that coalesce and move together as one. It is known that for any time

t > 0, the set x(R, t) is almost surely locally finite, so the point measure Nt([u1, u2]) :=

# {x(R, t) ∩ [u1, u2]} is well-defined. We investigate linear functionals which are

represented as integrals with respect to the point process Nt. A limit theorem with

respect to the spatial variable is obtained for such integrals. Denote by Xn
t (f) :=

1√
n

∫ n
0
f(u)Nt(du); t ∈ [t0;T ]; n ≥ 1.

Theorem 1. For any 0 < t1 < t2 < . . . < tm < T the following weak convergence

holds
(
Xn
t1

(f), . . . , Xn
tm(f)

)
⇒ (ζt1(f), . . . ζtm(f)) , as n→∞, where (ζt1(f), . . . ζtm(f))

is a Gaussian vector. Moreover, if f is a 1-periodic Lipschitz function then the lim-

iting Gaussian process ζt(f), t ∈ [t0, T ] (t0 > 0) has continuous modification.

Considering the family {ζf , f ∈ L2([0, 1])} as a generalized Gaussian element, we

use it to obtain a limit theorem for the multiple integrals with respect to the point

process Nt.
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Operators of second quantization for Bernoulli
noise

Anastasiia Hrabovets

In this work, we will construct an approximation of Gaussian white noise based on

the sequence of Bernoulli random variables. Such normalized sums of independent

Bernoulli random variables were studied in [1], [2]. We will develop the chaotic

representation for functionals from Bernoulli noise similar to the Gaussian case [3].

In this work, operators of second quantization and Ornstein-Uhlenbeck semigroup

operators for Bernoulli noise will be presented. We will construct a measure-valued

Markov process associated with the Ornstein-Uhlenbeck semigroup and investigate

the limit behavior of these measures.

Let {εn, n ≥ 1} be a sequence of independent random variables with Bernoulli

distribution: P(εn = 1) = P(εn = −1) = 1
2
.

Define

∀f ∈ C ([0, 1]) : ϕ (f) :=
n∑
k=1

f

(
k

n

)
εk√
n

Definition 1 . We will call a set {ϕ(f) : f ∈ C ([0, 1])} of random variables by the

Bernoulli noise in C ([0, 1]).

Theorem 1 (Weak convergence to Gaussian white noise). For any f1, . . . , fn ∈
C([0, 1]) :

(ϕ(f1), . . . , ϕ(fk)) −→ ((f1, ξ), . . . , (fk, ξ)) , n→∞,

where (fi, ξ) is an element of Gaussian white noise.

Define the polynomials

Ank (−→ε ) =
1

n
k
2

∑
i1 6=... 6=in

f

(
i1
n
, . . . ,

ik
n

)
εi1 . . . εik , 1 ≤ ij ≤ n.

Lemma 1. {Ank (−→ε ) , 1 ≤ k ≤ n} is a system of orthogonal polynomials.

Theorem 2. ∀k ≥ 1 :

Ank (−→ε ) =
1

n
k
2

∑
i1 6=... 6=in

f

(
i1
n
, . . . ,

ik
n

)
εi1 . . . εik =⇒ f(ξ, . . . , ξ︸ ︷︷ ︸

k

), n→∞,

where f(ξ, . . . , ξ︸ ︷︷ ︸
k

) is Hermite polynomial related to function f from definition for

Ank (−→ε ).
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Lemma 2. Any function from {εn} can be represented as

α(−→ε ) =
∞∑
k=0

n∑
i1 6=... 6=ik

ai1...ikεi1 . . . εik

Definition 2 . Define the operator of second quantization corresponding to {pn, n ≥ 1}, pn ∈
(−1, 1) as follows

Γ(p)α = α(pε) =
∞∑
k=0

n∑
i1 6=... 6=ik

ai1...ikpi1εi1 . . . pikεik .

Lemma 3. For any nonnegative α and any {pn, n ≥ 1}, pn ∈ (−1, 1):

Γ(p)α ≥ 0.

Consider analogs of operators of the Ornstein-Uhlenbeck semigroup for Bernoulli

noise. For any n ≥ 1 consider pn = e−t. Then

T εt α = Γ(p)α =
∞∑
k=0

n∑
i1 6=... 6=ik

ai1...ike
−ktεi1 . . . εik .

Consider a space

K = {−1; 1}N, ρ((xn), (yn))) =
∞∑
n=1

1

2n
|xn − yn|

M∞ is a set of all product measures on K :

M∞ 3 µ = µ1 ⊗ µ2 ⊗ . . .

Let {τn} be a sequence of independent exponentially distributed random variables

with λ = 1.

For µ ∈M∞ define the process {µt} :

µt = µt1 ⊗ µt2 ⊗ . . .

where µtn = µn if τn > t and µtn = 1
2
δ−1 + 1

2
δ+1 if τn ≤ t.

Consider f : K −→ R

f(x) =
∞∑
n=0

∑
1≤i1<...<in

ain,...,inxi1 . . . xin .

< f, µt >=

∫
K

f(x)µt(dx)
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The element x ∈ K can be identified with the measure

δx = δx1 ⊗ δx2 ⊗ . . .

Then

Eδx < f, µt >=
∞∑
n=0

∑
1≤i1<...<in

ain,...,ine
−ntxi1 . . . xin

Properties:

• µt −→
(

1
2
δ−1 + 1

2
δ+1

)∞
in Wasserstein metric

• Consider f : {−1,+1}∞ −→ R,

f(x) =
∞∑
k=1

xk

2k+1
.

