Description of all limit distributions of some Markov chains with memory 2

Ganikhodjaev Nasir Nabievich
RUz Academy of Sciences Institute of Mathematics, Tashkent, Uzbekistan nasirgani@yandex.ru

Keywords: Markov chain with memory, transition probability tensor, stationary distribution.
A Markov chain with memory 2 is a process satisfying

$$
\begin{equation*}
\operatorname{Pr}\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}, \cdots, X_{1}=s_{1}, X_{0}=s_{0}\right)=\operatorname{Pr}\left(X_{n+1}=s_{n+1} \mid X_{n}=s_{n}, X_{n-1}=s_{n-1}\right) \tag{1}
\end{equation*}
$$

For simplicity, identify the states as $S=\{1,2, \cdots, r\}$ and assume that the chain is time homogeneous. Then a transition probability matrix $\Pi=\left(p_{i j}\right)$ defined by

$$
\begin{equation*}
p_{i j}:=\operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=i\right) \tag{2}
\end{equation*}
$$

is independent of n and is row stochastic.
As shown in [1], assuming again time homogeneity, a Markov chain with memory 2 can be conveniently represented via the order -3 tensor $\Pi^{(3)}=\left(p_{i_{1}, i_{2}, i_{3}}\right)$ defined by

$$
\begin{equation*}
p_{i_{1}, i_{2} \mid i_{3}}:=\operatorname{Pr}\left(X_{n+1}=i_{3} \mid X_{n}=i_{2}, X_{n-1}=i_{1}\right) \tag{3}
\end{equation*}
$$

As noted in [2], the theory of finite Markov chains with positive transition probabilities can be embedded into the theory of limit Gibbs distributions as a trivial particular case, and the Hamiltonians can be considered a natural generalization of the transition probabilities or, more exactly, of their logarithms.
Let $\Omega=S^{Z_{+}}$be the sample space of a finite Markov chain with r states. That is, the range space S consists of r elements and P is a measure on Ω corresponding to a homogeneous Markov chain with a stationary transition matrix $\Pi=\left(p_{i j}\right)$ and with stationary distribution $\pi=\left(\pi_{1}, \pi_{2}, \cdots, \pi_{r}\right)$. We consider the case when all $p_{i j}>0$. For arbitrary $\Lambda \subset Z_{+}$a configuration σ on Λ is defined as $\sigma(\Lambda): \Lambda \rightarrow S$. For $\Lambda_{k m}=(k, k+1, \cdots, k+m)$, the probability of an arbitrary configuration $\sigma\left(\Lambda_{k m}\right)=(\sigma(k), \sigma(k+1), \cdots, \sigma(k+m))$ is equal to

$$
\begin{gathered}
\pi_{\sigma(k)} \cdot p_{\sigma(k) \sigma(k+1)} \cdot p_{\sigma(k+1) \sigma(k+2)} \cdots p_{\sigma(k+m-1) \sigma(k+m)} \\
=\exp \left\{\ln \pi_{\sigma(k)}+\sum_{i=k}^{k+m-1} \ln p_{\sigma(i) \sigma(i+1)}\right\}
\end{gathered}
$$

Introducing the Hamiltonian

$$
\begin{equation*}
H(\sigma)=-\sum_{i=0}^{\infty} \ln p_{\sigma(i) \sigma(i+1)} \tag{4}
\end{equation*}
$$

we see that the interaction energy $\mathcal{G}(\sigma(\Lambda))$ differs from zero only if $\Lambda=\Lambda_{i, 1}$ and then $\mathcal{G}\left(\sigma\left(\Lambda_{i, 1}\right)\right)=$ $-\ln p_{\sigma(i) \sigma(i+1)}$.
Here $(i, i+1)$ are nearest-neighbours, and in Hamiltonian (3) only interactions between neighbouring spins are taken into account. We consider one more interaction, namely interactions of second neighbours $>i, i+2<$. Let $\Pi^{2}=\left(p_{i j}^{(2)}\right)$ and model specified by the following Hamiltonian

$$
\begin{equation*}
H(\sigma)=-\sum_{i=0}^{\infty} \ln p_{\sigma(i) \sigma(i+1)}-\sum_{i=0}^{\infty} \ln p_{\sigma(i) \sigma(i+2)}^{(2)} \tag{5}
\end{equation*}
$$

Such model is called the model with competing interactions [3]. We describe all limit distributions of some Markov chains with memory 2.

References:

1. Wu S-J, Chu M.T. Markov chains with memory, tensor formulation, and the dynamics of power iteration. Applied Mathematics and Computation, Vol. 303, 2017, pp. 226-239.
2. Sinai Ya.G. Theory of phase transitions: Rigorous results, Pergamon Press, Oxford - New York - Toronto - Sydney - Paris - Frankfurt, 1982, 158 pp.
3. Vannimenus J. Modulated phase of an Ising system with competing interactions on a Cayley tree. Z. Phys. B-Condensed Matter, Vol. 43, 1981, pp. 141-148.