Then

µt ◦ f−1 −→ U

[
−1

2
,
1

2

]
in Wasserstein metric

• Consider

gn(x) =
1√
n

n∑
k=1

xk,

then

µt ◦ g−1
n −→ N(0, 1).
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A family of F- quadratic stochastic operators

U. U. Jamilov, F.M. Mukhamedov

Let E = {1, . . . ,m} be a finite set and the set of all probability distributions on E

Sm−1 = {x = (x1, x2, . . . , xm) ∈ Rm : xi ≥ 0, for any i and
m∑
i=1

xi = 1},

be the (m− 1)-dimensional simplex.

A quadratic stochastic operator (QSO) is a mapping V : Sm−1 → Sm−1 of the

simplex into itself, of the form V (x) = x′ ∈ Sm−1, where

(2) V : x′k =
m∑

i,j=1

Pij,kxixj, k = 1, . . . ,m

and the coefficients {Pij,k} satisfy

(3) Pij,k = Pji,k ≥ 0,
m∑
k=1

Pij,k = 1, i, j, k ∈ E.

The trajectory {x(n)}∞n=0, of V for any point x(0) ∈ Sm−1 is defined by x(n+1) =

V
(
x(n)

)
= V n+1

(
x(0)
)
, n = 0, 1, 2, . . . One of the main goal of mathematical biology

is to study of the asymptotic behaviour of the trajectories for a given QSO (see [1]).

Let us extend the set E by adding element “0”, that is we considerE0 = {0, 1, . . . ,m}.
Fix a set F ⊂ E and call this set the set of “females” and the set M = E \F is called

the set of “males”. The element “0” will play the role of “empty-body”. Coefficients

Pij,k of the matrix P we define as follows

(4) Pij,k =


1, if k = 0, i, j ∈ F ∪ {0} or i, j ∈M ∪ {0};
0, if k 6= 0, i, j ∈ F ∪ {0} or i, j ∈M ∪ {0};
≥ 0, if i ∈ F, j ∈M,∀k.

Definition 1.[2] For any fixed F ⊂ E, the QSO defined by (2),(3) and (4) is called

F− quadratic stochastic operator.

Let πs be a permutation of the set E = {1, 2, . . . ,m} and ψk : E → E be a map

for any natural k. Consider E0 = {0, 1, . . . ,m} and

Fs = {πs(1), πs(2), πs(3), . . . , πs(ψs(m1))}, Ms = {πs(ψs(m1 + 1)), . . . , πs(m)}.
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Then we have that corresponding Fs− QSO with the matrix Pπs =
(
P πs
ij,k

)
i,j,k∈E0

has

the form

(5) Vπs :


x′0 = 1− 2

∑
i∈Fs

∑
j∈Ms

(
1− P πs

ij,0

)
xixj;

x′πs+1(k) = 2
∑
i∈Fs

∑
j∈Ms

P πs
ij,πs(k)xjxj, k = 1, 2, . . . ,m,

where the coefficients P πs
ij,k satisfy the conditions

(6) P πs
ij,πs(k) = P πs

ji,πs(k) ≥ 0, k ∈ E0;
m∑
k=0

P πs
ij,πs(k) = 1, ∀i ∈ Fs, j ∈Ms, s > 0.

Let Vπ = {Vπs , s = 1,m!} be the set of all F - QSOs defined on Sm. As any QSO

Vπs is represented by a matrix Pπs =
(
pπsij,k

)
i,j,k∈E0

, the set Vπ is compactly embedded

in R(m+1)3 . Let H be the Borel σ-algebra induced on the set Vπ. Let (Ω,F,P) a

probability space. Any measurable map G : Ω → Vπ (i.e. such that G−1(H) ⊂ F) is

called a random F - quadratic stochastic operator. Consider the set Vπ of measurable

QSOs on Sm into Sm, with Vπs assigned a positive probability qs, s = 1,m!, q1 + · · ·+
qm! = 1. Given an initial state x(0) ∈ Sm, one picks a F -QSO at random from the set

Vπ, Vπs being picked with probability qs, s = 1,m!. Consider a random dynamical

system x(n+1) = Tn+1Tn · · ·T1x
(0) = Tn+1

(
x(n)

)
(n ≥ 1), where {Tn : n ≥ 1} is

a sequence of independent F -QSOs on Sm into Sm with the common distribution

Q = {q1, . . . , qm!} on Vπ.

Theorem 1. Let Q = {q1, . . . , qm!} be common distribution on the set Vπ. Then

P

 lim
n→∞

Tn(x) = (1, 0, . . . , 0︸ ︷︷ ︸
m

)

 = 1.
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Weak dependence properties of a vertex process of
a convex hull generated by a Poisson point process

inside a parabola

I. M. Khamdamov, Kh. M. Mamatov

The convex hull generated by the implementation of a Inhomogeneous Poisson point

process inside a parabola is studied in this article. The measure of intensity of the

Poisson law is associated with regularly varying functions near the boundary of the

carrier. It is worth noting that P. Groeneboom [1] was the first, who approximated

a homogeneous binomial point process by the Poisson process, and using martingale

properties for stationary vertex processes, proved the central limit theorem for the

number of vertices of a convex hull in the case when the carrier of the uniform

distribution is either a convex polygon or an ellipse. After [1], numerous studies

appeared in which, developing the P. Groeneboom technique, various versions of

central limit theorems were proved for the main functionals of a random convex hull

for the case when the carrier of the original distribution is concentrated both in

convex bounded and unbounded domains on the plane. The approach we used to

study the properties of vertex processes differs from the P. Groeneboom technique

and is based on analytical and direct probabilistic techniques. The main tool of the

study is the independence properties of the increment of a Poisson point process, with

which the area limited by the perimeters of the convex hull and the boundaries of

the parabola carrier is represented as a sum of independent identically distributed

random variables. Moreover, these quantities do not depend on the vertices of the

convex hull (see, for example, [2]).

Let us denote the smallest root of the equation by bn :

nx−(β+ 1
2)L(x) = 1,

where L(x) is the slowly varying function in sense of Karamata representable in the

following form:

L(u) = exp

{∫ u

1

ε(t)

t
dt

}
, ε(t)→ 0, t→∞.

We assume that

Rn =

{
(x, y) :

x2

2bn
≤ y

}
⊂ R2.
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And denote a Inhomogeneous Poisson point process (i.h.p.p.) with intensity Λn(·) by

Πn(·), where the intensity measure Λn(·) is related the s.v.f. L(x).

Let (X1, Y1), (X2, Y2), ... be realizations of i.h.p.p. Πn(·) in Rn, Cn are the convex

hulls generated by these random points and Zn are their set of vertices.

Assume that e0 = (0, 1).

We denote one of the vertices for which (e0, z − z0) ≥ 0 for all z ∈ Zn by z0 ∈ Zn.

It is obvious that z0 is determined uniquely and almost certainly.

In this case, the straight line (e0, z − z0) = 0 is the line of support for Cn.

Let us now number vertices Cn, going around the boundary counterclockwise. Since

z0 has already been defined, each of the vertices thereby receives its own number

j,−∞ < j < ∞. Then, from the condition of independence of the increment of the

Poisson point process, the area bounded by perimeters Cn and parabola v = u2

2bn
is

expressed as a sum of independent random variables ξj,−∞ < j <∞. From here, it

is possible to obtain the exact distribution z0 = (u0, v0) and distribution zj+1 subject

to vertices zj−1 and zj
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Limit theorems for reduced processes starting with
a large number of particles

Ya.M.Khusanbaev

Let {Zk, k ≥ 0} the Galton-Watson branching process (see e.g.,[1]) in which the

number of direct descendants of one particle have the generating function f(s), 0 ≤
s ≤ 1 .

Denote by Z(m,n) the number of particles in the moment m(m ≤ n) in the

process {Zk, k ≥ 0}, whose descendants exit at the moment n. The random pro-

cess {Z(m,n), 0 ≤ m ≤ n} is called the reduced process generated by the process

{Zk, k ≥ 0}. The reduced process {Z(m,n), 0 ≤ m ≤ n} is called subcritical, critical

and supercritical if f ′(1) < 1, f ′(1) = 1 and f ′(1) > 1 respectively. Reduced sub-

critical processes for Galton-Watson processes were introduced by Fleischmann and

Prehn [2]. Fleischmann and Sigmund-Schultze [3] proved a functional limit theorem

(under the assumption Zn > 0) in which.

The convergence of reduced critical processes to the Yule process is established. Liu

and Vatutin[4] proved conditional limit theorems (under the assumption 0 < Z0 ≤
ψ(n)) for rudused critical processes starting with a single particle and with a finite

variance in the number of direct descendants of a single particle.

In this report, we propose limit theorems for subcritical and critical reduced pro-

cesses Z(m,n), 0 ≤ m ≤ n in the case when Z0 = ϕ(n) with probability 1, where

ϕ(n) such that ϕ(n) ∼ n or ϕ(n) = o(n) when n→∞.

Here are some of our results.

Theorem 1. Let for a reduced critical process 0 < f ′(1) = σ2 < ∞ and with proba-

bility 1 Z0 = [xn], where is x > 0 a fixed number, the sign [a] means the integer part

of the number a. Then for any t ∈ [0, 1) the next relation holds

lim
n→∞

E[sZ([nt]n)/Z(0) = [xn], Z(n) > 0] =
e−

2x
σ2

1−s
1−ts − e−

2x
σ2

1− e−
2x
σ2

Theorem 2. Let the conditions A = f ′(1) = Eξ < 1,
∞∑
k=2

pkk log k < ∞ be satisfied

for the branching process {Z(k), k ≥ 0} and with probability 1 Z(0) = ψ(n) = [cA−n],

where c > 0 is constant. Then for any fixed m ∈ N ∪ 0 the following asymptotic
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relations hold:

E[sZ(n−m,n)/Z(0) = ψ(n)]→ ecKA
−m(1−g(ϕm(s))) as n→∞,

E[sZ(n−m,n)/Z(0) = ψ(n), Z(n) > 0]→ ecKA
−m(1−g(ϕm(s))) − e−ck

1− e−cK
as n→∞,

where

g(s) =
∞∑
k=1

bks
k, bk = lim

n→∞
P (Z(n) = k/Z(0) = 1, Z(n) > 0),

the number K is determined by the relation

K = (g′(1))−1,

ϕm(s) = fm(0) + (1− fm(0))s.
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The asymptotic of the probability of falling into
zero of a multi-type branching process with

immigration
A. Mashrabboev

Consider the following two-stage model of branching processes with immigration.

The process of reproduction with continuous time with a generating function

fi(s) =
∑
k≥0

f iks
k,

∑
k≥0

f ik = 1, i = 1, 2

(the probability of incrementing one particle i- of that type per time t → 0 is equal

to f ikt+ o(t) at k > 0 and 1 + f i0 + o(t) at k = 0) and the process of immigration with

discrete time is given by the generating function

Gi(s) =
∑
k≥0

Gi
ks
k,

∑
k≥0

Gi
k = 1, Gi(0) = Gi

0 > 0.

Definition: The lifetime of a branching process starting with n particles i- of that

type with immigration has length τ if the number of particles zi(0) = n, zi(t) > 0

for all t, 0 < t < τ, a zi(τ) = 0 (the trajectory of the process zi(t) is assumed to be

continuous on the right). Suppose:

γi(t) = Pi{zi(t) = 0/zi(0) = 0}.

Theorem 1. If θi = λiµib
−1
i , L(t) is a slow changer function and

∞∑
k=1

kGi
kLnk <∞,

∞∑
k≥1

k2Gi
kLnk <∞,

then γ ∼ ctθi , (t → ∞, c > 0), where λi =
∑
k≥0

vikS
k, λi = V 1

i (1) < ∞, µi =
∫∞

0
=

tdGi(t).
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Asymptotic approximation for a certain class of
statistics defined on several generalized urn models

Sherzod M. Mirakhmedov

Urn models are a useful tool which allows to formulate and better understand many

combinatorial problems in probability and statistics.Urn models naturally arise in sta-

tistical mechanics, clinical trials, cryptography etc. Properties of several types of urn

models have been extensively studied in both probability and statistics literature; see

e.g. survey paper by Kotz and Balakrishnan (1997). Most general definition of urn

models has been introduced by Mirakhmedov et al (2014), where the asymptotic the-

ory and higher-order expansions for a certain class of statistic are presented. Although

their work covers many specific urn models it does not cover, such probabilistic mod-

els as, for instance, an infinite balls-in-boxes occupancy scheme , random allocation

of particles in sets, and the statistics based on several samples from a population(s),

intensively studied in the literature. Specifically, a number of recent publications

associated with the infinite multinomial occupancy scheme, see e.g. Gnedin et al

(2007), Gnedin and Iksanov (2020) and references therein, motivated this study. The

generalized random allocation scheme we are interested here is as follows.

Let ξk = (ξk,1, ξk,2, ...), k = 1, ..., s, be a collection of independent sequences (random

vectors (r.vec)) of independent non-negative integer random variables (r.v.s) such that

for each k the series ζk = ξk,1 + ξk,2 + .... is a.s. converges and Pr{ζk = nk} > 0 for a

given integer nk ≥ 2. We consider the conditional distribution L(ξk | ζk = nk) which

in turn generates a r.vec. ηk = (ηk,1, ηk,2, ...) such that

(7) L(ηk) = L(ξk | ζk = nk).

where k = 1, ..., s, and L(X) stands for the distribution of the r.vec. X. This equality

implies that the integer ηk,m ≥ 0 , Pr{ηk,1 + ηk,2 + .... = nk} = 1, and hence ηk

should be viewed as r.vec. of frequencies in an urn model, where a sample of size nk

is drawn from an urn containing a finite or infinitely many types of items labelled by

{1, 2, ...}, then the r.v. ηkm becomes as number of items of m-th type in the sample.

The sample scheme determines by the distributions of r.v.s ξk,m and parameter nk.

The probabilistic model defined by (1) is what we call a ”generalized urn model”

(GUM). Thus we deal with s independent GUMs. An alternate interpretation of the

model (1) is the random allocation of nk particles into cells labeled by {1, 2, ...}. The
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r.v. ηl,m(nl) then is the number of particles falling into the m-th cell after allocation

of all nk particles. The independent r.vec.s η1, ..., ηs all together can be viewed, for

example, as a random allocation of particles of s types in the infinite multinomial

occupancy scheme , where nk is the number of particles of the k - th type, as well as

random allocation of particles in sets, where now nk is the number of particles of k -th

set.

Our aim here is to present a unified approach to the derivation of an asymptotic (as

min(n1, ..., ns)→∞ ) approximation for the distribution function of statistics of the

form

(8) R(n) =
∞∑
m=1

fm(η1,m, ..., ηs,m),

where fm(x1, ..., xs), m = 1, 2, ...,is a sequence of functions (may be random) defined

for x1 ≥ 0, ..., xs ≥ 0, such that the series (2) is a.s. converges for every n =

(n1, ..., ns). The generalized urn model and statistics considered by Mirakhmedov et

al (2014) follows if s = 1 and Pr{ξ1,m(n1) = 0} = 1 for m > N. some N = N(n)→∞.
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Limit theorems for U-statistics of positively
associated random variables

A.K. Muxamedov, O.Sh. Sharipov

Limit theorems for U−statistics of weakly dependent random variables in one and

two samples cases were studied by many authors (see for example [1]-[4]).

We consider as a measure of dependency the following coefficients

r (k) = sup

x, y ∈ R
i ∈ N

[P (Xi > x,Xi+k > y)− P (Xi > x)P (Xi+k > y)] , k ∈ N.

Define the associated random variables.

Definition 1. A sequence of random variables {Xn, n ≥ 1} is said to be positively

associated, if for any finite collection {Xi1 , .., Xin} and any real coordinatewice non-

decreasing functions f, g on Rn

Cov (f (X1, ..., Xn) , g (X1, ..., Xn)) ≥ 0,

whenever the covariance is defined.

For a stationary sequence {Xn, n ≥ 1} with common distribution function F ,

U−statistics are defined as following

Un =
2

n(n− 1)

∑
i<j

h(Xi, Xj)

where h (x, y) is a measurable symmetric function. According Hoeffding decomposi-

tion we have:

h (x, y) = θ + h1 (x) + h2 (y) + g (x, y) ,

where h1 (x) = Eh (x, Y ), h2 (y) = Eh (X, y), g (x, y) = h (x, y)− h1 (x)− h2 (y)− θ.
θ (F ) =

∫∫
R2 h (x1, x2) dF (x1) dF (x2) .

Denote σ2
1 = V ar (h1 (X1)), σ2

1j = Cov (h1 (X1) ;h1 (X1+j)) , σ
2
U = σ2

1 + 2
∑∞

j=1 σ
2
1j.

Assume that the following conditions hold:

∫∫
R2

|h (X1, X2)|s dF (x1) dF (x2) < C <∞, s ≥ 2 and

(1) E |g (X1, Xj)|s < C <∞, s ≥ 2, j ∈ N
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Theorem 1. Let {Xi, i ≥ 1} be a stationary sequence of positively associated random

variables with marginal distribution function F . Assume that h (x, y) is monotone in

and there exists a positive δ such that for s = 2 + δ the condition (1) and

r (n) = O
(
n−(2+δ/)/δ/

)
, for some δ/

(
0 < δ/ < δ

)
.

hold. If 0 < σ2
U <∞, then the following weak convergence holds

√
n

2σU
(Un − θ (F ))⇒ N (0, 1) ,

where N(0,1) is a standard Gaussian random variable.

References

[1] I. Dewan and B.L.S. Prakasa Rao (2002), Central limit theorem for U -statistics of

associated random variables, Statist. Probab. Lett., 57, 9-15.

[2] P.K. Sen (1972), Limiting behavior of regular functionals of empirical distributions for

stationary *-mixing processes, Z. Wahrsch. Verw. Geb., 25, 71-82.

[3] R.J. Serfling (1968), The Wilcoxon two-sample statistic on strongly mixing processes,

Ann. Math. Statist., 39, 1202-1209.

[4] K. Yoshihara (1976), Limiting behavior of U-statistics for stationary, absolutely regular

processes, Z. Wahrsch. Verw. Geb., 35, 237-252.

Mirzo Ulugbek National University of Uzbekistan. Tashkent, Uzbekistan

E-mail:muhamedov1955@mail.ru

Mirzo Ulugbek National University of Uzbekistan. Tashkent, Uzbekistan

E-mail:osharipov@yahoo.com

34



Functional limit theorems for perturbed random
walks

A.Y.Pilipenko 1

Consider a random walk Sξ(n) := ξ1 + · · ·+ ξn, where (ξk) are independent copies

of an integer-valued random variable ξ, where Eξ = 0 and σ2 := Varξ ∈ (0,∞). Due

to the Donsker invariance principle we have convergence in distribution

Sξ([n·])
σ
√
n
⇒ W (·), n→∞,

in space D([0,∞)).

Consider an integer-valued Markov chain X whose transition probabilities coincide

with transition probabilities of Sξ everywhere except of a finite set A ⊂ Z. We will call

the set A the membrane and we shall say that X is a random walk that is perturbed

on A. It appears that the Donsker scaling of X may be not a Brownian motion but

a singular diffusion. The first result on this topic belongs to Harrison and Shepp [2]

who considered a perturbation of a simple symmetric random walk at A = {0}. They

proved that if

P(X(1) = x± 1 | X(0) = x) =
1

2
, x 6= 0,

P(X(1) = 1 | X(0) = 0) = p ∈ [0, 1],

P(X(1) = −1 | X(0) = 0) = q := 1− p,

then the process X([n·])√
n

converges in distribution to a skew Brownian motion W skew
γ

with permeability parameter γ = p−q. Recall thatW skew
γ is a continuous homogeneous

Markov process with transition probability density function

pt(x, y) = ϕt(x− y) + γsgn(y)ϕt(|x|+ |y|), x, y ∈ R, t > 0,

where ϕt(z) = (2πt)−1/2e−
z2

2t .

Harrison and Shepp used the classical approach in their proof, they verified tight-

ness and convergence of finite-dimensional distributions that can be calculated di-

rectly using a simple structure of transition probabilities and Andre’s reflection prin-

ciple. Naturally, the case of general membrane A and non-unit jump outside of A is

1The author is supported by the National Research Foundation of Ukraine (project 2020.02/0014

“Asymptotic regimes of perturbed random walks: on the edge of modern and classical probability”
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much harder to deal with. Some partial results on functional limit theorems gener-

alized result of [2] were obtained in [4, 6, 7, 3, 5], where the limit process was also a

skew Brownian motion under some additional restrictions that were important during

the corresponding proofs, say finiteness of jumps outside of the membrane, membrane

consists of one point, etc.

We obtain a final result that uses a minimal set of assumptions and generalizes all

previous works.

Consider an integer-valued time-homogeneous Markov chain (X(k))k≥0 that be-

haves as a random walk everywhere, except of the finite set {−d, . . . , d}, d ≥ 0, called

a membrane. We will assume that if X is located to the right of the membrane, then

its jumps have a distribution ξ+, and its jumps to the left of the membrane have a

distribution ξ−, that is

P(X(1) = x+ y|X(0) = x) = P(ξ+ = y), x > d,

P(X(1) = x+ y|X(0) = x) = P(ξ− = y), x < −d.

The laws of jumps from the membrane, i.e. P(X(1) ∈ ·|X(0) = x), |x| ≤ d, are

arbitrary.

Theorem 1. Assume that E ξ± = 0, v2
± := Var ξ± ∈ (0,∞), the states Z\{−d, . . . , d}

of Markov chain X are connected, and jumps from the membrane have finite expec-

tation, i.e.

max
|x|≤d

E
[
|X(1)

∣∣X(0) = x
]
<∞.

Let

ϕ(x) = x(v−1
+ 1Ix≥0 + v−1

− 1Ix<0).

Then the Donsker scaling
{
ϕ
(X([n·])√

n

)}
n≥1

weakly converges to a skew Brownian mo-

tion W skew
γ (·) starting at 0 with some permeability parameter γ ∈ (−1, 1).

Our methods are based on a martingale characterization of the skew and the Walsh

Brownian motion. The approach was initiated in [3, 1]. We allow different variance

on different sides of the membrane, which was not done in all previous works except

of [5]. The case when the membrane A is an arbitrary finite set {x1, . . . , xm} ⊂ Z
not necessarily equal to {−d, . . . , d}, is also covered by Theorem 1. Indeed, X can

be considered as a random walk perturbed on bigger membrane {−d, . . . , d}, where

d = max1≤i≤m |xi|.
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Martingale representation of Brownian functionals

O. Purtukhia 1,V. Jokhadze

We study functionals whose filter is not stochastically smooth and propose a method

for finding the integrand. The question of representing Brownian functionals as a

stochastic It integral with an explicit form of the integrand is investigated. The class

of functionals under consideration also includes functionals that are not smooth in

the sense of Malliavin, to which both the well-known Clark-Ocone formula (1984) and

its generalization, the Glonti-Purtukhia representation (2017), are inapplicable.

Let a Brownian Motion B = (Bt), t ∈ [0, T ], be given on a probability space

(Ω,=, P ), and let =Bt = σ{Bu : 0 ≤ u ≤ t}.

Theorem 1. Let f(·, ·) : [0, T ]× R1 −→ R1 be a measurable bounded function, then

the function V (t, x) = E[
∫ T
t
f(s, Bs(ω))ds|Bt = x] satisfies the requirements of the

Ito formula and the the following stochastic integral representation is fulfilled∫ T

0

f(s, Bs)ds =

∫ T

0

Ef(s, Bs)ds+

∫ T

0

V
′

x(s, Bs)dBs (P − a.s.).

Corollary 1. The following stochastic integral representation is valid

I{BT≤c} = Φ
( c√

T

)
−
∫ T

0

1√
T − s

ϕ
( c−Bs√

T − s
)
dBs (P − a.s.),

where Φ is the standard normal distribution and ϕ is its density function.
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Weak periodic Gibbs measures for the Potts-SOS
model on a Cayley tree of order two

Rahmatullaev M.M., Rasulova M. A.

Potts-SOS model is generalization of the Potts and SOS (solid-on-solid) models.

Weak periodic Gibbs measures for this model on the CT were not studied yet. In this

work we study weak periodic Gibbs measures for this model on the CT of order two.

The Cayley tree τ k (see [1]) of order k ≥ 1 is an infinite tree, i.e. a graph without

cycles, from each vertex of which exactly k + 1 edges issue.

The Hamiltonian of the Potts-SOS model with nearest-neighbor interaction has the

form

H(σ) = −J
∑
〈x,y〉∈L

|σ(x)− σ(y)| − Jp
∑
〈x,y〉∈L

δσ(x)σ(y),

where J, Jp ∈ R are nonzero coupling constants.

Let HA = {x ∈ Gk :
∑

i∈A ωx(ai) is an even number}, where ∅ 6= A ⊆ Nk =

{1, 2, 3, ..., k+ 1} and ωx(ai) is the number of letters ai in a word x ∈ Gk. We get the

following theorem:

Theorem 1. Let k = 2, | A |= 1, Jp = 2J . Then all weak periodic Gibbs measures

for the Potts-SOS model are translation-invariant.
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Strong measurable continuous modification of the
Burdzy-Kaspi stochastic flow

G. V. Riabov

Let (Wt)t∈R be a Brownian motion on R. For all (s, x) ∈ R2 the following equation

has a unique strong solution [1]:

X(t) = x+ W(t)−W(s) + βL(t), t ≥ s, (1)

where L is the symmetric local time of X at zero, and β ∈ [−1, 1]. According to [2, 3]

there exists a stochastic flow ψ = (ψs,t)−∞<s≤t<∞ of measurable mappings of R, such

that for all (s, x) ∈ R2 ψs,·(x) is a solution to (1).

The stochastic flow ψ satisfies the evolutionary property in the sense that for all

r ≤ s ≤ t and x ∈ R
ψr,t(x) = ψs,t ◦ ψr,s(x) a.s.

We will improve this result by showing that ψ has a modification ψ̃ such that

(s, t, x, ω) 7→ ψ̃s,t(ω, x) is measurable, and ψ̃ satisfies the evolutionary property for all

r, s, t, x, ω simultaneously.

The proof will be based on the novel approach to constructing modifications of

stochastic flows.
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An intersection of joint trajectories of independent
Brownian motions in Carnot groups with a given

set

O. Rudenko

Let Gi, i = 1, . . . , n be Carnot groups in Rd. Denote as Lij, j = 1, 2 . . . d,

i = 1, 2, . . . , n n sets of corresponding vector fields, that constitute the basis of

the corresponding Lie algebra of left-invariant vector fields for each Gi, denote as

pij, j = 1, 2 . . . d, i = 1, 2, . . . , n the corresponding homogeneous degrees of Lij and

denote as ρi, i = 1, 2, . . . , n the corresponding distances on these groups. For each

i = 1, . . . , n let Xi be a Brownian motion in Gi corresponding to Lij, j = 1, 2, . . . , d

(for details on all these definitions see [1]).

We suppose that Xi, i = 1, . . . , n are independent, and denote

Y (t) = (X1(t1), X2(t2), . . . , Xn(tn)), t = (t1, . . . , tn)

. We want to find a condition when the following probability

Pvis(x, V ) = P (∃t ∈ (0,+∞)n : Y (t) ∈ V/Y (0) = x)

is zero, where V ⊂ Rnd. For this purpose we use the following special definition of

a Hausdorff measure on Rnd. Additionally we can also obtain a bound on values of

such Hausdorff measure, if the above probability is not zero.

For each x = (x1, x2, . . . , xn) ∈ Rnd, y = (y1, y2, . . . , yn) ∈ Rnd and positive numbers

r1, r2 . . . rn, we denote γr1,...,rn(x, y) = max
i=1,...,n

ρ
1
ri
i (xi, yi) and for r > 0 and a > 0 we

denote hr(a) = ar.

Definition 1. For all r > 0 and positive r1, r2 . . . rn, we define a Hausdorff measure

Hr,r1,...,rn in Rnd as follows:

Hr,r1,...,rn(A) = lim
ε→0+

inf{
+∞∑
i=1

hr( diam
γr1,...,rn

(Ai))|A ⊂
+∞
∪
i=1

Ai, diam
γr1,...,rn

(Ai) < ε, i = 1, 2, . . .}

where diam
γr1,...,rn

(Ai) = sup{γr1,...,rn(x, y)|x ∈ Ai, y ∈ Ai}.

Let Bi(y, ε) be an open ball with center y and radius ε with regard to the distance

ρi and Qi =
d∑
j=1

pij.
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Theorem 1. Let V be a Borel set in Rnd. Suppose that there exist a finite mea-

sure ν and positive constants C, r1, r2 . . . , rn and δ ∈ R, such that for all y =

(y1, y2, . . . , yn) ∈ V , ε ∈ (0, 1):

(1) ν(B1(y1, ε
r1)×B2(y2, ε

r2)× . . .×Bn(yn, ε
rn)) > Cε

n∑
i=1

ri(Qi−2)+δ

If δ < 0 then for all x ∈ Rnd we have Pvis(x, V ) = 0.

If δ > 0, then for all x ∈ Rnd, such that

(2)

∫
V

n∏
i=1

ρ2−Qi
i (xi, yi)ν(dy1 . . . dyn) < +∞

where V is a closure of V , and for all s > 0

P (Hδ,r1,...,rn(V ∩ {Y (t)|t ∈ [0, s]n}) < +∞/Y (0) = x) = 1.

In the proof of this theorem several results about Carnot groups from [2] are used,

as well as bounds on the densitiy of Brownian motion in Carnot group from [3]. Also

we apply probabilistic potential theory developed in [4] to Brownian motion in Carnot

group.
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Functional limit theorems for branching processes
with non-stationary immigration

S.O. Sharipov

Let {ξk,i, k, i ≥ 1} and {εk, k ≥ 1} be two sequence of non-negative integer-valued

random variables such that the two families {ξk,i, k, i ≥ 1} and {εk, k ≥ 1} are in-

dependent, {ξk,i, k, i ≥ 1} are independent and identically distributed (i.i.d.). We

consider a sequence of branching processes with immigration Xk, k ≥ 0, defined by

recursion:

(1) X0 = 0, Xk =

Xk−1∑
i=1

ξk,i + εk, k ≥ 1.

Intuitively, one can interpret ξk,i as the number of offsprings produced by the i-th

individual belonging to the (k− 1)-th generation and εk is the number of immigrants

in the k-th generation. We can interpret Xk as the number of individuals in the k-th

generation.

Assume that a := Eξ1,1 <∞. Process Xk is called subcritical, critical or supercrit-

ical depending on a < 1, a = 1 or a > 1, respectively. We refer the reader to recent

survey of [1] where one can find a historical overview of limit theorems for process

(1).

In the talk we will discuss the conditions which ensure the validity of functional

limit theorems for critical process defined by (1) in the case when the immigration

sequence {εk, k ≥ 1} is not necessarily identically distributed and generated by weakly

dependent random variables. Our result extends the previous known result [2] in the

literature.
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Central limit theorem for strong mixing random
variables with values in Lp[0, 1] space

O. Sh. Sharipov, I. G. Muxtorov

Central limit theorems in Banach spaces are well studied in the case of independent

identically distributed random elements (see [1]). Our goal is to establish a central

limit theorem for strong mixing random variables with values in Lp[0, 1] space.

We say that a sequence {Xi(t), i ≥ 1} of centered random variables in Lp[0, 1] satisfies

central limit theorem if the following weak convergence holds:

1√
n

n∑
i=1

Xi(t)⇒ N(t)

where N(t)is some Lp[0, 1]-valued Gaussian random variable with mean zero.

We will assume that {Xn(t), n ≥ 1}satisfies αm-mixing condition. For the sequence

of Lp[0, 1]-valued random variables {Xn(t), n ≥ 1} αm-mixing coefficients are defined

as:

αm(n) = sup
Πm

sup
{
|P (B)− P (A)P (B)| : A ∈ F k

1 (m), B ∈ F∞k+n(m), k ∈ N
}

where =ba(m)-is σ-field generated by random variables
∏

mXa(t), ...,
∏

mXb(t)

and
∏

m : Lp[0, 1] → Rm is projective operator i.e.
∏

mXi(t) = (Xi(t1), ..., Xi(tm)),

ti ∈ [0, 1].

We say that {Xi(t), i ≥ 1} is αm-mixing, if αm(n)→ 0 as n→∞, m = 1, 2, ... .

Our main result is the following

Theorem 1. Let {Xi(t), i ≥ 1} be a strictly stationary sequences of random variables

with values in Lp[0, 1], 1 < p ≤ 2 and for some δ > 0

EX1(t) = 0

E |X1(t)|2+δ <∞
∞∑
n=1

(αm(n))
δ

2+δ <∞,m = 1, 2, ...

E |X1(t+ h)−X1(t)|2+δ ≤ f(h) for 0 ≤ h < 1, 0 ≤ t ≤ 1 − h, for some function

f(·)such that f(h)→ 0 as h→ 0.

Then {Xi(t), i ≥ 1} satisfies a central limit theorem.
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Extremal properties of Bernoulli random variables

Sh. Shorakhmetov

In theoretical and practical problems of mathematics and other fields of science

there are problems of finding extreme values of functionals . The article is devoted

to finding the exact upper bounds of the functional Ef(ξ1 + ξ2 + ...+ ξn).

Let F (x1, x2, ..., xn) be the joint distribution of arbitrarily dependent random vari-

ables ξi ∈ [0, 1], i = 1, n. Denote by F the class of all distributions with fixed

mathematical expectations:

F = {F (x1, x2, ..., xn) : Eξ1 = m1, ..., Eξn = mn} .

Without loss of generality, we assume that m1 ≤ m2 ≤ ... ≤ mn.

Theorem 1. Let f be the convex increasing function. Then

sup
F∈F

Ef(ξ1 + ξ2 + ...+ ξn) =
n∑
k=0

f(n− k)(mk+1 −mk),

where m0 = 0, mn = 1. The supremum is reached on binomial distributed random

variables B1, B2, ..., Bn:

P (B1 = 1, B2 = 1, ..., Bn = 1) = m1,

P (B1 = 0, B2 = 0, ..., Bn = 0) = 1−mn,

P (Bi1 = 0, ..., Bil = 0, Bil+1
= 1, ..., Bin = 0) = mil+1

−mil , l = 1, 2, ..., n− 1.

The probability values of the remaining sets 0, 1 equal to zero.

A similar statement is true when the function is f monotonically decreasing.
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Operator splitting methods for non-homeomorphic
one-dimensional stochastic flows

M.B. Vovchanskyi

We consider flows {X(·, t) | t ≥ 0} of random transformation of the real line

that represent the joint movement of interacting Brownian particles with Lipschitz

continuous drift a whose pairwise correlation depends on the distance between them

and is described in the terms of infinitesimal covariance ϕ. More precisely, for every u

dX(u, t) = a (X(u, t)) dt+ dWu(t), t ≥ 0, X(u, 0) = u,

for some Wiener process Wu, and for every u, v

d

dt
〈X(u, t), X(v, t)〉 (t) = ϕ (X(u, t)−X(v, t)) , t ≥ 0.

Infinitesimal covariance ϕ is assumed to be either continuous or to equal 1[x = 0]. The

flow is known as the Brownian web and consists of particles that move independently

before they meet in the latter case. In contrast to the case of diffeomorphic stochastic

flows, mappings {X(u, ·) | u ∈ R} may be discontinuous, in which case clusters are

formed within the flow.

The well-known operator splitting scheme is applied to the Harris flows introduced

above so that the actions of the semigroups generated by the corresponding driftless

Harris flow and the ordinary ODE df(t)
dt

= a(f(t)) are separated.

We establish the weak convergence of finite-dimensional motions in Skorokhod

spaces. This result is used to derive the convergence of the pushforward measures

under the action of the corresponding flows for the Brownian web or under an addi-

tional assumption that guarantees the initial Harris flow to be a coalescing one. As

another application, the convergence of the associated dual flows in reversed time is

obtained. The rate of convergence is given for the Brownian web.

The talk is based on [1, 2, 3].
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On asymptotics of solutions of stochastic
differential equations with jumps

V. K. Yuskovych

Let B be a Brownian motion, Ñ be a compensated Poisson random measure. We

study the asymptotics of stochatic differential equations of the form

(1) dX(t) = a(X(t))dt+ b(X(t))dB(t) +

∫
R
c(X(t−), u)Ñ(dt, du), X(0) = x0 ∈ R,

as t→∞ under the assumption that X(t)→ +∞ almost surely.

The following theorem gives sufficient conditions of asymptotic equivalence of so-

lution X and the solution of the ordinary differential equation

dx(t) = Axα(t)dt, x(0) > 0.

Theorem 1. Let X be a solution of stochastic differential equation (1) such that

X(t) → +∞ a.s. and let α ∈ [0, 1). Suppose that the coefficients of equation (1)

satisfy the conditions:

• for some constant A+ ≥ 0,

|a(x)| ≤ A+x
α, x ≥ 1;

• for some constant A > 0,

a(x) ∼ Axα, x→ +∞;

• for some constants C ≥ 0 and β ∈
[
0, 1+α

2

)
,

b2(x) +

∫
R
c2(x, u)ν(du) ≤ C

(
1 + |x|2β

)
, x ∈ R.

Then

X(t) ∼ ((1− α)At)
1

1−α , t→∞, a.s.

Remark 1. We also study sufficient conditions such that X(t)→ +∞ a.s.
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